(高中)高一数学《指数函数》典型综合测试题梳理(附答案详细解析)汇总

合集下载

高中数学必修一第四章指数函数与对数函数必练题总结(带答案)

高中数学必修一第四章指数函数与对数函数必练题总结(带答案)

高中数学必修一第四章指数函数与对数函数必练题总结单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天B .1.8天 C .2.5天D .3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.4、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a.故选:A.6、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.7、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、已知函数f (x )=log 3(x 2−1),g (x )=x 2−2x +a ,∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2),则实数a 的可能取值是( )A .12B .1C .52D .3 答案:CD分析:将问题转化为当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min ,然后分别求出两函数的最小值,从而可求出a 的取值范围,进而可得答案∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2)等价于当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min .当x ∈[2,+∞)时,令t =x 2−1,则y =log 3t ,因为t =x 2−1在[2,+∞)上为增函数,y =log 3t 在定义域内为增函数,所以函数f (x )=log 3(x 2−1)在[2,+∞)上单调递增,所以f (x )min =f (2)=1. g (x )=x 2−2x +a 的图象开口向上且对称轴为x =1, ∴当x ∈[13,3]时,g (x )min =g (1)=a −1,∴1≤a −1,解得a ≥2. 故选:CD .10、已知x 1+log 3x1=0,x 2+log 2x2=0,则( )A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.11、已知函数f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),则()A.函数f(x)+g(x)的定义域为(−1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)−g(x)在区间(0,1)上是减函数答案:AB解析:求出函数f(x)+g(x)和f(x)−g(x)的解析式,再判断函数的定义域、奇偶性、借助复合函数的单调性与最值即可得出结论.解:∵f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),∴f(x)+g(x)=log a(x+1)+log a(1−x),由x+1>0且1−x>0得−1<x<1,故A对;由f(−x)+g(−x)=log a(−x+1)+log a(1+x)=f(x)+g(x)得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵−1<x<1,∴f(x)+g(x)=log a(1−x2),∵y=1−x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1−0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值;故 C错;∵f(x)−g(x)=log a(x+1)−log a(1−x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1−x)在(0,1)上单调递增,函数f(x)−g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1−x)在(0,1)上单调递减,函数f(x)−g(x)在(0,1)上单调递增;故D错;故选:AB.小提示:本题主要考查函数奇偶性与单调性的性质应用,考查逻辑推理能力,属于中档题.填空题12、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.13、心理学家有时用函数L(t)=A(1−e−kt)测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(ln0.9≈−0.105,ln0.1≈−2.303)______.答案:0.021分析:该生在5min内能够记忆20个单词,将A=200,L(5)=20带入即可得出结论. 由题意可知200(1−e−5k)=20,所以,e−5k=0.9,所以ln e−5k=ln0.9≈−0.105,解得k≈0.021.所以答案是:0.021.14、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题15、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log2(2x−1)(x>0),若关于x的方程g(x)=m+f(x)在[1,2]有解,求m的取值范围.答案:(1){x|x>0};(2)[log213,log235].分析:(1)由f(x)>1可得2x+1>2,从而可求出不等式的解集,(2)由g(x)=m+f(x),得m=g(x)−f(x)=log2(1−22x+1),再由x∈[1,2]可得log2(1−22x+1)的范围,从而可求出m的取值范围(1)原不等式可化为2x+1>2,即2x>1,∴x>0,所以原不等式的解集为{x|x>0}(2)由g(x)=m+f(x),∴m=g(x)−f(x)=log2(1−22x+1),当1≤x≤2时,25≤22x+1≤23,13≤1−22x+1≤35,m∈[log213,log235]。

高一数学《指数函数与对数函数》测试题(含答案解析)

高一数学《指数函数与对数函数》测试题(含答案解析)

高一数学《指数函数与对数函数》测试题(含答案解析)一、选择题:1、已知(10)xf x =,则(5)f =( ))A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >¹,下列说法中,正确的是(,下列说法中,正确的是( ))①若M N =则log log aa M N =; ②若loglog aaM N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a aM N=。

A 、①②③④、①②③④ B 、①③、①③ C 、②④、②④ D 、②、②3、设集合2{|3,},{|1,}xS y y x R T y y x x R ==Î==-Î,则S T 是 ( )) A 、Æ B 、T C 、S D 、有限集、有限集 4、函数22log (1)y x x =+³的值域为(的值域为( ))A 、()2,+¥B 、(),2-¥C 、[)2,+¥D 、[)3,+¥5、设 1.50.90.4812314,8,2y y y -æö===ç÷èø,则(,则( ))A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、在(2)log(5)a b a -=-中,实数a 的取值范围是(的取值范围是( )) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++×等于(等于( ))A 、0B 、1C 、2D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(表示是( ))A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a -- 9、若21025x=,则10x-等于(等于()) A 、15 B 、15- C 、150 D 、16251010、若函数、若函数2(55)xy a a a =-+×是指数函数,则有(是指数函数,则有( ))A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ¹ 11、当1a >时,在同一坐标系中, 函数xy a -=与log xa y =的图象是图中的(的图象是图中的( ))12、已知1x ¹,则与x 3log 1+x 4log 1+x5log 1相等的式子是(相等的式子是( )) A 、x 60log 1 B 、3451log log log x x x ×× C 、 60log 1x D 、34512log log log x x x ×× 1313、、若函数()l o g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ))A 、24B B、、22C C、、14D D、、121414、下图是指数函数(、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d =x的图象,则的图象,则a 、b 、c 、d 与1的大小关系是(的大小关系是( ))A 、1a b c d <<<<B B、、1b a d c <<<<C 、1a b c d <<<<D D、、1a b d c <<<< 1515、若函数、若函数my x +=-|1|)21(的图象与x 轴有公共点,轴有公共点,则m 的取值范围是(的取值范围是( ))A 、1m £-B B、、10m -£<C C、、1m ³D D、、01m <£二、填空题:1616、指数式、指数式4532-ba 化为根式是化为根式是 。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.(本小题12分)不用计算器求下列各式的值⑴⑵【答案】(1)(2)【解析】(1)……6分(2)……12分【考点】本小题主要考查指数和对数的运算,考查学生的运算求解能力.点评:指数和对数的运算性质的灵活应用是解决此类问题的关键,另外也经常用到. 2.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga+lgb,试确定p和q应满足的关系.【答案】p+q = 0且q>0【解析】由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.3.计算:=【答案】【解析】原式4.当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,当时,,则,解得,故选A。

点睛:利用分离参数法得到,因为对任意的,不等式恒成立,则只需,解得,最后求得的取值范围。

函数恒成立问题,分离参数法是最常用的方法,属于含参函数题型的通法之一。

5.已知:,则__________.【答案】2【解析】由题意得.6.设,,,则的大小关系是()A.B.C.D.【答案】A【解析】∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A。

7.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.8.化简计算下列各式:(1);(2).【答案】(1);(2).【解析】(1)根据指数幂的运算法则即可求出;(2)根据对数的运算法则及特殊值的对数即可求解.试题解析:(1)原式.(2)原式.9.函数y=a x(-2≤x≤3)的最大值为2,则a=________.【答案】或【解析】当0<a<1时,y=a x在[-2,3]上是减函数,=a-2=2,得a=;所以ymax当a>1时,y=a x在[-2,3]上是增函数,=a3=2,解得a=.综上知a=或.所以ymax10.要得到函数y=21-2x的图像,只需将指数函数y=的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】,所以可以由图象右移个单位,故选D。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.三个数,,之间的大小关系()A.B.C.D.【答案】B【解析】对于,当时;对于,当时,;对于,当时,;故.【考点】对数函数,指数函数的性质.3..【答案】【解析】原式=【考点】指数与对数4.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.5.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。

因为,所以,解得,所以,所以函数的反函数为,即的解析式为。

【考点】图像平移,指数和对数的互化。

6.已知,且,则A的值是()A.15B.C.±D.225【答案】B【解析】由得到代入到得:,利用换底法则得到,所以故选B【考点】指数函数综合题.7.三个数,之间的大小关系是A.B.C.D.【答案】C【解析】,所以;;。

所以。

故C正确。

【考点】指数函数和对数函数的单调性及运算。

8.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..9.【答案】(1);(2)1.【解析】(1)由指数的运算法则,原式==;(2)由对数的运算法则,原式===1.试题解析:(1)原式= 5分= 7分(2)原式= 10分= 12分=1 14分考点:1、有理数指数幂的运算性质;2、对数的运算性质.10.已知,.(1)求的解析式;(2)解关于的方程(3)设,时,对任意总有成立,求的取值范围.【答案】(1)(2)当时,方程无解当时,解得若,则若,则(3)【解析】(1)利用换元法求解函数的解析式,设,则,代入即得解析式(2)依题意将方程中化简得,然后分和分别求解,(3)对任意总有成立,等价于当时,,然后分的取值来讨论.试题解析:解:(1)令即,则即(2)由化简得:即当时,方程无解当时,解得若,则若,则(3)对任意总有成立,等价于当时,令则令①当时,单调递增,此时,即(舍)②当时,单调递增此时,即③当时,在上单调递减,在上单调递增且即,综上:【考点】本题考查指数函数的性质及闭区间上的最值问题,考查了恒成立问题转化为求函数最值及分类讨论.11.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算12. (1)(2)计算【答案】(1) (2)【解析】(1)通过指数形式转化为对数的形式,让后再运算.(2)通过把除号改写为分数线,再把负指数化为正指数.再运算.试题解析:【考点】1.指数转化为对数形式.2.分式的运算.13.已知,则____________________.【答案】1【解析】由已知得,,,所以,,故.【考点】1.指数式与对数式之间的互化;2.对数运算.14.已知,则的增区间为_______________.【答案】(或)【解析】令函数,因为,,由函数零点存在性定理知,所以函数为减函数,又由函数的单调递减区间为,故所求函数的增区间为.【考点】1.函数的零点;2.指数函数;3.二次函数.15.函数的图象可能是()【答案】D【解析】,,排除A;当时,排除B;当时,排除C.故选D.【考点】指数函数的图像变换16.对于函数)中任意的有如下结论:①;②;③;④;⑤.当时,上述结论中正确结论的个数是( )A.2个B.3个C.4个D.5个【答案】B【解析】当时,,①错误;,②正确;,③正确;当时,,④错误;因为是上的递增函数,即:时,,或时,,因此与同号,所以,⑤正确.【考点】指数函数的性质17.化简或求值:(1);(2)计算.【答案】(1);(2)1.【解析】(1)将小数化成分数,利用指数幂的运算法则;(2)对于比较复杂的式子,把它拆成几部分分别化简或计算.本小题利用对数的运算法则分别对分子和分母进行求值.试题解析:(1)原式= 3分. 6分(2)分子=; 9分分母=;原式=. 12分【考点】指数幂与对数的运算法则.18.指数函数f(x)的图象上一点的坐标是(-3,),则f(2)=______________.【答案】4【解析】令指数函数为,其过点(-3,),则,求得,所以,f(2)=。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

指数函数习题一、选择题1.概念运算⎩⎨⎧>≤=⊗ba b b a a b a ,那么函数x x f 21)(⊗=的图象大致为( )2.函数f (x )=x 2-bx +c 知足f (1+x )=f (1-x )且f (0)=3,那么f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,那么k 的取值范围是( )A .(-1,+∞)B .(-∞,1)C .(-1,1)D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的概念域是A ,函数g (x )=lg(a x -2x -1)的概念域是B ,假设A ⊆B ,那么正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数⎩⎨⎧>≤--=-77)3)(3()(6x a x x a x f x ,假设数列{a n }知足a n =f (n )(n ∈N *),且{a n }是递增数列,那么实数a 的取值范围是( )A .[94,3) B .(94,3) C .(2,3)D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,那么实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14)∪[4,+∞) 二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a 2,那么a 的值是________. 8.假设曲线|y |=2x +1与直线y =b 没有公共点,那么b 的取值范围是________.9.(2020·滨州模拟)概念:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的概念域为[a ,b ],值域为[1,2],那么区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2342x x ---+的概念域、值域和单调区间.11.(2020·银川模拟)假设函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的概念域为[0,1].(1)求a 的值;(2)假设函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧ a a ≤b b a >b 得f (x )=1⊗2x =⎩⎪⎨⎪⎧ 2x x ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2.又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,那么3x ≥2x ≥1,∴f (3x )≥f (2x ).若x <0,那么3x <2x <1,∴f (3x )>f (2x ).∴f (3x )≥f (2x ).答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,因此有k -1<0<k +1,解得-1<k <1.答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,那么u ′(x )=a x ln a -2x ln2>0,因此函数u (x )在(1,2)上单调递增,那么u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }知足a n =f (n )(n ∈N *),那么函数f (n )为增函数,注意a 8-6>(3-a )×7-3,因此⎩⎪⎨⎪⎧ a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2, 当0<a <1时,必有a ≥12,即12≤a <1, 综上,12≤a <1或1<a ≤2. 答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32. 答案:12或328. 解析:别离作出两个函数的图象,通过图象的交点个数来判定参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如下图,由图象可得:若是|y |=2x +1与直线y =b 没有公共点,那么b 应知足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图知足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数成心义,那么只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的概念域为{x |-4≤x ≤1}.令t =-x 2-3x +4,那么t =-x 2-3x +4=-(x +32)2+254, ∴当-4≤x ≤1时,t max =254,现在x =-32,t min =0,现在x =-4或x =1. ∴0≤t ≤254.∴0≤-x 2-3x +4≤52. ∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知, 当-4≤x ≤-32时,t 是增函数, 当-32≤x ≤1时,t 是减函数. 依照复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数. ∴函数的单调增区间是[-32,1],单调减区间是[-4,-32]. 11. 解:令a x =t ,∴t >0,那么y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去).②假设0<a <1,∵x ∈[-1,1],∴t =a x ∈[a ,1a ],故当t =1a,即x =-1时, y max =(1a+1)2-2=14. ∴a =13或-15(舍去). 综上可得a =3或13. 12. 解:法一:(1)由已知得3a +2=18⇒3a =2⇒a =log 32.(2)现在g (x )=λ·2x -4x ,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,因此g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,因此实数λ的取值范围是λ≤2.法二:(1)同法一.(2)现在g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,因此有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立,因此实数λ的取值范围是λ≤2.。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。

不妨令。

则所有交点横坐标之和为。

故C正确。

【考点】1函数图像;2余弦函数的周期;3数形结合思想。

3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.若函数的图像经过第二,第三和第四象限,则一定有A.B.C.D.【答案】A【解析】根据指数函数的图象可知要使函数的图象经过第二,第三和第四象限,需要,即.【考点】本小题主要考查指数函数的图象和平移,考查学生对函数图象平移的掌握.点评:解决此类问题,一定要画出函数的图象,数形结合是解决问题的有力工具,要灵活应用.2.(本小题满分12分)(1)化简(2)计算的值【答案】(1)(2)【解析】(1)原式=. ……6分(2)原式=. ……12分【考点】本小题主要考查指数、对数的化简求值,考查学生的运算求解能力.点评:要解决此类问题,需要正确灵活的应用指数、对数的运算公式和运算性质.3.已求函数的单调区间.【答案】当0<a<1时,函数在上是减函数,在上是增函数;当a>1时,函数在上是增函数,在上是减函数.【解析】解:由>0得0<x<1,所以函数的定义域是(0,1)因为0<=,所以,当0<a<1时,函数的值域为;当a>1时,函数的值域为当0<a<1时,函数在上是减函数,在上是增函数;当a>1时,函数在上是增函数,在上是减函数.4.已知2x=5y=10,则+=________【答案】1【解析】由2x=5y=10得x=log210,y=log510,+=+=lg2+lg5=1.5.计算:=【答案】【解析】原式6.已知函数f (x)的定义域是(1,2),则函数的定义域是【答案】(0,1)【解析】由函数f (x)的定义域是(1,2)得;则函数的定义域为(0,1)7.函数y=()(-3)的值域是_____________【答案】[()9,39]【解析】;所以又是减函数;所以即所以函数y=()(-3)的值域是[()9,39]。

8.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.9.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A10.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.11.(1)计算;(2)已知,,试用表示.【答案】(1)4;(2).【解析】(1)由题意结合分数指数幂的运算法则计算可得原式的值为4;(2)由题意结合换底公式可得.试题解析:(1).(2).12.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.13.的值为________.【答案】【解析】。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.函数的单调递减区间【答案】【解析】因为,根据复合函数的单调性可知该函数的单调递减区间为.【考点】本小题主要考查复合函数的单调区间的求法.点评:考查复合函数的单调性时,要注意“同增异减”,还要注意函数的定义域.2.设a,b,c∈R,且3= 4= 6,则( ).A.=+B.=+C.=+D.=+【答案】B【解析】设3= 4= 6= k,则a = log k,b= log k,c = log k,从而= log 6 = log3+log 4 =+,故=+,所以选(B).3.设指数函数,则下列等式中不正确的是()A.f(x+y)=f(x)·f(y)B.C.D.【答案】D【解析】根据指数幂的运算律知:A,B,C正确;。

故选D4.若函数是定义在R上的奇函数,则函数的图象关于()A.轴对称B.轴对称C.原点对称D.以上均不对【答案】B【解析】因为函数是定义在R上的奇函数,所以则所以是偶函数。

故选B5.三个数,,之间的大小关系为()A.B.C.D.【答案】B【解析】因为,,,所以,故应选.【考点】1、指数与指数函数;2、对数与对数函数;6.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.7.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A8.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.9.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.【答案】(1)或;(2).【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,在上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.10.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.11.若3<a<4,化简的结果是()A.7-2a B.2a-7C.1D.-1【答案】C【解析】∵,∴,。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.已知函数的图象恒过定点,若点与点、在同一直线上,则的值为 .【答案】1.【解析】令,求得,,可得函的图象恒过定点.再根据点与点、在同一直线上,可得,化简得,即.【考点】指数函数的单调性与特殊点.2.若函数有两个零点,则实数a的取值范围为【答案】【解析】研究函数与函数图像交点个数.当时,由于直线在轴的截距大于,所以函数与函数图像在及时各有一个交点. 当时,由于单调减,直线单调增,所以函数与函数图像只3在时有一个交点.【考点】指数函数图像3.设,则,,的大小关系是()A.B.C.D.【答案】A【解析】∵,,,∴,故选A.【考点】对数函数与指数函数的性质.4.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算5.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。

试题解析:解:当2分,. 5分当时7分, 10分综上. 12分【考点】分段函数,指数、对数不等式。

6.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..7.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值8.已知,,,则这三个数从小到大排列为 .【答案】【解析】...【考点】本题考果不等的比较大小,考查指数函数与对数函数的性质.9.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.10.计算【答案】(1).(2)44.【解析】(1)底数相同的对数先加减运算,根号化为分数指数.(2)根号化为分数指数,再用积的乘方运算.试题解析:【考点】1.对数运算,指数运算.2.分数指数,零指数等运算.11.若函数是函数的反函数,其图象过点,且函数在区间上是增函数,则正数的取值范围是.【答案】【解析】由题意可得,所以函数,由该函数在区间上是增函数,得函数在区间上为增函数,且,考虑到函数在上单调递增,所以当时,有得,当时,有即得,从而求得所求正数的取值范围为.【考点】1.反函数;2.函数的单调性;3.对数函数;4.常用函数.12.若,则=____________.【答案】-4【解析】由且得所以【考点】指数与对数运算.13.设,且,则=【答案】【解析】对等式两边同时取对数得:,,,,.【考点】对数与指数的基本运算14.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.15.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.16.已知函数(1)若存在,使得成立,求实数的取值范围;(2)解关于的不等式;(3)若,求的最大值.【答案】(1)(2);②;③,,(3)【解析】(1)令,即成立 1分的最小值为0,当时取得 4分5分(2),令 6分① 7分② 8分③ⅰ 9分ⅱ 10分(3)令则12分13分,的最大值为 14分【考点】二次函数点评:主要是考查了二次函数的最值以及不等式的性质的运用,属于基础题。

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析1.若,那么满足的条件是()A.B.C.D.【答案】C【解析】即,所以,,故选C。

【考点】本题主要考查对数函数的单调性。

点评:解对数不等式,主要考虑化同底数对数,利用函数的单调性。

2.。

【答案】2【解析】==2lg10=2.【考点】本题主要考查对数运算。

点评:简单题,利用对数运算法则及对数性质。

3.已知函数的定义域为,值域为,求的值。

【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。

点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。

4.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。

点评:指数函数是重要函数之一,其图象和性质要牢记。

解答本题的关键是认识到最值在区间端点取到。

5.已知函数,判断的奇偶性和单调性。

【答案】(1)是奇函数;(2)为增函数。

【解析】(1),∴是奇函数(2),且,则,∴为增函数。

【考点】本题主要考查指数函数的图象和性质,复合函数,函数的奇偶性好的东西。

点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。

6.已知函数,(1)求的定义域;(2)判断的奇偶性。

【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。

(2)∵的定义域不关于原点对称,∴为非奇非偶函数。

【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。

点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。

7.已知函数的定义域为,值域为,求的值。

【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。

点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。

高中数学必修一《指数函数》典型习题(含答案解析)

高中数学必修一《指数函数》典型习题(含答案解析)

高中数学必修一《指数函数》典型习题(含答案解析)一、选择题1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=πxC.y=-4x D.y=a x+2(a>0且a≠1)2.函数f(x)=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0且a≠13.函数y=a|x|(a>1)的图象是()4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为()A.-9B.1 9C.-19D.95.右图是指数函数①y=a x;②y=b x;③y=c x;④y=d x的图象,则a、b、c、d与1的大小关系是()A.a<b<1<c<dB.b<a<1<d<cC .1<a <b <c <dD .a <b <1<d <c6.函数y =(12)x -2的图象必过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( )A .Q PB .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)}8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)9.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3D.3210.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数11.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +212.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是( )A .c <a <bB .c <b <aC.a<b<c D.b<a<c二、填空题13.函数f(x)=a x的图象经过点(2,4),则f(-3)的值为________.14.若函数y=a x-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件________________.15.函数y=8-23-x(x≥0)的值域是________.16.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.17.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是________________.18.函数y=2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题19.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭;(3)2-1.5和30.2.20.定义运算a ⊕b =⎩⎨⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是( )21.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ).(1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).参考答案与解析知识梳理1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >10<y <1 0<y <1 y >1 增函数 减函数作业设计1.B [A 中-4<0,不满足指数函数底数的要求,C 中因有负号,也不是指数函数,D 中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数.]2.C [由题意得⎩⎨⎧a 2-3a +3=1,a >0且a ≠1. 解得a =2.]3.B [该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.]4.C [当x >0时,-x <0,∴f (-x )=3-x ,即-f (x )=(13)x ,∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.]5.B [作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.]6.D [函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x-2的图象,所以观察y =(12)x -2的图象知选D.]7.C8.C 9.A10.B [∵函数y =(12)x 在R 上为减函数,∴2a +1>3-2a ,∴a >12.]11.C [由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .]12.C13.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.14.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2.15.[0,8)解析 y =8-23-x =8-23·2-x =8-8·(12)x=8[1-(12)x ].∵x ≥0,∴0<(12)x ≤1,∴-1≤-(12)x <0, 从而有0≤1-(12)x <1,因此0≤y <8.16.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.17.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ∈(-∞,-1).18.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).19.解 (1)考查函数y =0.2x .因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数.又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.20.A [由题意f (x )=1⊕2x =⎩⎨⎧1, x ≥0;2x ,x <0.] 21.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0.(2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t ,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ]=sf (12)-tf (12)=(s -t )f (12)>0, ∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1,当a =0时,x ∈∅,当a >0时,0<x <1a ,当a <0时,1a <x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a }.。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。

所以,故D正确。

【考点】指数对数函数的单调性。

7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。

高一数学指数函数测试题(含答案)

高一数学指数函数测试题(含答案)

高一数学测试题(指数函数)一、选择题1.设指数函数,则下列等式中不正确的是( D )A.f(x+y)=f(x)·f(y) B.C.D.2.函数(D)A.B.C.D.3.若指数函数在[-1,1]上的最大值与最小值的差是1,则底数a等于(C)A.B.C.D.4.方程的解的个数为(C)A. 0个B. 1个C. 2个D. 0个或1个5.函数的值域是( A )A.B.C.D.R6.函数,则f(-3)= (D)A.2 B.3 C.4 D.7.已知,则下列正确的是(A)A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数8.函数得单调递增区间是(C)A.B.C.D.9.已知a>0,且a≠1,f(x)=x2-ax.当x时,均有f(x)<,则实数a的取值范围是(A )A. B.[,1]C.( D.R10.已知偶函数f(x),且f(x+2)=f(2-x),当-2≦x≤0时,f(x)=2x,则f(2010)=( C )A.2010B.4C.D.-4、填空题(每小题4分,共计28分)11.当a>0且a≠1时,函数f (x)=ax-2-3必过定点(2,-2)12.计算:(1)=___100;(2)=13.不等式的解集是_____14不等式恒成立,则的取值范围是(-2, 2)15.定义运算:,则函数的值域为___16.已知f(x)= ,满足对任意的x1,x2,都有成立,则实数a的取值范围是____16.如图所示的是某池塘中的浮萍蔓延的面积()与时间(月)的关系:,有以下叙述:①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过;③浮萍从蔓延到需要经过1.5个月;④浮萍每个月增加的面积都相等;⑤若浮萍蔓延到、、所经过的时间分别为、、,则.其中正确的是①②⑤三、解答题:18.已知,求下列各式的值:(1);8 (2);3 (3).2119.已知函数在区间[-1,1]上的最大值是14,求a的值.a=320.(1)已知是奇函数,求常数的值;(2)画出函数的图象,并利用图象回答:为何值时,方程无解?有一解?有两解?21.(14分)有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量. 现假设下雨和蒸发平衡,且污染物和湖水均匀混合.用,表示某一时刻一立方米湖水中所含污染物的克数(我们称其湖水污染质量分数),表示湖水污染初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析时,湖水的污染程度如何.22.(14分)已知函数(a>1).(1)判断函数f (x)的奇偶性;(2)求f (x)的值域;(3)证明f (x)在(-∞,+∞)上是增函数.(4)若f(-x2+3x)+f(m-x-x2)>0对任意的x均成立,求实数m的取值范围。

(典型题)高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)

(典型题)高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)

一、选择题1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x x e f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-2.已知函数()()2log 23a f x x x =--+,若()00f <,则此函数的单调递增区间是( ) A .(],1-∞-B .[)1,-+∞C .[)1,1-D .(]3,1--3.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)4.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>5.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .56.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( ) A .222a c +> B .222a c +≥ C .222a c +≤D .222a c +<7.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --8.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .39.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭10.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 11.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数12.函数2ln 8x y x =-的图象大致为( )A .B .C .D .二、填空题13.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.14.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.15.函数x )是_________(奇、偶)函数.16.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log x a f x a a x =--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.17.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.18.对于函数()f x 定义域中任意的1x 、()212x x x ≠,有如下结论: ①()()()1212f x x f x f x +=⋅;②()()()1212f x x f x f x ⋅=+;③()()()12120x x f x f x -⋅-<⎡⎤⎣⎦;④()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 当()2xf x =时;上述结论正确的是__________.(写出所有正确的序号)19.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x =+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.20.若函数1log 12a y x ⎛⎫=+ ⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______. 三、解答题21.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 22.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围.23.设函数()()22()log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)求()y f x =的最大值和最小值,并求出最值时对应的x 值; (2)解不等式()60f x ->.24.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.25.已知函数210(),22,01xx ax a x f x a a x ⎧+--≤<=⎨-≤≤⎩,其中a >0且a ≠1. (1)当12a =时,求f (x )的值域;(2)函数y =f (x )能否成为定义域上的单调函数,如果能,则求出实数a 的范围;如果不能,则给出理由;(3)()2f x -在其定义域上恒成立,求实数a 的取值范围.26.已知222log ()log log x y x y +=+,则x y +的取值范围是__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由x y e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e =+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f e e --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e =+在R 上是减函数,则52()21xf x e =-+在R 上是增函数,故B 正确; 对于C ,0xe >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误;对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.2.C解析:C 【分析】由()00f <求得01a <<,求出函数()f x 的定义域,利用复合函数法可求得函数()f x 的单调递增区间. 【详解】由题意可得()0log 30log 1a a f =<=,01a ∴<<.对于函数()()2log 23a f x x x =--+,2230x x --+>,可得2230x x +-<,解得31x -<<.所以,函数()f x 的定义域为()3,1-.由于内层函数223u x x =--+在区间(]3,1--单调递增,在区间[)1,1-单调递减. 外层函数log a y u =单调递减,由复合函数法可知,函数()f x 的单调递增区间为[)1,1-. 故选:C. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间; (4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定. 3.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x=-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.4.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>,故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.5.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩. 182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.6.D解析:D 【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.7.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算8.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.9.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.10.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.11.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性.12.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.二、填空题13.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤,故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.14.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.15.奇【解析】又所以函数f(x)是奇函数点睛:判断函数的奇偶性其中包括两个必备条件:(1)定义域关于原点对称这是函数具有奇偶性的必要不充分条件所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等解析:奇 【解析】210x x x x x x R +->=-≥∴∈又()()))lglglg10f x f x x x -+=+==所以函数f(x) 是奇函数.点睛: 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.16.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可. 【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log x a g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.17.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>,函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.18.①④【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④【详解】对于①:因为所以故①正确;对于②:取所以所以不恒成立故②错误;对解析:①④ 【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④. 【详解】对于①:因为()()()12121212122,222x x x x x x f x x f x f x +++=⋅=⋅=,所以()()()1212f x x f x f x +=⋅,故①正确;对于②:取121,2x x ==,所以()()()()121224,246f x x f f x f x ⋅==+=+=,所以()()()1212f x x f x f x ⋅=+不恒成立,故②错误;对于③:因为()2xf x =是R 上的增函数,所以()()()12120x x f x f x -⋅->⎡⎤⎣⎦,故③错误;对于④:因为()()121212122222,=222x x x x f x f x x x f ++++⎛⎫= ⎪⎝⎭,且12121212121222222222222422220242x x x x x x x x x x x x ++++⎛⎫⎛⎫⎛⎫++⋅-⋅--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()()121222f x f x x x f ++⎛⎫<⎪⎝⎭,故④正确, 所以正确的有:①④, 故答案为:①④. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式:(1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.19.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x =+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a <. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.20.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a=,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.三、解答题21.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出;(2)令12,12xt ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2at =的取值范围结合二次函数的性质即可求出. 【详解】(1)()2()421221x x xx f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦,所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦.(2)令12,12xt ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2at =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾;②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2at =时,2max 11144y a =-=-,解得a =,舍去a =综上,a = 【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解. 22.(1)33,22⎛⎫- ⎪⎝⎭;(2)奇函数,证明见解析;(3)302x <<【分析】(1)由320320x x +>⎧⎨->⎩可解得结果;(2)()F x 是奇函数,根据奇函数的定义可证结论正确; (3)根据对数函数的单调性可解得结果. 【详解】(1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-.(2)()F x 是奇函数. 证明如下:x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->, 即ln(32)ln(32)x x +>-, 由对数函数的单调性得32320x x ,解得302x <<. 【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域.23.(1)当x =时,()f x 取得最小值14-;当4x =时,()f x 取得最大值12;(2){}24x x <≤【分析】(1)令2log t x =,可得[]2,2t ∈-,从而()()22log 4log 2x x ⋅232t t =++,结合二次函数的性质,可求出最大值和最小值,及取得最值时对应的x 值;(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则不等式可化为2340t t +->,可求出t 的范围,结合2log t x =,可求出x 的范围. 【详解】 (1)由题意,()()()()222222log 4log 2log 4log log 2log x x x x ⋅=+⋅+=()()222log 1log x x +⋅+,令2log t x =,∵1,44x ⎡∈⎤⎢⎥⎣⎦,∴[]2log 2,2t x =∈-则()()22132y t t t t =++=++,根据二次函数的性质,可得当32t =-,即322x -==232y t t =++取得最小值,最小值为233132224⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭; 当2t =时,即224x ==时,232y t t =++取得最大值,最大值为2232212+⨯+=. (2)由(1)知,2()32f x t t =++,[]2,2t ∈-, 则()60f x ->可化为2340t t +->,解得1t >或4t <-, 因为[]2,2t ∈-,所以12t <≤, 则222log 2log log 4x <≤,即24x <≤, 故不等式()60f x ->的解集为{}24x x <≤. 【点睛】关键点点睛:本题考查求复合函数的最值,及函数不等式的解.解决本题的关键是利用换元法,令2log t x =,可将()f x 转化为关于t 的二次函数232y t t =++,进而可求出最值,并解不等式即可,注意不要漏掉[]2,2t ∈-.考查学生的逻辑推理能力,计算求解能力,属于中档题.24.(1)2()log f x x =(2)偶函数.见解析 【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性. 【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=, 所以22()log (2)log (2)g x x x =++-为偶函数. 【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题. 25.(1)()f x 的值域为9[16-,1];(2)能,a 的取值集合为{2};(3)232a -. 【分析】(1)由二次函数和指数函数的值域求法,可得()f x 的值域;(2)讨论1a >,01a <<,结合指数函数的单调性和二次函数的单调性,即可得到所求范围;(3)讨论x 的范围和a 的范围,结合参数分离和对勾函数的单调性、指数函数的单调性,计算可得所求范围. 【详解】(1)当10x -<时,21122y x x =+-,对称轴为1[14x =-∈-,0), 可得y 的最小值为916-,y 的最大值为0; 当01x 时,12?()1[02xy =-∈,1];综上()f x 的值域为9[16-,1];(2)当1a >时,函数22x y a a =-在[0,1]递增, 故二次函数2y x ax a =+-在[1-,0]也要递增,1222aa a⎧--⎪⎨⎪--⎩,故只有2a =符合要求; 当01a <<时,函数22x y a a =-在[0,1]递减, 故二次函数2y x ax a =+-在[1-,0]也要递减,0222aa a⎧-⎪⎨⎪--⎩,无解. 综上,a 的取值集合为{2};(3)①当[1x ∈-,0]时,22x ax a +--恒成立,即有2(1)2a x x ---,即221x a x+-,由221x y x+=-,令1t x =-,[1t ∈,2],可得32232y t t=+--,当且仅当t = 可得232a -;②当[0x ∈,1]时,①当1a >时,22x y a a =-,222x a a --,即有222a -,求得2a ,故12a <; ②当01a <<时,成立, 综上可得a 的范围为232a -. 【点睛】本题考查分段函数的值域和单调性的判断和运用,考查分类讨论思想方法和化简运算能力,以及不等式恒成立问题解法,属于中档题.26.[4,)+∞【分析】利用对数式的运算性质把给出的等式变形,去掉对数符号后利用基本不等式转化为关于(x +y )的二次不等式,求解后即可得到x +y 的取值范围. 【详解】222log ()log log x y x y +=+,x y xy ∴+=,0,0x y >>,2()2x y x y xy +∴+=≤,当且仅当2x y ==时,等号成立。

高考数学函数专题训练《指数函数》含答案解析

高考数学函数专题训练《指数函数》含答案解析

高考数学函数专题训练 指数函数一、选择题1.设0n >,且1n n b a <<,则( ) A .01b a <<< B .01a b <<< C .1b a << D .1a b <<【答案】C【解析】因为100n n>⇒>,所以当1n n a b >>时,11()()1n n n n a b >>,即 1a b >>,故选C.2.函数(21)xy x e =-的图象是( )【答案】A【解析】因为函数只有1个零点,所以排除C,D 两项,由()21e xy x '=+,可知函数在12x =-处取得极小值,所以不是定义域上的单调增函数,所以B 不对,只能选A .3.已知函数()2x xe ef x --=, 1x 、2x 、3x R ∈,且120x x +>, 230x x +>, 310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-, ()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.4.已知函数()93xxf x m =⋅-,若存在非零实数0x ,使得()()00f x f x -=成立,则实数m 的取值范围是( )A .12m ≥B .2m ≥C .02m <<D .102m << 【答案】D【解析】函数()93xxf x m =⋅-关于y 轴的对称函数为()()()93xx g x m g x f x --=-∴=g 有解,即33119393332099332x x xxxxx xx x x x m m m m --------=⋅-∴==+≥∴<<-+g Q5.已知点n A (n ,n a )(∈n N *)都在函数x y a =(01a a >≠,)的图象上,则46a a +与52a 的大小关系是( ) A .46a a +>52a B .46a a +<52aC .46a a +=52aD .46a a +与52a 的大小与a 有关 【答案】A【解析】点代入函数式得nn a a =,数列{}n a 为等比数列2464655222a a a a a a ∴+>==6.已知实数,a b 满足23,32ab==,则函数()xf x a x b =+-的零点个数是( )A .0B .1C .2D .3 【答案】B【解析】依题意, 23log 31,0log 21a b =><=<,令()0f x =, x a x b =-+, xy a =为增函数,y x b =-+为减函数,故有1个零点.7.已知则之间的大小关系是( )A .B .C .D .无法比较【答案】A 【解析】设,则,.∴,,∵,∴,即.故选A.8.设平行于x 轴的直线l 分别与函数和的图象相交于点A ,B ,若在函数的图象上存在点C ,使得△ABC 为等边三角形,则这样的直线l ( )A .至少一条B .至多一条C .有且只有一条D .无数条 【答案】C【解析】设直线l 的方程为,由,得,所以点.由,得,所以点,从而|AB|=1.如图,取AB 的中点D ,连接CD ,因为△ABC 为等边三角形,则CD ⊥AB , 且|AD|=,|CD|=,所以点.因为点C 在函数的图象上,则,解得,所以直线l 有且只有一条,故选C.9.已知函数()2x f x m =-的图象与函数()y g x =的图象关于y 轴对称,若函数()y f x =与函数()y g x =在区间[]1,2上同时单调递增或同时单调递减,则实数m 的取值范围是A .[)1,4,2⎛⎤-∞⋃+∞ ⎥⎝⎦ B .1,42⎡⎤⎢⎥⎣⎦C .[]2,4D .[)4,+∞ 【答案】B【解析】因为函数()y g x =与()2x f x m =-的图象关于y 轴对称,所以()2x g x m -=-,函数()y f x =与函数()y g x =在区间[]1,2上同时单调递增或同时单调递减,所以函数()2x f x m =-和函数()2x g x m -=-在[]1,2上单调性相同,因为2x y m =-和函数2x y m -=-的单调性相反,所以()()220xx m m ---≤在[]1,2上恒成立,即()21220x x m m --++≤在[]1,2上恒成立,即22x x m -≤≤在[]1,2上恒成立,得122m ≤≤,即实数m 的取值范围是1,22⎡⎤⎢⎥⎣⎦,故选B.10.已知0a b >>,b a a b =,有如下四个结论:①e b <;②b e >;③a b ∃,满足2a b e ⋅<;④2a b e ⋅>. 则正确结论的序号是( ) A .①③ B .②③C .①④D .②④【答案】C 【解析】0,,b a a b a b >>=Q 则ln ln ln ln a bb a a b a b=⇒=,设函数ln ,0xy x x =>, 1ln ,0x y x x ='->,可知函数ln ,0x y x x=>在()0,e 单调递增,在(),e +∞上单调递减,如图所示,可知0b e << ,显然2ln ln 1ln ln 22a ba b a b e +>⇒+>⇒⋅> ,故选C 11.设0,0a b >>,则下列不等式成立的是( )A. 若2223a b a b +=+,则a b >B. 若2223a b a b +=+,则a b <C. 若2223a b a b -=-,则a b >D. 若2223a b a b -=-,则a b < 【答案】A【解析】设()22x f x x =+,则()f x 在R 上单调递增,且()()222322a b b f a a b b f b =+=+>+=则a>b,因此A正确.12.已知函数,,则下列四个结论中正确的是()①图象可由图象平移得到;②函数的图象关于直线对称;③函数的图象关于点对称;④不等式的解集是.A.①②④B.①③④C.①②③D.①②③④【答案】C【解析】对于①,若的图象向左平移个单位后得到的图象,若的图象向右平移个单位后得到的图象,所以①正确;对于②,设,则,,,关于对称,所以②正确;对于③,设,,,,关于对称,所以③正确;对于④,由得,化为,,若,若,所以④错误,故选C.二、填空题13.若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点,则a 的取值范围是_____. 【答案】1(0,)2【解析】(1)当01a <<时,作出函数1xy a =-的图象,如图所示, 若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点, 由图象可知021a <<,解得102a <<; (2)当1a >时,作出函数1xy a =-的图象,如图所示,若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点, 由图象可知021a <<,此时无解, 综上所述,实数a 的取值范围是1(0,)2.14.若111,52=+==ba mb a 且,则m = . 【答案】10.【解析】m b a ==52Θ,m b m a 52log ,log ==∴,即5log 1,2log 1m m b a ==,则110log 11==+m ba ,即10=m .15. 已知函数()()01x f x a b a a =+>≠,的定义域和值域都是[]10-,,则a b += . 【答案】32-【解析】 分情况讨论:①当1a >时,()=+xf x a b 在[]1,0-上递增.又()[]1,0∈-f x ,所以()()1100f f -=-⎧⎪⎨=⎪⎩,无解;②当01a <<时,()=+xf x a b 在[]1,0-上递减.又()[]1,0∈-f x ,所以()()1001f f -=⎧⎪⎨=-⎪⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-. 16.已知,又(),若满足的有三个,则的取值范围是__________. 【答案】【解析】 由题意得, ,当时,当时,设,则要使得有三个不同的零点,则方程有两个不同的根, 其中一个根在之间,一个根在之前,即且设,则,即实数的取值范围是.。

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一数学《指数函数与对数函数》一.选择题(共12小题)1.(2022春•鼓楼区校级期中)设,则a,b,c的大小顺序为()A.a<c<b B.c<a<b C.a<b<c D.b<a<c 2.(2022春•鼓楼区校级期中)关于x的不等式e x≤ax(x﹣lnx)只有唯一实数解,则实数a的取值范围是()A.{e}B.[e,+∞)C.{1}D.(0,1] 3.(2022春•福州期中)已知a=lg2,b=log23,c=log34,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.c<a<b 4.(2022•福州模拟)折纸是我国民间的一种传统手工艺术.现有一张长10cm、宽8cm的长方形的纸片,将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1,S2.若S1:S2=1:3,则折痕长的最大值为()A .cm B.10cm C.2cm D.2cm 5.(2021秋•福州期末)已知函数f(x)=(x+3)(x﹣e)+(x﹣e)(x﹣π)+(x﹣π)(x+3)的零点x1,x2(x1<x2),则()A.x1x2>0B .<﹣C.x2﹣x1<e D.x1+x2<π6.(2021秋•福州期末)设a=0.123,b=30.4,c=log0.40.12,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.c<a<b 7.(2021秋•仓山区校级期末)若方程x2+2x+m2+3m=m cos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2B.﹣2C.4D.﹣4 8.(2021秋•鼓楼区校级期中)某科技有限公司为了鼓励员工创新,打破发达国家的芯片垄断,计划逐年增加研发资金投入,若该公司2018年全年投入的研发资金为200万元,在此基础上,每年投入的研发资金比上一年增加10%,则该公司全年投入的研发资金开始超过400万元的年份是()(参考数据:1.16=1.77,1.17=1.95,1.18=2.14,1.19=2.36)第1页(共23页)。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.2.若,则在,,,中最大值是()A.B.C.D.【答案】C【解析】由指数函数的性质,得,;由幂函数的性质得,因此最大的是.【考点】指数函数和幂函数的性质.3.若函数有两个零点,则实数a的取值范围为【答案】【解析】研究函数与函数图像交点个数.当时,由于直线在轴的截距大于,所以函数与函数图像在及时各有一个交点. 当时,由于单调减,直线单调增,所以函数与函数图像只3在时有一个交点.【考点】指数函数图像4..【答案】【解析】原式=【考点】指数与对数5.设函数y=x3与的图像的交点为(x0,y),则x所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】B【解析】由函数知识知函数y=x3与的图像的交点为(x0,y)的横坐标x即为方程的解,也是函数函数=的零点,由零点存在性定理及验证法知<0,故x0在区间(1,2)内.由题知x是函数=的零点,∵==-7<0,故选B.【考点】函数零点与函数交点的关系,零点存在性定理6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.8.设,且,则= ( )A.100B.20C.10D.【答案】A【解析】由题设,得,则,同理有,又,得,即,所以.故正确答案为A.【考点】指数式、对数式的运算9.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值10. (1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.11.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)初中所学单项式与多项式的运算法则和乘法公式,当指数变成分数时仍然适用;(2)对数的运算一般要转化为同底数的对数才能运用对数的运算法则.试题解析:(1);(2)原式=.【考点】(1)指数的运算;(2)对数的运算.12.集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.(1)试判断=及是否在集合A中,并说明理由;(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.【答案】(1),;(2)【解析】(1)根据题目给出的性质对函数与进行判断即可;(2)可以模仿(1)中的函数进行寻找,或者可以这么找,因为我们学了指数、对数、幂函数,而(1)中已经出现了对数函数与幂函数,所以是否可以考虑从指数函数中寻找.试题解析:(1),. 2分对于的证明. 任意且,即. ∴ 4分对于,举反例:当,时,,,不满足. ∴. 7分⑵函数,当时,值域为且. 9分任取且,则即. ∴. 14分【考点】1.函数性质;2.新定义型解答题;3.指数函数、对数函数、指数函数.13.三个数的大小关系为()A.B.C.D.【答案】D【解析】,,,故,选D.【考点】指数、对数函数性质.14.已知函数(1)若存在,使得成立,求实数的取值范围;(2)解关于的不等式;(3)若,求的最大值.【答案】(1)(2);②;③,,(3)【解析】(1)令,即成立 1分的最小值为0,当时取得 4分5分(2),令 6分① 7分② 8分③ⅰ 9分ⅱ 10分(3)令则12分13分,的最大值为 14分【考点】二次函数点评:主要是考查了二次函数的最值以及不等式的性质的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(高中)高一数学《指数函数》典型综合测试题梳理(附答案详细解析)汇总1.若log 3a<0,⎝ ⎛⎭⎪⎫13 b>1,则( D ) A .a>1,b>0 B .0<a<1,b>0 C .a>1,b<0 D .0<a<1,b<02.已知函数f(x)是定义在R 上的奇函数,且当x>0时,f(x)=ln (x +1),则函数f(x)的图象为( D )A. B. C. D. 3.下列函数中,在(0,2)上单调递增的是( D )A .y =log 12(x +1) B .y =log 2x 2-1 C .y =log 21x D .y =log12(x 2-4x +5)【解析】 选项 A ,C 中的函数为减函数;(0,2)不是选项B 中函数的定义域;选项D 中,函数y =x 2-4x +5恒大于零且在(0,2)上单调递减,又12<1,故y =log12(x 2-4x +5)在(0,2)上单调递增.4.若函数f(x)=a x+log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为B A .14 B .12C .2D .4 【解析】 当a >1时,a +log a 2+1=a ,log a 2=-1,a =12 (舍去);当0<a <1时,1+a+log a 2=a ,log a 2=-1,a =12.6.【多选题】 若两个函数的图象经过平移后能够重合,则称这两个函数为“同形函数”.给出的下列四个函数中,与函数y =log 2x 是“同形函数”的是( BD )A .y =2log 2(x +1)B .y =log 2(x +2)C .y =log 2x 2D .y =log 2(2x) 【解析】 y =log 2(x +2)的图象沿着x 轴向右平移2个单位,得到y =log 2x 的图象,y =log 2(2x)=1+log 2x 的图象沿y 轴向下平移1个单位后得到y =log 2x 的图象,根据“同形函数”的定义,可知选BD.7.函数y =3x(x≥2)的反函数g(x)=__log 3x ,x ∈[9,+∞)__.8.若定义域为(-2,-1)的函数f(x)=log (2a -3)(x +2)满足f(x)<0,则实数a 的取值范围是__(2,+∞)__,函数f(x)是__增函数__(填“增函数”或“减函数”).【解析】 由x∈(-2,-1),得0<x +2<1.又log (2a -3)(x +2)<0,所以2a -3>1,解得a>2,函数f(x)是增函数.9.已知定义域为R 的偶函数f(x)在[0,+∞)上单调递增,且f ⎝ ⎛⎭⎪⎫12 =0,则不等式f(log 4x)<0的解集是__⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x<2 __.【解析】 由题意及f(log 4x)<0,得-12 <log 4x<12 ,即log 44-12 <log 4x<log 4412,解得12<x<2.10.函数y =log 12(x 2-6x +17)的值域为__(-∞,-3]__.【解析】 令t =x 2-6x +17=(x -3)2+8≥8,因为y =log 12t 为减函数,所以y =log 12t≤log 128=-3.11.已知函数f(x)=log 12 (x 2-ax +3a)在区间[2,+∞)上单调递减,则实数a 的取值范围是__(-4,4]__.【解析】 二次函数y =x 2-ax +3a 图象的对称轴为x =a 2 ,由已知,有a 2 ≤2,且满足当x≥2时y =x 2-ax +3a >0,即⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0, 解得-4<a≤4.12.已知函数f(x)=log a (2+x)-log a (2-x)(a >0,且a ≠1).(1)判断并证明函数f(x)的奇偶性;(2)求满足f(x)>0的实数x 的取值范围.解:(1)函数f(x)是奇函数.证明如下:根据题意,得⎩⎪⎨⎪⎧2+x >0,2-x >0, 解得-2<x <2,所以函数f(x)的定义域为(-2,2),关于原点对称.又f(-x)=log a (2-x)-log a (2+x)=-f(x),所以f(x)是奇函数.(2)由f(x)>0得log a (2+x)>log a (2-x),①当a >1时,则⎩⎪⎨⎪⎧-2<x <2,2+x >2-x , 解得0<x <2;②当0<a <1时,则⎩⎪⎨⎪⎧-2<x <2,2+x <2-x , 解得-2<x <0.综上可知,当a >1时,x 的取值范围是(0,2);当0<a <1时,x 的取值范围是(-2,0).13.【多选题】 已知函数f(x)=(log 2x)2-log 2x 2-3,则下列说法正确的是( ABC ) A .f(4)=-3 B .函数y =f(x)的图象与x 轴有两个交点 C .函数y =f(x)的最小值为-4 D .函数y =f(x)的最大值为4【解析】 A 正确,f(4)=(log 24)2-log 242-3=-3;B 正确,令f(x)=0,得(log 2x +1)(log 2x -3)=0,解得x =12 或x =8,即f(x)的图象与x 轴有两个交点;C 正确,因为f(x)=(log 2x-1)2-4(x >0),所以当log 2x =1,即x =2时,f(x)取最小值-4;D 错误,f(x)没有最大值,故选ABC.14.已知a =log 23+log 2 3 ,b =log 29-log 2 3 ,c =log 32,则a ,b ,c 的大小关系为__a =b>c__.【解析】 由题意得a =32 log 23,b =log 232-12=32 log 23>32,c =log 32<1,故a =b>c.15.判断函数f(x)=log 2(x +1+x 2)的奇偶性.解:要使函数有意义,需满足x +1+x 2>0,所以x∈R,故函数的定义域为R ,关于原点对称.因为f(-x)+f(x)=log 2(-x +1+x 2 )+log 2(x +1+x 2 )=log 2(1+x 2-x 2)=log 21=0,所以f(-x)=-f(x),即该函数为奇函数.16.已知函数f(x)=lg (3x-3). (1)求函数f(x)的定义域和值域;(2)设函数h(x)=f(x)-lg (3x+3),若不等式h(x)>t 无解,求实数t 的取值范围.解:(1)由题意得,3x -3>0,解得x>1,所以函数f(x)的定义域为(1,+∞).因为(3x-3)∈(0,+∞),所以值域为R .(2)因为h(x)=lg (3x -3)-lg (3x+3)=lg 3x-33x +3 =lg ⎝ ⎛⎭⎪⎫1-63x +3 ,所以h(x)的定义域为(1,+∞),且在(1,+∞)上单调递增.又因为0<1-63x+3<1,所以函数h(x)的值域为(-∞,0).若不等式h(x)>t 无解,则t 的取值范围是t≥0.1.若函数f (x )=a x (a >0,且a ≠1)的反函数是g (x ),且g ⎝⎛⎭⎫14=-1,则f ⎝⎛⎭⎫-12等于( ) A .2 B .2 C .12 D .2222.若函数y =e x 的图像与函数y =f (x )的图像关于直线y =x 对称,则有( )A .f (2x )=e 2x (x ∈R )B .f (2x )=ln2·ln x (x >0)C .f (2x )=2e x (x ∈R )D .f (2x )=ln x +ln2(x >0) 3.函数y =1+a x (0<a <1)的反函数的图像大致是( )4.设函数f (x )=a x ,g (x )=,h (x )=log a x ,正实数a 满足a 0.5<a 0.2,则当x >1时必有( ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .f (x )<g (x )<h (x ) D .f (x )<h (x )<g (x )1.解析:由已知得g (x )=log a x .因为g ⎝⎛⎭⎫14=log a 14=-1,所以a =4,所以f (x )=4x,故f ⎝⎛⎭⎫-12=4-12=12.答案:C2.解析:由题意,知f (x )=ln x .故f (2x )=ln (2x )=ln x +ln2.答案:D3.解析:先画出y =1+a x 的图像,由反函数的图像与原函数的图像关于直线y =x 对称可画出反函数的图像.答案:A4.B 解析:∵由a 0.5<a 0.2,知0<a <1,∴当x >1时,0<a x<1,x 12>1,log a x <0.∴h (x )<f (x )<g (x ).5.若函数y =2+log 3x (x ≥1),则该函数的反函数的定义域是________. 6.函数f (x )=log a (3x -1)(a >0,且a ≠1)的反函数的图像过定点________. 7.已知f (x )=1-3x 1+3x ,则f -1⎝⎛⎭⎫45=________. 5.解析:当x ≥1时,y =2+log 3x ≥2,即该函数的值域为[2,+∞),因此其反函数的定义域为[2,+∞).答案:[2,+∞)6.解析:令3x -1=1得x =23,f ⎝⎛⎭⎫23=0,即f (x )图像过定点⎝⎛⎭⎫23,0,故它的反函数图像过定点⎝⎛⎭⎫0,23.答案:⎝⎛⎭⎫0,23 7.解析:令1-3x 1+3x =45,得3x =19,即x =-2,故f -1⎝⎛⎭⎫45=-2.答案:-2 8.求下列函数的反函数: (1)y =log 13(2x +1); (2)y =2x +12x -1.8.解析:(1)由y =log 13(2x +1),得2x +1=⎝⎛⎭⎫13y ,所以x =12×⎝⎛⎭⎫13y-12,对换x ,y 得y =12⎝⎛⎭⎫13x-12,所以y =log 13(2x +1)的反函数是y =12⎝⎛⎭⎫13x -12. (2)由y =2x +12x -1,得2x (y -1)=y +1.∵y ≠1,∴2x =y +1y -1.①∵2x >0,∴y +1y -1>0,解得y >1或y <-1.故反函数的定义域是{x |x >1或x <-1}.由①式,得x =log 2y +1y -1.因此,所求的反函数为y =log 2x +1x -1(x <-1或x >1).9.若点A (1,2)既在函数f (x )=ax 2+b (x ≥0)的图像上,又在f (x )的反函数f -1(x )的图像上,求a ,b 的值.9.解析:∵f -1(1)=2,∴f (2)=1.又f (1)=2,∴⎩⎪⎨⎪⎧a +b =2,4a +b =1,解得⎩⎨⎧a =-13,b =73.10.已知f (x )=log 4(4x -1).(1)求f (x )的定义域; (2)讨论f (x )的单调性; (3)求f (x )在区间⎣⎡⎦⎤12,2上的值域. 10.解析:(1)由4x -1>0,解得x >0,因此f (x )的定义域为(0,+∞).(2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上单调递增.(3)因为f (x )在区间⎣⎡⎦⎤12,2上单调递增,又f ⎝⎛⎭⎫12=0,f (2)=log 415,因此f (x )在⎣⎡⎦⎤12,2上的值域为[0,log 415].1.设a =log 0.50.9,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .a <c <b1.解析:因为0=log 0.51<a =log 0.50.9<log 0.50.5=1,b =log 1.10.9<log 1.11=0,c =1.10.9>1.10=1,所以b <a <c ,故选B.2.y 1=2x ,y 2=x 2,y 3=log 2x ,当2<x <4时,有( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 2>y 3>y 12.解析:在同一平面直角坐标系内画出这三个函数的图像(图略),在区间(2,4)内,从上到下图像依次对应的函数为y 2=x 2,y 1=2x ,y 3=log 2x ,故y 2>y 1>y 3.答案:B 3.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝⎛⎭⎫0,34B .⎝⎛⎭⎫0,34∪(1,+∞) C .(1,+∞) D .(0,1) 3.解析:当a >1时,log a 34<0<1,成立.当0<a <1时,y =log a x 为减函数.由log a 34<1=log a a ,得0<a <34.综上所述,0<a <34或a >1.答案:B4.函数y =log 0.4(-x 2+3x +4)的值域是( )A .(0,2]B .[-2,+∞)C .(-∞,-2]D .[2,+∞) 解析:-x 2+3x +4=-⎝⎛⎭⎫x -322+254≤254,又-x 2+3x +4>0,则0<-x 2+3x +4≤254,函数y =log 0.4x 为(0,+∞)上的减函数,则y =log 0.4(-x 2+3x +4)≥log 0.4254=-2,函数的值域为[-2,+∞).5.函数f (x )=log a x (a >0,且a ≠1)在[2,3]上的最大值为1,则a =________.解析:当a >1时,f (x )的最大值是f (3)=1,则log a 3=1,∴a =3>1.∴a =3符合题意.当0<a <1时,f (x )的最大值是f (2)=1.则log a 2=1,∴a =2>1.∴a =2不合题意,综上知a =3. 6.已知函数f (x )=log 2a -x1+x为奇函数,则实数a 的值为________.6.解析:由奇函数得f (x )=-f (-x ),log 2a -x 1+x =-log 2a +x 1-x ,a -x 1+x =1-x a +x ,a 2=1,因为a ≠-1,所以a =1.7.如果函数f (x )=(3-a )x 与g (x )=log a x 的增减性相同,则实数a 的取值范围是________.7.解析:若f (x ),g (x )均为增函数,则⎩⎪⎨⎪⎧3-a >1,a >1,则1<a <2;若f (x ),g (x )均为减函数,则⎩⎪⎨⎪⎧0<3-a <1,0<a <1,无解.答案:(1,2) 8.比较下列各组对数值的大小:(1)log 151.6与log 152.9; (2)log 21.7与log 23.5;(3)log 123与log 153;(4)log 130.3与log 20.88.解析:(1)∵y =log 15x 在(0,+∞)上单调递减,1.6<2.9,∴log 151.6>log 152.9.(2)∵y =log 2x 在(0,+∞)上单调递增,而1.7<3.5,∴log 21.7<log 23.5.(3)借助y =log 12x 及y =log 15x 的图像,如图所示.在(1,+∞)上,前者在后者的下方,∴log 123<log 153.(4)由对数函数性质知,log 130.3>0,log 20.8<0,∴log 130.3>log 20.8.9.已知log a (2a +3)<log a 3a ,求a 的取值范围.9.解析:(1)当a >1时,原不等式等价于⎩⎪⎨⎪⎧a >1,2a +3<3a ,2a +3>0,解得a >3.(2)当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧0<a <1,2a +3>3a ,3a >0,解得0<a <1.综上所述,a 的取值范围是(0,1)∪(3,+∞).10.已知a >0且a ≠1,f (log a x )=a a 2-1⎝⎛⎭⎫x -1x . (1)求f (x );(2)判断f (x )的单调性和奇偶性;(3)对于f (x ),当x ∈(-1,1)时,有f (1-m )+f (1-2m )<0,求m 的取值范围.10.解析:(1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎫a t -1a t ,所以f (x )=aa 2-1(a x -a -x)(x ∈R ).(2)因为f (-x )=a a 2-1(a -x -a x )=-f (x ),且x ∈R ,所以f (x )为奇函数.当a >1时,a x -a -x 为增函数,并且注意到a a 2-1>0,所以这时f (x )为增函数;当0<a <1时,类似可证f (x )为增函数.所以f (x )在R 上为增函数.(3)因为f (1-m )+f (1-2m )<0,且f (x )为奇函数,所以f (1-m )<f (2m -1). 因为f (x )在(-1,1)上为增函数,所以⎩⎪⎨⎪⎧-1<1-m <1,-1<2m -1<1,1-m <2m -1.解之,得23<m <1.即m 的取值范围是⎝⎛⎭⎫23,1.一、选择题1.已知f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .(0,+∞) B .(1,+∞) C .(-∞,1)D .(0,1)解析:选D ∵-2>-3,f (-2)>f (-3), 又f (x )=a -x =⎝⎛⎭⎫1a x ,∴⎝⎛⎭⎫1a -2>⎝⎛⎭⎫1a -3, ∴1a >1,∴0<a <1. 2.函数f (x )=12x +1在(-∞,+∞)上( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值D .单调递增有最大值解析:选A u =2x +1为R 上的增函数且u >0,∴y =1u 在(0,+∞)上为减函数,即f (x )=12x +1在(-∞,+∞)上为减函数,无最小值. 3.已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数解析:选A 因为f (x )=3x -⎝⎛⎭⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝⎛⎭⎫13-x =⎝⎛⎭⎫13x -3x =-[ 3x -⎦⎤⎝⎛⎭⎫13x =-f (x ),即函数f (x )是奇函数. 又y =3x 在R 上是增函数,y =⎝⎛⎭⎫13x 在R 上是减函数,所以f (x )=3x -⎝⎛⎭⎫13x在R 上是增函数.4.若函数f (x )=(1-2a )x 在实数集R 上是减函数,则实数a 的取值范围是( ) A.⎝⎛⎭⎫12,+∞ B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫-∞,12 D.⎝⎛⎭⎫-12,12解析:选B 由已知,得0<1-2a <1,解得0<a <12,即实数a 的取值范围是⎝⎛⎭⎫0,12. 5.设函数f (x )=a-|x |(a >0且a ≠1),f (2)=4,则( )A .f (-1)>f (-2)B .f (1)>f (2)C .f (2)<f (-2)D .f (-3)>f (-2)解析:选D 由f (2)=4得a -2=4,又∵a >0,∴a =12,f (x )=2|x |,∴函数f (x )为偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增,故选D.6.函数y =⎝⎛⎭⎫12x 2-2的单调递减区间为( )A .(-∞,0]B .[0,+∞)C .(-∞,2]D .[2,+∞)解析:选B 函数y =⎝⎛⎭⎫12u 在R 上为减函数,欲求函数y =⎝⎛⎭⎫12 x 2-2的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为[0,+∞),故所求单调递减区间为[0,+∞).7.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3D .32解析:选C 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3.8.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( ) A .[9,81] B .[3,9] C .[1,9]D .[1,+∞)解析:选C 由f (x )过定点(2,1)可知b =2,因为f (x )=3x-2在[2,4]上是增函数,f (x )min=f (2)=1,f (x )max =f (4)=9,所以f (x )的值域为[1,9].9.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-2)等于( )A .-7B .-3C .7D .3解析:选A 由f (x )为定义在R 上的奇函数知f (0)=20+2×0+b =0,解得b =-1.因此f (-2)=-f (2)=-(22+2×2-1)=-7,故选A.10.若函数f (x )=⎩⎪⎨⎪⎧(a -1)x ,x ≥1,-x 2+2ax -3,x <1在R 上是单调递增函数,则a 的取值范围为( )A .(1,+∞)B .(2,3]C .(2,+∞)D .[1,2)解析:选B 依题意得⎩⎪⎨⎪⎧ a -1>1,a ≥1,(a -1)1≥-12+2a ×1-3⇒⎩⎪⎨⎪⎧a >2,a ≥1,a ≤3.即2<a ≤3.故选B.二、填空题 11.若不等式322ax ax->13对一切实数x 恒成立,则实数a 的取值范围是________. 解析:不等式即为322ax ax->3-1,则有ax 2-2ax >-1,即ax 2-2ax +1>0对一切实数x 恒成立. 当a =0时,满足题意;当a ≠0时,要满足题意,则需a >0且Δ=(-2a )2-4a <0, 即a 2-a <0,解得0<a <1.综上,实数a 的取值范围是[0,1). 答案:[0,1)12.若函数f (x )=1+a ·3x 在区间(-∞,1]内有意义,则实数a 的取值范围是________. 解析:依题意得1+a ·3x ≥0在区间(-∞,1]上恒成立,即a ≥-13x 在区间(-∞,1]上恒成立,由-13x 在区间(-∞,1]上的最大值为-13,得a ≥-13.答案:⎣⎡⎭⎫-13,+∞ 13.春天来了,某池塘中的荷花枝繁叶茂.已知每一天荷叶覆盖水面面积是前一天的2倍,且荷叶20天可以完全长满池塘水面.当荷叶覆盖水面面积一半时,荷叶已生长了________天.解析:荷叶覆盖水面面积y 与生长时间x 的函数关系式为y =2x .当x =20时,长满水面,所以生长19天时,布满水面一半.答案:1914.函数f (x )=3x -3-x3x +3-x+2,若有f (a )+f (a -2)>4,则a 的取值范围是________.解析:设F (x )=f (x )-2,则F (x )=3x -3-x 3x +3-x ,易知F (x )是奇函数,F (x )=3x -3-x 3x +3-x =32x -132x +1=1-232x +1在R 上是增函数,由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. 答案:(1,+∞) 三、解答题15.已知-1≤x ≤1,求函数y =4·3x -2·9x 的最大值. 解:因为y =4·3x -2·9x =4·3x -2·(3x )2 令t =3x ,则y =4t -2t 2=-2(t -1)2+2, 因为-1≤x ≤1,所以13≤3x ≤3,即t ∈⎣⎡⎦⎤13,3. 又因为y =4t -2t 2的对称轴t =1∈⎣⎡⎦⎤13,3, 所以当t =1,即x =0时,y max =2. 16.已知函数y =22x -1-3·2x +5. (1)如果y <13,求x 的取值范围; (2)如果0≤x ≤2,求y 的取值范围. 解:由题意知y =12(2x )2-3·2x +5.(1)由y <13,得(2x )2-6·2x -16<0, 所以(2x -8)(2x +2)<0,因为2x +2>0,所以2x -8<0,解得x <3, 所以x 的取值范围为(-∞,3). (2)因为0≤x ≤2,所以1≤2x ≤4,而y =12(2x -3)2+12,于是当2x =3时,y 取得最小值,且最小值为12;当2x =1时,y 取得最大值,且最大值为52.所以y 的取值范围为⎣⎡⎦⎤12,52.17.(2018·荆州中学期中)设函数f (x )=⎝⎛⎭⎫1210-ax ,a 是不为零的常数. (1)若f (3)=12,求使f (x )≥4的x 的取值范围;(2)当x ∈[-1,2]时,f (x )的最大值是16,求a 的值.解:(1)由f (3)=12得a =3,不等式f (x )≥4可化为23x -10≥22,∴x ≥4, 故x 的取值范围是[4,+∞).(2)当a >0时,f (x )=2ax-10是增函数, 则22a -10=16,所以a =7; 当a <0时,f (x )=2ax -10是减函数,则2-a -10=16,所以a =-14.综上,a =-14或a =7.18.对于函数f (x )=a -22x+1(x ∈R ). (1)判断并证明函数的单调性;(2)是否存在实数a ,使函数f (x )为奇函数?证明你的结论.解:(1)函数f (x )为R 上的增函数.证明如下:函数f (x )的定义域为R .任取x 1,x 2∈R ,且x 1<x 2,有f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a -221x +1-⎝ ⎛⎭⎪⎫a -222x +1=222x +1-221x +1=2(21x -22x )(22x +1)(21x +1). 因为y =2x 是R 上的增函数,x 1<x 2,所以21x -22x <0,又2x 1+1>0,2x 2+1>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )为R 上的增函数.(2)因为x ∈R ,f (x )是奇函数,所以f (0)=0,即a =1.所以存在实数a =1,使函数f (x )为奇函数.证明如下:当a =1时,f (x )=1-22x +1=2x -12x +1.对任意x ∈R ,f (-x )=2-x -12-x +1=1-2x 1+2x=-2x -12x +1=-f (x ),又f (x )的定义域为R ,故f (x )为奇函数. 1.函数f (x )=(2a -3)a x 是指数函数,则f (1)=( )A .8B .32C .4D .2 解析:选D 函数f (x )=(2a -3)a x 是指数函数,∴2a -3=1,解得a =2.∴f (x )=2x ,∴f (1)=2.函数f (x )=a x (a >0且a ≠1),对于任意实数x ,y 都有( )A .f (xy )=f (x )f (y )B .f (xy )=f (x )+f (y )C .f (x +y )=f (x )f (y )D .f (x +y )=f (x )+f (y ) 解析:选C f (x +y )=a x +y =a x a y =f (x )f (y ).故选C.3.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2解析:选C 由题意知,当x =1时,y =3,故A (1,3),m +n =4.4.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( ) A. 6B .1C .2 2D .0解析:选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a ,即33=3a 2,∴a 2=3,解得a =6,∴a = 6.故选A. 5.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( )A .a (1+p %)元B .a (1-p %)元C .a (1-p %)3元D .a (1+p %)元 解析:选C 设现在成本为x 元,则x (1-p %)3=a ,∴x =a (1-p %)3. 6.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x -2,且g (x )=f (x ),则x =________.解析:因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a =2,所以a =1,所以f (x )=⎝⎛⎭⎫12x ,g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1.7.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________. 解析:因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 8.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.解析:2018年产值为a ,增长率为7%.2019年产值为a +a ×7%=a (1+7%)(万元). 2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元).……2022年的产值为a (1+7%)4万元.9.已知函数f (x )=(a 2+a -5)a x 是指数函数.(1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.解:(1)由a 2+a -5=1,可得a =2或a =-3(舍去),∴f (x )=2x .(2)F (x )=2x -2-x ,∴F (-x )=-F (x ),∴F (x )是奇函数.10.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)为多少?解:∵21+22+23+24+25=62,21+22+23+24+25+26=126.∴n ≥6,故最少需要6天.1.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为______.解析:由已知得⎩⎪⎨⎪⎧ a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧ a =12,b =3,所以f (x )=⎝⎛⎭⎫12x +3,所以f (-2)=⎝⎛⎭⎫12-2+3 =4+3=7.2.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个分裂成4 096个需经过________小时.解析:∵细胞分裂一次时有21个细胞,分裂2次时变为2×2=22个细胞,分裂3次时变为2×2×2=23个细胞…,∴当分裂n 次时变为2n 个细胞,故可得出2n =4 096,∵212=4 096,∴n =12,∵细胞15分钟分裂一次,∴细胞分裂12次所需的时间为12×15=180分钟=3小时.故这种细菌由1个分裂为4 096个,这个过程要经过3小时.故答案为3.3.已知函数f (x )=a x -1a x +1(a >0,且a ≠1). 1)若f (2)=35,求f (x )解析式;(2)讨论f (x )奇偶性. 解:(1)∵f (x )=a x -1a x +1,f (2)=35.即a 2-1a 2+1=35,∴a =2.即f (x )=2x -12x +1. (2)因为f (x )的定义域为R ,且f (-x )=a -x -1a -x +1=1-a x1+a x=-f (x ),所以f (x )是奇函数. 4.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?解:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为 130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x 年后的人口数为130(1+3‰)x (万). 即y =f (x )=130(1+3‰)x (x ∈N *).(2)2029年年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。

相关文档
最新文档