液压马达与液压泵的区别

合集下载

液压泵与液压马达的区别

液压泵与液压马达的区别

四、泵和马达的不同点
1、泵是能源装置,马达是执行元件,泵输入机械能(转矩M和转速n)输出液压能(压力p和流量q );马达输入的是液压能(p、 q ),输出机械能(M、n)。

2、泵的吸油腔一般为真空(为改善吸油性和抗气蚀耐力),通常进口尺寸大于出口;马达排油腔的压力稍高于大气压力,没有特殊要求,所以马达的进出油口尺寸相同。

3、泵的结构需保证自吸能力,而马达无此要求。

4、马达需要正反转(内部结构需对称),泵一般是单向旋转。

5、马达的轴承结构,润滑形式需保证在很宽的速度范围内使用,而泵的转速虽相对比较高,但变化小,故无此苛刻要求。

6、泵的起动靠外机械动力;马达起动需克服较大的静摩擦力,因此要求起动扭矩大,扭矩脉动小,内部摩擦小(如齿轮马达的齿数比齿轮泵多)
7、泵需容积效率高;马达需机械效率高,一般地,液压马达的容积效率比泵低,液压泵的机械效率比液压马达低。

8、通常泵的转速高。

而马达输出较低的转速。

9、叶片泵的叶片倾斜安装,叶片马达的叶片则径向安装(考虑正反转)。

10、叶片马达的叶片依靠根部的扭转弹簧,使其压紧在定子表面上,而叶片泵的叶片则依靠根部的压力油和离心力压紧在定子表面上(起动动力不同)。

11、一般齿轮泵的齿数少,齿轮马达的齿数多。

12、液压泵是连续运转的,油温变化相对较小,马达经常空转或停转,受频繁的温度冲击。

13、泵与原动机装在一起,主轴不受额外的径向负载。

而马达主轴常受径向负载(轮子或皮带、链轮、齿轮直接装在马达上时)。

第三章 液压泵和液压马达

第三章 液压泵和液压马达

二、轴向柱塞式液压马达
轴向柱塞式液压马达的工作原理可参照轴向柱塞泵
斜盘 2-缸体 3-柱塞 4-配流盘 5-轴 6-弹簧
2、结构特点
齿轮马达和齿轮泵在结构上的主要区别如下:
(1)齿轮泵一般只需一个方向旋转,为了减小径向不平衡液压力,
因此吸油口大,排油口小。而齿轮马达则需正、反两个方向旋转,
因此进油口大小相等。
(2)齿轮马达的内
泄漏不能像齿轮泵那样直接引到低压腔去,而必须单独的泄漏通
道引到壳体外去。因为齿轮马达低压腔有一定背压,如果泄漏油
积每转内吸油、压油两次,
称为双作用泵。双作用使
流量增加一倍,流量也相
应增加。
压油
吸油
图3-13 双作用叶片工作原理
2、结构上的若干特点
(1)保持叶片与定子内表面接触
转子旋转时保证叶片与定子内表面接触时泵正常工作的必要 条件。前文已指出叶片靠旋转时离心甩出,但在压油区叶片顶部 有压力油作用,只靠离心力不能保证叶片与定子可靠接触。为此, 将压力油也通至叶片底部。但这样做在吸油区时叶片对定子的压 力又嫌过大,使定子吸油区过渡曲线部位磨损严重。减少叶片厚 度可减少叶片底部的作用力,但受到叶片强度的限制,叶片不能 过薄。这往往成为提高叶片泵工作压力的障碍。
容积式液压泵的共同工作原理如下:
(1)容积式液压泵必定有一个或若干个周期变化的密封容积。密 封容积变小使油液被挤出,密封容积变大时形成一定真空度,油液 通过吸油管被吸入。密封容积的变换量以及变化频率决定泵的流量。 (2)合适的配流装置。不同形式泵的配流装置虽然结构形式不同, 但所起作用相同,并且在容积式泵中是必不可少的。
结束
§3-3 叶片泵和叶片油马达
叶片泵有两类:双作用和单作用叶片泵,双作用 叶片泵是定量泵,单作用泵往往做成变量泵。而马达只 有双作用式。

液压泵、液压马达与液压缸的工作原理、区别及应用

液压泵、液压马达与液压缸的工作原理、区别及应用

液压泵、液压马达与液压缸的工作原理、区别及应用-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除液压泵、液压马达与液压缸的工作原理、区别及应用(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除液压泵的原理是为液压传动提供加压液体的一种液压元件,是泵的一种。

是一种能量转换装置,它的功能是把驱动它的动力机(如电动机和内燃机等)的机械能转换成输到系统中去的液体的压力能。

左图为单柱塞泵的工作原理图。

凸轮由电动机带动旋转。

当凸轮推动柱塞向上运动时,柱塞和缸体形成的密封体积减小,油液从密封体积中挤出,经单向阀排到需要的地方去。

当凸轮旋转至曲线的下降部位时,弹簧迫使柱塞向下,形成一定真空度,油箱中的油液在大气压力的作用下进入密封容积。

凸轮使柱塞不断地升降,密封容积周期性地减小和增大,泵就不断吸油和排油。

液压泵的分类1、按流量是否可调节可分为:变量泵和定量泵。

输出流量可以根据需要来调节的称为变量泵,流量不能调节的称为定量泵。

2、按液压系统中常用的泵结构分为:齿轮泵、叶片泵和柱塞泵 3种。

(1)齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。

泵一般设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力1.5倍。

也可在允许排出压力范围内根据实际需要另行调整。

但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。

该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定左图为外啮合齿轮泵的工作原理图。

壳体、端盖和齿轮的各个齿槽组成了许多密封工作腔。

当齿轮按如图所示的方向旋转时,右侧左侧吸油腔由于相互啮合的齿轮齿轮逐级分开,密封工作腔容积增大,形成部分真空,油箱中的油液被吸进来,将齿槽充满,并随着齿轮旋转,把油液带到右侧压油腔中;右侧因为齿轮在这面啮合,密封工作腔容积缩小,油液便被挤出去——吸油区和压油区是由相互啮合的轮齿以及泵体分开的。

液压泵与液压马达的区别和联系

液压泵与液压马达的区别和联系

液压马达与液压泵得区别详解液压马达习惯上就是指输出旋转运动得,将液压泵提供得液压能转变为机械能得能量转换装置、三维网技术论坛- {, ^8 V/ f- H* c一、液压马达得特点及分类C& y/ D1 w& E$ e- v|& U) l, p( s8 |; O从能量转换得观点来瞧,液压泵与液压马达就是可逆工作得液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达得主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样得基本结构要素--密闭而又可以周期变化得容积与相应得配油机构。

三维网技术论坛+ X3 D r6 g9 U% a" U- \但就是,由于液压马达与液压泵得工作条件不同,对它们得性能要求也不一样,所以同类型得液压马达与液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达得转速范围需要足够大,特别对它得最低稳定转速有一定得要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定得初始密封性,才能提供必要得起动转矩。

由于存在着这些差别,使得液压马达与液压泵在结构上比较相似,但不能可逆工作。

5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式与其它型式。

按液压马达得额定转速分为高速与低速两大类。

额定转速高于500r/min得属于高速液压马达,额定转速低于500r/min得属于低速液压马达。

高速液压马达得基本型式有齿轮式、螺杆式、叶片式与轴向柱塞式等。

它们得主要特点就是转速较高、转动惯量小,便于启动与制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。

低速液压马达得基本型式就是径向柱塞式,此外在轴向柱塞式、叶片式与齿轮式中也有低速得结构型式,低速液压马达得主要特点就是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。

第三章 液压泵与液压马达

第三章  液压泵与液压马达
1.额定转速n 在额定压力下,根据试验结果推荐能长时间连续 运行并保持较高运行效率的转速。 2.最高转速nmax 在额定压力下,为保证使用寿命和性能所允许的 短暂运行的最高转速。 3.最低转速nmin 为保证液压泵可靠工作或运行效率不至过低所 允许的最低转速。
(三)液压泵排量和流量
1.排量Vp (m3/r) 是指在不考虑泄漏的情况下,液压泵主轴每转一 周所排出的液体体积。 2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的 液体体积。 qt =Vn 3.实际流量qp 指液压泵工作时的输出流量。 qp= qt - △ q 4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(动画) 2、工作原理:
旋转一周,完成二次吸油,二次排油——双作用泵
径向力平衡——平衡式叶片泵(两个吸油区,两个排油区)
3、 流量计算
忽略叶片厚度:
V=2π(R2-r2)B q=Vnηv = 2π(R2-r2)Bn ηv
如考虑叶片厚度: V=2π(R2-r2)B -2BbZ(R-r)/cosθ q=Vnηv = 2π(R2-r2)Bn ηv -2BbZ(R-r)/cosθ nηv
2、液压泵进口压力 p 0 0MPa , 出口压力 pp 32MPa , 实际输出流量q 250 L min,泵输入转矩 T pi 1350N m , 输入转速 n 1000r min ,容积效率 0.96 。试求: (1)泵的输入功率 P i ,(2)泵的输出功率 P o ,(3) 泵的总效率 ,(4) 泵的机械效率 m
第三章 液压泵与液压马达
液压泵--动力元件: 将驱动电机的机械能转换成液体的压力能, 供液压系统使用,它是液压系统的能源。
3-1概

二章 液压泵和液压马达

二章 液压泵和液压马达

二章液压泵和液压马达§§§ 2.1 概述一、液压泵和液压马达的作用、工作原理液压泵和液压马达是液压系统中的能量转换元件。

液压传动中,液压泵和液压马达都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵和液压马达。

液压泵:将原动机(电动机、柴油机)的机械能转换成油液的压力能,再以压力、流量的形式输送到系统中去。

称为动力元件或液压能源元件。

液压马达:是将压力能转换为旋转形式的机械能.以转矩和转速的形式来驱动外负载工作,按其职能来说,属于执行元件。

(从原理上讲,液压泵和液压乌达是可逆的)图2—1为单柱塞泵的工作原理图。

当偏心轮1被带动旋转时,柱塞2在偏心轮和弹簧4的作用下在泵体3的柱塞孔内作上、下往复运动。

柱塞向下运动时,泵体的柱塞孔和柱塞上端构成的密闭工作油腔A的容积增大,形成真空,此时排油阀5封住出油口,油箱7中的液压油便在大气压力的作用下通过吸油阀6进入工作油腔,这一过程为柱塞泵吸油过程;当柱塞向上运动时,密闭工作油腔的容积减小、压力增高,此时吸油阀封住进袖口,压力油便打开排油阀进入系统,这一过程为柱塞泵压油过程。

若偏心轮连续不断地转动,柱塞泵就能不断地吸油和压油。

容积式液压泵工作必须具备的条件:具有若干个良好密封的工作容腔;具有使工作容腔的容积不断地由小变大,再由大变小,完成吸油和压油工作过程的动力源;具有合适的配油关系,即吸油口和压油口不能同时开启。

二、液压泵和液压马达的分类液压泵和液压马达的类型较多。

液压泵:按其在单位时间内输出油液体积能否调节而分为定量泵和变量泵,按其结构形式可分为齿轮泵、叶片泵、柱塞泵等,如图2—2所示。

液压马达:也具有与液压泵相同的形式,并按其转速可分为高速和低速两大类,如图2—3所示三、液压泵与液压马达的主要性能参数液压泵和液压马达的性能参数主要有压力(常用单位为Pa)、转速(常用单位r/min)、排量(常用单位为m3/r).流量(常用单位为m3/n或L/min)、功率(常用单位W )和效率。

第3章液压泵和液压马达

第3章液压泵和液压马达
工作压力和额定压力
排量和流量 功率和效率
台州学院
机械工程学院
1、泵的压力
(1)工作压力 pp
- 液压泵工作时输出的实际压力
- pp的大小取决于负载
台州学院
机械工程学院
(2)额定压力 pn
- 泵在正常工作条件下,按试验标准规定连续运转的 最高压力。即泵工作时允许达到的最高压力
- pn的大小受泵本身的结构强度和泄漏决定
台州学院
机械工程学院
消除困油的方法
方法:在泵前后两盖板上开卸荷槽(如图虚线方框),以消
除困油。
吸油腔
压油腔
a
原则:两槽间距a为最小困油容积,隔开吸压油腔(图b)
当密封容积减小, p↑,使之通压油腔(图a) 当密封容积增大,p↓,使之通吸油腔 (图c)
注意:两卸荷槽的间距应确保不使吸、压油腔相通
台州学院

排量
- 轴转过一周泵排出的油液体积
齿槽 轮齿
- 近似为两个齿轮的齿槽容积之和
- 设齿槽容积=轮齿容积,则排量 V=一个齿轮的齿槽容积+轮齿容积
- 则齿轮泵排量(动画):
B
P
A
V

4 2 m2 zb
2 ( z 2) m ( z 2) m b 2
- 实际,齿槽容积>轮齿容积, π取3.33,
台州学院
机械工程学院
一、双作用叶片泵
- 泵轴转一周,完成两次吸油和压油
动画按钮 台州学院
机械工程学院
1、双作用叶片泵的结构组成

定子:内表面椭圆形,包括
- 两段大半径R圆弧 - 两段小半径r圆弧 - 四段过渡曲线
定子 转子

液压马达与液压泵的区别

液压马达与液压泵的区别

液压马达和液压泵一样,都是依靠密封工作容积的变化实现能量的转换,同样具有配流机构。

液压马达在输入的高压液体作用下,进液腔由小变大,并对转动部件产生扭矩,以克服负载阻力矩,实现转动;同时马达的回液腔由大变小,向油箱或泵的吸液口回液,压力降低。

高压液体不断从液压马达的进液口进入,从回液口流出,则液压马达的转子不断地转动而对外做功。

从理论上讲,除阀式配流的液压泵外,其他形式的液压泵和液压马达具有可逆性,可以互用。

实际上,由于使用性能和要求不同,同一种形式的泵和马达在结构上仍有差别。

(1)液压马达是输入带有压力的液体推动其转于旋转,所以必须保证初始密封性,而不必具备自吸能力。

而液压泵通常必须具备自吸能力。

(2)液压马达应能正反转,因而要求其内部结构必须对称。

液压泵通常都是单向旋转,在结构上一般没有此限制。

(3)液压马达的转速范围较大,特别是当转速较低时,应能保证正常工作,因此应采用滚动轴承或静压滑动轴承;若采用动压滑动轴承,就不易形成润滑油膜。

而液压泵的转速较高,一般变化小,就没有这一要求。

第三章—液压泵和液压马达

第三章—液压泵和液压马达

第三章 液压泵和液压马达
该泵配油盘上的吸油窗口和压油窗口对泵的中心线是对称的 。如图所示,泵工作时,油泵出口压力经泵内通道作用在小柱塞 面积上,这样柱塞上的作用力 F PA与弹簧的作用力方向相反。 当PA=KSX0时,柱塞上所受的液压力与弹簧初始力相平衡,此时的 压力P称为泵的限定压力,用PB表示则: PB=KSX0/A 系统的压力P< PB 时,则:PA<KSX0 这表明定子不动,最大偏心距保持不变,泵也保持最大流量。 当系统的压力P> PB 时,则: PA>KSX0 这表明压力油的作用力大于弹簧的作用力,使定子向右移动, 弹簧被压缩,偏心距e减小,泵的流量也随之减小。
第三章 液压泵和液压马达
3.5 柱塞式液压泵
柱塞式液压泵按柱塞在转子内排列方式不同,分为径 向柱塞泵和轴向柱塞泵,轴向柱塞泵又可分为斜盘和斜轴两 大类。柱塞泵由于间隙泄露小、构件受力合理,所以可在高、 超高压力下满意地工作,广泛用于高压、大功率的液压传动 系统中。
第三章 液压泵和液压马达
柱塞泵的优点: 1.参数高:额定压力高,转速高,泵 的驱动功率大; 2.效率高,容积效率为95%左右,总效率为90%左 右; 3.寿命长; 4.变量方便,形式多; 5.单位功率的重量轻; 6.柱塞泵主要零件均受压应力,材料强度性能可得 以充分利用;
第三章 液压泵和液压马达
应用举例 限压式变量叶片泵对既要实现快速行 程,又要实现工作进给(慢速移动)的执行元件来说 是一种合适的油源;快速行程需要大的流量,负载压 力较低,正好使用其AB段曲线部分;工作进给时负载 压力升高,需要流量减小,正好使用其BC段曲线部分。 例如组合机床动力滑台的进给系统、定位和加紧系统 等。 机床加工件:未加工之前或回程要求快;加工时 流量小、速度慢。

液压泵和液压马达的主要特点

液压泵和液压马达的主要特点

液压泵和液压马达的主要特点齿轮泵(马达)结构简单,工艺性好,体积小,重量轻,维护方便,使用寿命长,但工作压力较低,流量脉动和压力脉动较大,如高压下不采用端面补偿时,其容积效率将明显下降。

内啮合齿轮泵与外啮合齿轮泵相比,其优点是结构更紧凑、体积小、吸油性能好、流量均匀性较好,但结构较复杂,加工性较差。

叶片泵结构紧凑,外形尺寸小,运动平稳,流量均匀,噪声小,寿命长,但与齿轮泵相比对油液污染较敏感,结构较复杂。

单作用式叶片泵有一个排油口和一个吸油口,转子旋转一周,每两片间的容积各吸、排油一次,若在结构上把转子和定子的偏心距做成可变的,就是变量叶片泵。

单作用式叶片泵适用于低压大流量的场合双作用式叶片泵转子每转一周,叶片在槽内往复运动两次,完成两次吸油和排油。

由于它有两个吸油区和两个排油区,相对转子中心对称分布,所以作用在转子上的作用力相互平衡,流量比较均匀。

柱塞泵精度高,密封性能好,工作压力高,因此得到广泛应用。

但它结构比较复杂,制造精度高,价格贵,对油液污染敏感。

轴向柱塞泵是柱塞平行缸体轴线,沿轴向运动;径向柱塞泵的柱塞垂直于配油轴,沿径向运动,这两类泵均可作为液压马达用。

螺杆泵螺杆泵实质上是一种齿轮泵,其特点是结构简单,重量轻;流量及压力的脉动小,输送均匀,无紊流,无搅动,很少产生气泡;工作可靠,噪声小,运转平稳性比齿轮泵和叶片泵高,容积效率高,吸入扬程高。

但加工较难,不能改变流量。

适用于机床或精密机械的液压传动系统。

一般应用两螺杆或三螺杆泵,有立式及卧式两种安装方式。

一般船用螺杆泵用立式安装。

齿轮马达结构简单,制造容易,但输出的转矩和转速脉动性较大,但当转速高于1000r/min时,其转矩脉动受到抑制,因此,齿轮马达适用于高转速低转矩情况下。

叶片马达结构紧凑,外形尺寸小,运动平稳,噪声小,负载转矩较小。

轴向柱塞马达结构紧凑,径向尺寸小,转动惯量小,转速高,易于变量,能用多种方式自动调节流量,适用范围广。

第三章 液压泵与液压马达

第三章  液压泵与液压马达


2、径向压力不 平衡问题
措施:
减少压油口的
尺寸
开压力平衡槽
3、泄漏问题
齿顶 端面 啮合处 措施: 弹性侧板 浮动轴套
高压齿轮泵
四、内啮合齿轮泵 与外啮合齿 轮泵相比,内 啮合渐开线齿 轮泵具有流量 脉动小,结构 紧凑,重量轻, 噪音小,效率 高,无困油现 象等一系列优 点。
1 T pV m 2
q n V V
3.6.2 叶片马达
叶片马达的工作原理
3.6.3 轴向柱塞马达
1.轴向柱塞式液压马达的工作原理
TZ FT l

4
d 2 ptg R sin i
1 1 2 1 T pVm p d DZtg m pd 2 DZtg m 2 2 4 8
二、轴向柱塞泵
录像
1、工作原理
2、流量计算
V

4
d DZtg 2Fra bibliotekq
4
d DZn V tg
2
3、结构要点 (1)缸体端面间隙自动补偿。 (2)滑履结构:柱塞与滑履为球面接触,滑履与斜 盘为平面接触,改善了受力状态。 (3)变量机构:改变斜盘倾角可以改变其排量。
3.6 液压马达
3.6.1 液压马达的主要性能参数 1.液压马达的转矩 2.液压马达的转速
二、 双作用叶片泵 (动画)
1、工作原理 组成:定子、转子、叶 片、配流盘、泵轴、 泵体等。
2、流量计算
V=2π(R2-r2)b q=Vnηv = 2π(R2-r2)b ηv (忽略叶片厚度) 如考虑叶片厚度 V=2π(R2-r2)b -2bsz(R-r)/cosθ q=Vnηv = 2π(R2-r2)bn ηv -2bsz(R-r)/cosθ nηv

液压传动与控制之液压泵和液压马达

液压传动与控制之液压泵和液压马达

4.5.2 柱塞泵排量计算
柱塞泵类型
排量计算
单柱塞泵 三柱塞泵
q d 2h
4 q 3 d 2h
4
h 2e
轴 斜盘式 向 泵 斜轴式
q d 2hz
4
h D tan h D1 sin
径向泵
q d 2hzY
4
h 2e
柱塞直径d,柱塞行程 h,偏心距 e,柱塞数z,柱塞分布圆直径 D,主轴盘球铰分布圆直径D1,柱塞排数Y,斜盘或摆缸的倾角γ
=1–Δq /qt=1–kp/nV
k 为泄漏系数 液压泵内零件间的间隙很小,泄漏油液的流态可以看作是 层流→泄漏量和液压泵工作压力成正比
3. 转速 额定转速 nn:额定压力下能连续长时间正常运
转的最高转速 最高转速 nmax:额定压力下允许短时间运行的
最高转速 最低转速nmin:正常运转允许的最低转速 转速范围:最低转速和最高转速之间的转速
4.2 液压泵基本性能参数和特性曲线
4.2.1 液压泵基本性能参数
1. 压力
额定压力:泵在额定转速和最大排量下连续运转 时允许使用的压力限定值
工作压力:在实际工作中输出油液的压力值(泵出 口处的压力值)
最高压力:在短时间内超载所允许的极限压力
实际压力:大小取决于执行元件的负载。
压力分级
压力分级 低压
为减少两叶片间的密闭容积在吸压油腔转换时因 压力突变而引起的压力冲击,在配流盘的配流窗 口前端开有减振槽
4.4.3 单作用叶片泵 1 工作原理
组成
定子 内环为圆
转子 与定子存在偏心e, 铣有z 个叶片槽
叶片 在转子叶片槽内自
由滑动,宽度为b
单作用叶片泵结构简图 1-压油口;2-转子;3-定子;

液压泵与液压马达的区别和联系

液压泵与液压马达的区别和联系

液压马达与液压泵的区别详解液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.三维网技术论坛- {, ^8 V/ f- H* c一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。

三维网技术论坛+ X3 D r6 g9 U% a" U- \但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。

由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。

5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。

按液压马达的额定转速分为高速和低速两大类。

额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。

低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。

简述液压系统中液压泵与液压马达的选用

简述液压系统中液压泵与液压马达的选用

简述液压系统中液压泵与液压马达的选用摘要:液压泵是一种是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。

目前使用的液压泵都是依靠液压密封工作腔的容积变化来实现吸油和压油,因此称为容积式液压泵。

液压马达是把液体的压力能转换为机械能的装置,原理上和液压泵是通用,但在其结构、工作范围等多个方面是不同的。

关键词:液压泵与液压马达的类型、选用原则液压泵与液压马达的类型选择1、液压泵:液压泵是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。

1.1液压泵分类:按其在每转一转所能输出(所需输入)油液流量分成定量泵和变量泵。

对于变量泵,可以分为单向和双向。

单向变量泵在工作时,输油方向不可变,双向变量泵,通过手动、电动、液动、压力补偿等方式可以改变输出油液的方向。

按结构分为齿轮式、叶片式、和柱塞式三大类。

1.2液压泵的选择原则:1.2.1 根据主机工况、功率大小河系统对工作性能的要求,确定液压泵的类型再按照系统所要求的压力、流量大小确定其规格型号。

1.2.2根据使用场合选择液压泵。

一般在机床液压系统中,选用双作用叶片泵和限压式叶片泵;在筑路、港口和小型工程机械中,选用抗污染能力较强的齿轮泵,在负载大、功率大的场合,选用柱塞泵。

1.2.3根据液压泵的流量或排量选择液压泵在液压泵在不使用时可以完全卸荷,并且需要液压泵输出全部流量,选用定量泵。

在流量变化较大,则考虑变量泵。

1.3参照其他要求选择液压泵根据重量、价格、使用寿命及可靠性、液压泵的安装方式、泵的连接方式与承受载荷、连接形式来综合考虑。

2、液压泵的安装:a避免液压泵支撑架刚度不够,产生振动或变形,造成安全事故,无法保证同心度和角度。

b避免液压泵的安装基础不牢,产生同轴度的偏差,导致液压泵轴封损坏,直至到液压泵损坏。

c液压泵的进出口安装牢固,密封装置要可靠,避免吸入空气或漏油的情况。

液压泵与液压马达的区别和联系

液压泵与液压马达的区别和联系

液压泵与液压马达的区别和联系文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]液压马达与液压泵的区别详解液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.三维网技术论坛- {, ^8 V/ f- H* c一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。

三维网技术论坛+ X3 D r6 g9 U% a" U- \但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。

由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。

5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。

按液压马达的额定转速分为高速和低速两大类。

额定转速高于500r /min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。

低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压马达与液压泵的区别
液压马达和液压泵的相同点
①从原理上讲,液压马达和液压泵是可逆的,如果用电动机带动时,输出的是压力能(压力和流量)这就是液压泵;若输入压力油,输出的是机械能(转矩和转速),则变成了液压马达。

②从结构上看,二者是相似的。

③液压马达和液压泵的工作原理均是利用密封工作容积的变化进行吸油和排油的。

对于液压泵,工作容积增大时吸油,工作容积减小时排出高压油。

对于液压马达,工作容积增大时进入高压油,工作容积减小时排出低压油。

液压马达和液压泵的不同点
①液压泵是将电动机的机械能转换为液压能的转换装置,输出流量和压力,希望容积效率高;液压马达是将液体的压力能转为机械能的转换装置,输出转矩和转速,希望机械效率高。

因此说,液压泵是能源装置,而液压马达是执行元件。

②液压马达输出轴的转向必须能正转和反转,而像齿轮泵和叶片泵等液压泵的转向有明确的规定,只能单向转动,不能随意。

液压马达是将液压能转换为连续回转运动机械能的执行元件。

液压马达与液压泵具有同样的基本结构要素——密闭而又可以周期变化的容积和相应的配油机构。

从工作原理而言,液压马达与液压泵都是依靠密封工作腔容积的变化而工作的,但因两者使用目的不同,结构上存在许多差异,一般不能直接互逆通用,只有少数泵能作液压马达使用。

相关文档
最新文档