华南理工大学2008信号与系统期末试题与解答 (1)
2008年华南理工大学824信号与系统考研试题
第
4
页
8.差分方程
y[k ] = ∑ x[k − n] 所描述系统的单位冲激响应 h[n] = u[n − k ] .
n =0
jω
∞
四. (13 分)已知信号 x[ n]和g[ n] 分别有傅里叶变换 X ( e
)和G(e jω ) ,且 X (e jω ) 和
1 G(e ) 的关系如下: 2π
jω n
(D) y (t ) = x(t + 1)
3.已知一个连续系统的频率响应为 H ( jω ) = ωe ( ) ;
− j ( 7ω − 1 π ) 5
,一图象信号经过该系统后
(A) 不会产生任何变化; (B) 相位会失真; (C)会产生平滑效果; (D)会增强边缘;
z+ 1 − 3z −1 + 2 z −2 2 , , H 2 ( z) = 2 4.四个因果 LTI 系统, H 1 ( z ) = −1 − 1 − 1 z + 3z + 2 z (1 − 1 z )(1 − 1 z ) 2 3
x(t)
测量装置 h(t)
补偿系统 g(t)
y(t)
3.怎样恰当处理减少 n(t ) 造成的影响同时又要对测量装置的进行补偿的问题?
九. (13 分)画出非同步调制/解调系统中的调制器的结构框图,说明非同步调制/解调 的工作原理, 和非同步调制/解调的优缺点, 举一个使用该调制/解调方式的应用的实例。
第
6
页
n
2.已知一稳定且因果的系统,其 H ( s ) 是有理的,有一极点在 s = −3 处,则 h(t )e 傅立叶变换不存在。
−2 t
的
3. 考虑一离散时间理想高通器, 其频率响应是 H (e 小时,该滤波器的单位冲激响应是更远离原点。 4.已知离散时间信号 x[ n ] 的傅立叶变换为 X (e
信号与系统-华南理工大学期末考试试卷及参考答案_A2009a
,考试作弊将带来严重后果!华南理工大学期末考试《 信号与系统 》试卷A1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;填空题(共32分,每小题 4 分)、考虑信号 t t x 0cos )(ω=,其基波频率为0ω。
信号)()(t x t f -=的付立叶级数系数是 A )(A)为其它k a a a k ,0,211-1=== (B) 为其它k a ja a k ,0,211-1=== (C) 为其它k a a a k ,0,21,211-1=-== (D) 为其它k a a a k ,0,2j1,2j 11-1=-==、设信号)(t f 的傅立叶变换为)(ωj F ,则信号)21()21(t f t --的傅里叶变换是( A )(A)(B)(C)2j e )]2j (F [d d ωω-ω (D) )]2j (F [d d ωω 、已知信号)(t ω=)(1t x )(2t x ,用一周期为T 的均匀冲激串对其采样,样本记为)(t p ω。
)(1t x 1ω,)(2t x 带限于2ω,即2211||,0)(||,0)(ωωωωωω≥=≥=j X j X ,要使)(t ω通过利用某一理想低通滤波器能从)(t p ω中恢复出来,最大的采样间隔T 为( D )。
(A)212ωωπ+ (B) 12ωπ (C) 22ωπ (D) 21ωωπ+4、已知]1[1)s (T a)(s e as X +--+=,其逆变换式)(t x 为( A )。
(A))]()([T t u t u e at --- (B) )]()([T t u t u e at +-- (C) )(t u e at - (D) )]()([T t u t u e at -+5、已知一因果离散序列]n [x 的Z 变换为X(z)=1325122+++---z z z ,则]0[x =( A );(A )2 (B)5 (C)0 (D)1/26、下列说法正确的是( B ) (A ) 累加器∑-∞==nk k x n y )()(是无记忆系统(B ) LTI )2()(4-=-t u e t h t是因果系统 (C ) [])2()(sin )(-+=t x t x t y 是线性系统 (D ) ()()y t tx t =是稳定系统7、已知一离散LTI 系统的脉冲响应h[n]=δ[n]+2δ[n-1]-3δ[n-2],则该系统的单位阶跃响应S[n]等于(C )(A) δ[n]+δ[n-1]-5δ[n-2]+ 3δ[n-3] (B) δ[n](C) δ[n]+3δ[n-1](D) δ[n]+δ[n-1]-2δ[n-2] 8 信号45[]cos()2jn x n n eππ=+,其基波周期为(A )(A ) 20s (B ) 10s (C ) 30s (D )5s二、 填空题(共20分,每小题 4 分)1、信号失真的类型有( 幅度失真、相位失真、频率失真 )。
信号及系统期末考试试题及答案
信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试试卷 含答案(3)
,考试作弊将带来严重后果!华南理工大学期末考试《 信号与系统 》试卷B1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;4. 本试卷共 五 大题,满分100分, 考试时间120分钟。
题 号 一 二 三四五总分得 分 评卷人一、 填空题(共20分,每小题 2 分)1、()⎪⎭⎫⎝⎛π+=3t 4cos 3t x 是否为周期信号 , 若是其基波周期T= 。
2、[]⎪⎭⎫⎝⎛π+=64n cos n x 是否为周期信号 , 若是基波周期 N= 。
3、信号()()()t 3sin t 2cos t x +π=的傅里叶变换()ωj X = 。
4、一离散LTI 系统的阶跃响应[][][]1n 2n n s -δ+δ=,该系统的单位脉冲响应[]=n h 。
5、一连续LTI 系统的输入()t x 与输出()t y 有如下关系:()()()ττ=⎰+∞∞-+τ--d x et y 2t ,该系统的单位冲激响应()=t h 。
6、一信号()()2u 34+=-t et x t,()ωj X 是该信号的傅里叶变换,求()=ωω⎰+∞∞-d j X 。
7、周期性方波x(t)如下图所示,它的二次谐波频率=2ω 。
8、设)e(X j ω是下图所示的离散序列x[n]傅立叶变换,则=⎰ωπωd )e (X 20j 。
9、已知一离散实偶周期序列x[n]的傅立叶级数a k 如图所示,求x[n]的周期N= 。
10、一因果信号[]n x ,其z 变换为()()()2z 1z 1z 5z 2z X 2++++=,求该信号的初值[]=0x 。
二、 判断题(判断下列各题,对的打√,错的打×)(共20分,每小题2分)1、已知一连续系统的频率响应为)5j(23e )H(j ωωω+-=,信号经过该系统不会产生相位失真。
( )2、已知一个系统的单位冲击响应为)2t (u e )t (h t+=-,则该系统是非因果系统。
信号与系统期末考试试题有答案的
信号与系统期末考试试题有答案的信号与系统期末考试试题有答案的WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的) 1、卷积f 1(k+5)*f 2(k-3) 等于。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、积分dt t t ?∞∞--+)21()2(δ等于。
(A )(B )(C )3(D )5 3、序列f(k)=-u(-k)的z 变换等于。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、连续周期信号的频谱具有(A )连续性、周期性(B )连续性、收敛性(C )离散性、周期性(D )离散性、收敛性 7、周期序列2)455.1(0+k COS π的周期N 等于(A ) 1(B )2(C )3(D )48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分)1、卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号?-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()?∞∞-jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
2008信号与系统A卷答案
(10分)1. 已知)(t f 的波形如下图所示,试画出)22(t f -的波形。
(5分) (2分)(1分)(2分)(直接给出最终结果,不扣分)2. 已知)(t f 的波形如下图所示,利用()t u 写出该信号的时间表达式。
(5分)()()()()212-+--=t u t u t u t f(知道由三项组成,但表达式写错,给2分)(4分)计算积分dt t t e t )2()32(+δ+⎰∞∞--()6232)2()32(22-=+=+δ+-=-∞∞--⎰e t e dt t t e t t t (2分)(2分) (8分)已知描述连续时间LTI 系统的微分方程为()()()()t x dtt dx t y dt t dy +=+2 求该系统的单位冲激响应()t h 。
()21++=s s s H (3分) ()211+-=s s H (2分) ()()()t u e t t h t2--δ= (3分)(用时域等其它方法求解,给出相应步骤分)四、 (10分)一个连续时间LTI 系统的激励)(t x 和单位冲激响应)(t h 分别为()()t u t x =,()()t u e t h t 3-= 计算该系统的零状态响应()t y ZS 。
()s s X 1=(2分) ()31+=s s H (2分) ()()()()31+==s s s H s X s Y ZS (2分) ()⎪⎭⎫⎝⎛+-=31131s s s Y ZS (2分)()()()t u e t y t ZS 3131--=(2分)(18分)(1)设()tf 为带限信号,频带宽度为m ω,求信号()⎪⎭⎫⎝⎛t f t f 21,2的带宽(6分) 规律:时间压缩,频域扩展,时间扩展,频域压缩 (2分)()t f 2 时间压缩2倍,所以频域扩展2倍,即()t f 2的带宽为m ω2 (2分)⎪⎭⎫ ⎝⎛t f 21时间扩展2倍,所以频域压缩2倍,即⎪⎭⎫⎝⎛t f 21的带宽为m ω21 (2分)(2)已知信号如图所示,设其频谱函数为()ωF ,不要求()ωF ,求()0F (6分)根据 ()()dt et f F tj ωω-∞∞-⎰=(2分得到()()828210=⨯⨯==⎰∞∞-dtt f F (2分 + 2分) )(3)求信号 ⎪⎩⎪⎨⎧><+=1 , 01),cos 1(2)(t t t t f π 的傅里叶变换(6分)()()()t t G t f πcos 12+= (1分) ()()ωSa t G 422↔ (1分)()()()()[]πωδπωδπωπδπ++-+↔+2cos 1t (1分)()()()()()()()()[][]()()()()[][]()()()πωπωωπωδπωδωδωπωδπωδπωπδωπωπ++-+=++-+*=++-+*⨯=↔+=Sa Sa Sa Sa Sa F t t G t f 224222421cos 12 (3分)(每小题6分,18分)(1) 求函数()())(3223t u e e t f t t ---=的拉普拉斯变换()s F ; ()()()()2352332+++-=+-+=s s s s s s F ( 6分 ) (2) 求函数()()86162++=s s s s F 的单边拉普拉斯反变换()t f ;()()()()()()42242421686162+++-+=++=++=s s s s s s s s s s F ( 4分 )(算错分子的系数扣2分)()())(24242t u e e t f t t --+-= ( 2分 )(3) 求函数()())1(252++=s s s F 的拉普拉斯反变换()t f 。
信号与系统试题库史上最全(内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
全国2008--2012年自考信号与系统真题和答案
全国2008年4月自考信号与系统真题课程代码:02354一、单项选择题(本大题共12小题,每小题2分,共24分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.RLC 串联电路发生谐振的条件是( )A .LC 10=ωB .LC πω210=C .LC f 10=D .LCR=0ω2.已知信号)(t f 的波形如题2图所示,则)()1(t t f ε-的表达式为( )A .)3(-t εB .)3()(--t t εεC .)(t εD .)3()(+-t t εε 3.计算⎰∞∞-=-dt t t )6(sin 2πδ( ) A .1 B .1/6C .1/8D .1/44.已知⎰∞-=t d t f ττδ)()(,则其频谱=)(ωj F ( )A .ωj 1 B .j ω C .)(1ωπδω+j D .)(1ωπδω+-j5.信号)(1t f 与)(2t f 的波形分别如题5图(a ),(b )所示,则信号)(2t f 的频带宽度是信号)(1t f 的频带宽度的( )A .2倍B .1/2倍C .1倍D .4倍6.已知某周期电流t t t i 5sin 223sin 221)(++=,则该电流信号的有效值I 为( ) A .3A B .1A C .17A D .10A 7.已知)(t f 的拉普拉斯变换为F (s ),⎰-∞-0)(dt t f 有界,则⎰∞-td f ττ)(的拉普拉斯变换为( )A .)(1s F sB .)0()(1--f s F sC .⎰-∞-+0)(1)(1ττd f ss F sD .⎰-∞--0)(1)(1ττd f s s F s8.已知)(t f 的拉普拉斯变换为F (s ),且F (0)=1,则⎰∞-0)(dt t f 为( )A .π4B .π2C .π21D .19.系统函数22)()(c a s bs s H +-+=,a ,b ,c 为实常数,则该系统稳定的条件是( )A .a <0B .a>0C .a=0D .c =010.已知某离散序列)(n f 如题10图所示,则该序列的数学表达式为( )A .)1()1()(+-=n n f n εB .)1()1()(--=n n f n εC .)()1()(n n f n ε-=D .n n f )1()(-=11.已知某系统的差分方程为)1()()2()1()(0101-+=-+-+n f b n f b n y a n y a n y ,则该系统的系统函数H (z )为( )A .201011)(z a z a zb b z H +++= B .211011)(1---+++=z a z a z b b z HC .102120)(a z a z z b z b z H +++=D .20111011)(---+++=z a z a z b b z H12.已知)1(3)(+=z zz F ,则)(n f 为( )A .)()3(n n ε-B .)()1(31n n ε-C .)(31n nε⎪⎭⎫⎝⎛ D .)(3n n ε二、填空题(本大题共12小题,每小题2分,共24分) 请在每小题的空格中填上正确答案。
信号与系统考试题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统-华南理工大学期末考试试卷及参考答案_B2008a
《信号与系统》试卷B一、 选择题(2分/题,共20分)1) 信号x(n), n=0,1,2,3,…是能量有限的意思是 a) x(n)有限;b) |x(n)|有界;c)()2n x n ∞=<∞∑; d)()01Nn x n N=<∞∑。
2) 一个实信号x(t)的偶部是a) x(t)+x(-t); b) 0.5(x(t)+x(-t)); c) |x(t)|-|x(-t)|; d) x(t)-x(-t)。
3) LTI 连续时间系统输入为(),0ate u t a ->,冲击响应为h(t)=u(t), 则输出为a)()11at e a --; b) ()()11at e t a δ--; c) ()()11at e u t a --; d) ()()11at e t aδ---。
4) 设两个LTI 系统的冲击响应为h(t)和h 1(t),则这两个系统互为逆系统的条件是 a) ()()()1h t h t t δ*=; b) ()()()1h t h t u t *=; c)()()()1h t h t u t *=-; d) ()()10h t h t *=。
5) 一个LTI 系统稳定指的是a) 对于周期信号输入,输出也是周期信号;b)对于有界的输入信号,输出信号趋向于零;c)对于有界输入信号,输出信号为常数信号;d)对于有界输入信号,输出信号也有界 d6) 离散信号的频谱一定是a) 有界的;b) 连续时间的;c) 非负的;d) 连续时间且周期的。
7) 对于系统()()()dy t y t x t dtτ+=,其阶跃响应为 a)()/1t e u t τ-⎡⎤-⎣⎦; b) ()/1t e t τδ-⎡⎤-⎣⎦; c) ()/1t e u t τ-⎡⎤+⎣⎦; d) ()/1t e t τδ-⎡⎤+⎣⎦. 8) 离散时间LTI 因果系统的系统函数的ROC 一定是a) 在一个圆的外部且包括无穷远点; b)一个圆环区域;c) 一个包含原点的圆盘;d) 一个去掉原点的圆盘。
(完整版)信号与系统期末试卷与答案
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间 120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t) (8分) (3).f(k)=1,k=0,1,2,3,h(k)=1,k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y ’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与系统-华南理工大学期末考试试卷
+
2 y(t)
=
dx(t) dt
+
4x(t)
dy(t)
x(t) = e-3tu(t) , y(0) = 1,
dt
t=0
=
0, y
h(t) (t)
=
(3e -t
- 2e-2t )u(t)
y (t)
Determine zero-initial response zi and zero-state response zs :
2. Consider sampling x(t) = Sa(10t) , determine the maximum of
sampling interval T so that there will be no aliasTinmgax, =
(s).
3. Write or Sketch the spectrum of Rectangular pxu[lnse]:
1. A system has inpxu1t(t) and output y1(t) . If the system has properties, then the input and output pairs has the relationship: input
is x2 (t) = x1(t - 2),+ 3sox1 (to-u3tput isy 2 (t) = y1(t - 2) 。+ 3y1(t - 3
1
5. The impulse response of a LTI systemh (its) = [u(t) - u(t - 4)],the step
4
response for the system is ( )
华南理工大学《信号与系统》00-08试题答案
=
3sin⎜⎛ ω ⎟⎞ − 4sin3⎜⎛ ω
⎝2⎠
⎝2
sin⎜⎛ ω ⎟⎞
⎟⎞ ⎠
=
3−
4sin2 ⎜⎛ ω ⎝2
⎟⎞ ⎠
⎝2⎠
⎝2⎠
= −1+ 4 cos2⎜⎛ ω ⎟⎞ = 1+ 2 cosω ⎝2⎠
当 M = 3 时,W (e jω ) = 2 cosω + cos 2ω + 2 cos 3ω
∫ 而
hHP [n]
=
1 2π
e π +ωc jωdω = (−1)n sin ωcn ,则 y[n] = (−1)n sin ωcn − (−1)n sin ωc (n + 1)
π −ωc
nπ
nπ
(n +1)π
五、解:周期
T=6,则
ω0
=
π 3
,
x(t)
=
2
+
1 2
⎜⎜⎝⎛
e
j
2πt 3
+
− j 2πt
∞
X (e
j
(ω
− πk 2
)
)
,G
(e
jω
)
H
(e
jω
)
=
X (e jω )
k =−∞
4 k =−∞
则
H
(ejω
)
=
⎪⎧4 ⎨
⎪0
⎩
| ω |≤ π 4
| ω |> π 4
X (e jω )
H (e jω ) 4
−π
πω
4
4
−π
πω
4
4
∑ 十一、解: s(t) = ∞ (−1)kδ (t − k Ts ) ,
信号与系统期末复习试题附答案
一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae2--+,则其2个特征根为( ) A 。
华南理工大学2008年信号与系统考研试题与答案
《信号与系统名校考研真题详解》内容介绍
全书分为9章,每章基本包括三部分内容。
第一部分是重点与难点解析,第二部分是名校考研真题详解,第三部分是名校期末考试真题详解。
本书精选了清华大学、电子科技大学、北京邮电大学、西安电子科技大学、上海交通大学、东南大学、北京航空航天大学、北京交通大学、华中科技大学、哈尔滨工业大学、浙江大学、南京航空航天大学、西安交通大学、西北工业大学、中国科学院、中国科技大学、华南理工大学、西南交通大学、南京邮电大学、国防科技大学、武汉科技大学等院校等院校近年的考研真题和期末考试真题,并进行了解答。
通过这些真题及其详解,读者可以了解和掌握相关院校考研、期末考试的出题特点和解题方法。
圣才考研网()是本书的支持网站。
圣才学习网是圣才学习网()旗下的考研专业网站,提供全国各高校考研考博历年真题(含答案)、专业课笔记讲义及其他复习资料、网上辅导课程等全套服务的大型考研辅导平台。
本书和配套网络课程特别适合备战考研和大学期末考试的读者,对于参加相关专业同等学力考试、自学考试、资格考试的考生也具有很高的参考价值。
华南理工信号系统历年真题
y [n ]
a) 求该系统的系统函数 H ( z ) ,并指出其收敛域; 第 3 页
b) 求该系统的单位脉冲响应; c) 试写出一个满足如图所示的稳定(非因果)系统的单位脉冲响应 函数。 七.(10 分)有一个离散系统的单位脉冲响应 h[n]=δ[n]-0.98δ[n-6],求 系统函数 H(z),画出 H(z)的零极点图和该系统的频率响应的幅频特性。 八、(10 分)已知理想低通滤波器的频率特性 H ( jω ) = 号为 x ( t ) =
三、求解下列各题(共 30 分)
1. 2. 3. 求信号 x ( t ) = e 的奇、偶分量。 (6 分)
jt
求连续时间信号 x ( t ) = e
−a t
( a > 0 ) 的傅立叶变换 X ( jω ) 。(6 分)
n 设一离散时间 LTI 系统的冲激响应 h[n] 为:h[n] = α u[n] ,试判断该系统的
4.由 E-NMOS FET 构成的对称差分放大电路中, Rd=10kΩ,RL=10kΩ,双端输出
方式时, 差模电压增益 Avd=100dB;若改接成单端输出方式时, 其差模电压 增益 Avds1=___________。(2 分)
七. 某共射电路如图题 7, 已知三极管的 rbb’=300Ω, rb’e=700Ω, gm=0.04s 不考虑 Cb’c,Cb’e=400pF,图中 C1=2μF,C2=4μF,Rb=20kΩ,Rs=800 Ω,Rc=RL=2kΩ; (12 分) (1) 计算上、下限截止频率ƒ H,ƒ L ; (2) 简要画出幅频、相频特性波特图; 第 2 页
(t + 2)dt 等于 1. ∫−3 cos tδ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,考试作弊将带来严重后果!
华南理工大学期末考试
《 信号与系统 》试卷 A
1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;
3分/每题,共21 分,单选题) 、下列哪个系统不属于因果系统( A )
]1[][][+-=n x n x n y B 累加器 ∑-∞
==
n
k k x n y ][][
一LTI 系统,其)()(2t u e t h t
-= D LTI 系统的)(s H 为有理表达式,ROC :1->σ 、信号45
[]cos()2
j
n x n n e
ππ
=+,其基波周期为(A )
A 20
B 10
C 30
D 5 、
设
]
3[]1[2][][---+=n n n n x δδδ和]1[2]1[2][-++=n n n h δδ,
][*][][n h n x n y =,求=]0[y ( B )
A 0
B 4
C ][n δ
D ∞
、已知一离散LTI 系统的脉冲响应h[n]= δ[n]+2δ[n-1]-3δ[n-2],则该系S[n]等于(B )
A δ[n ]+δ[n-1]-5δ[n-2]+ 3δ[n-3]
B δ[n]+3δ[n-1]
C δ[n]
D δ[n]+ δ[n-1]-2δ[n-2]
、信号)}2()2({-+--t u t u dt d
的傅立叶变换是( C )
A ω2sin 2j
B )(2ωπδ
C -2j ω2sin
D 、己知)(t x 的频谱函数⎩⎨⎧
>=<==2rad/s ||0,2rad/s, ||1,)X(j ωωω 设t t x t f 2cos )()(=,对信号)
(t f C )
A 4 rad/s
B 2 rad/s
C 8 rad/s
D 3 rad/s
ω
ω
j e j 2-
7、下列说法不正确的是(D )
A 当系统的频率响应具有增益为1和线性相位时,系统所产生的输出就是输入
信号的时移;
B 取样示波器和频闪效应是欠采样的应用;
C 对离散时间信号最大可能的减采样就是使其频谱在一个周期内的非零部分扩 展到将π-到π的整个频带填满;
D 听觉系统对声音信号的相位失真敏感。
二、填空题(3分/每题,共21分)
1、频率选择性滤波器的四种基本类型有:( 高通)滤波器、(低通)滤波器、(带
通)滤波器和带阻滤波器。
2、设)(t x 绝对可积,其拉普拉斯变换X(s)为有理拉氏变换, X(s)在21=s ,22-=s 有两个极点,则)(t x 是( 双边信号 )(选填:左边信号、右边信号或者双边信号)。
3、信号)2
2cos(sin 1][00π
ωω+++=n n n x 的傅立叶级数系数在一个周期里表示为
(10=a ,j a 211=
, j a 211-=- ,j a 212=, j a 2
1
2-=- )。
4、一个连续因果LTI 系统可由微分方程)(3)')(2)(3)(t x t x t y t y t y +=+'+''来描述,则
该
系
统
的
频
率
响
应
的
代
数
式
)
(ωj H =
(
2
3)(3
2
+++ωωωj j j )。
5、滤波器的频率响应如下图所示,对于周期输入x(n)=1+sin(8
3π
n),滤波器的输出为( sin(
3π
n) )。
6、信号t
e t x 2)(-=的拉普拉斯变换=)(s X (4
42--s -2<σ <2 )。
7、如图所示因果系统,为使系统是稳定的,k 的取值范围是( |k|<1 )。
X(z) ○Y(z)
三、简答题(共18分)
1、(9分)由所学知识可知,信号)(t x 可以使用3种分解形式来表示:时域表示法、频域表示法、复频域表示法。
请分别写出这3种表示形式,并进行简单的解释。
答:1)时域表示法:ττδτd t x t x )()()(-=⎰∞
∞
- 以)(t δ为基本单元,将)(t x 分解
成一个以)(τx 为权值的加权的移位冲激信号的“和”(即积分) 2)频域表示法:ωωπ
ωd e j X t x t j ⎰
∞
∞
-=)(21
)(
以t
j e
ω为基本单元,将)(t x 分解成一个以
ωωπ
d j X )(21
为权值的复指数信号的加权 “和”(即积分)
3)复频域表示法:
)(t x 可以被分解成复振幅为
ds s X j
)(21
π的复指数信号st e 的线性组合。
2、(9分)已知一连续时间信号)(t x ,如下图所示,
(1)请画出信号)2
4(2t x -,给出求解过程;
(2
答:(1)先时移:)4()(+→t x t x
再尺度扩展:)42()4(+→+t
x t x
再反转和幅度扩大2倍:)42
(2)42(+-→+t
x t x
(2)信号在发生时域上的伸缩时,频谱会发生相反的变化,即时域上信号波形发生扩展,频谱发生压缩;时域上发生压缩,频谱上发生扩展。
信号发生时移,频谱发生线性相移。
信号反转,频谱反转。
信号幅度增加,频谱幅度增加。
1
()()2j st j x t X s e ds
j σσ
π+∞-∞
∴=⎰t
四、计算题(4题共40 分)
1、(10分)考虑一个LTI 系统,其输入和输出关系通过如下方程联系
τττd x e t y t
t )2()()(-=⎰∞
---
(1)求该系统的单位冲激响应;(2)当输入信号)()(t u t x =时,求输出信号。
解:(1)令)()(t t x δ=,则
)
2()2()2()2()()()
2()
2()2()(-=-=-=-==--∞
---∞
---∞
---⎰
⎰⎰t u e
d e
d e d e t h t y t t
t t
t t
t ττδτ
τδττδτ
还有另外两种方法,也可以。
(2)
)
2()1(1)2()()(*)()()2(2
)2()2(--=⋅=--⋅==------∞
∞----⎰⎰t u e d e d t u e u t h t x t y t t t t τ
τ
ττττ
2、(8分)一连续时间LTI 系统的H(s)零极点分布如图所示,如果系统稳定,试用几何求
值法概略画出系统的频率响应,作出必要的标注,并判断系统的特性是低通、高通、带通还是带阻。
解:2
)(+=s K
s H ,2->σ 当jw
e
s =,即取纵坐标轴上的值,)()
(ωj e
s e H s H jw
==
A
K e H j =
|)(|ω
讨论A 随着Ω的变化而发生的变化:
0=Ω,A=2, 2
|)(|K e H j =
ω, 2=Ω,A=22, 2
2|)(|K e H j =
ω
,
∞→Ω,A ∞→, 0|)(|→ωj e H
则频率响应的模特性大概如图:
3、(8分)考虑一因果LTI 系统,其系统函数2
3
)(++=s s s H ,画出系统方框图。
解:
4、(14分)系统如图所示
(1) 写出系统函数 H ( s ) ,并求出系统冲激响应 h ( t ) ; (2) 若在该系统前面级联一个理想冲激串采样,即:使用()()n p t t n δ∞
=-∞
=
-∑对
()x t 采样,设()cos
2
x t t π
=,画出()y t 的波形。
解:(1)(5分)两种方法:
先求冲激响应:
设,则按系统框图可求得冲激响应
由此而求得系统函数
同样,如果先求系统函数,则有
(2)(10分)由(1)可知,1,01
()0,t h t t <≤⎧=⎨⎩
为其它,显然这是一个零阶采样保持系统,
采样周期为1,系统框图如下:
()[()()]*()()()*()
()()*()
()()
n n n y t x t p t h t x t t n h t x n t n h t x n h t n δδ∞
=-∞∞
=-∞
∞
=-∞
==-=-=
-∑∑
∑
所以()()x t y t 和的波形为:(细线为()cos
2
x t t π
=,粗线为y(t))
对带宽f m 为20KHz 的信号f(t) 进行抽样,其最大允许的抽样间隔Ts (奈奎斯特间隔) =( 2 5 )μs , 信号f(2t)的带宽为( 40 )KHz,,其奈奎斯特频率 f s=( 80 )
KHz。