高中数学选修2-3基础知识归纳(排列组合、概率问题)

合集下载

数学选修2-3知识点总结

数学选修2-3知识点总结

数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。

分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。

而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。

二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。

二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。

二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。

概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。

随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。

随机变量及其分布:这部分主要讲解随机变量的概念及其分布。

随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。

以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。

高中数学选修2-3知识点整理复习资料(内含多套整理资料适用于高三一轮复习及高二期末复习)

高中数学选修2-3知识点整理复习资料(内含多套整理资料适用于高三一轮复习及高二期末复习)

⾼中数学选修2-3知识点整理复习资料(内含多套整理资料适⽤于⾼三⼀轮复习及⾼⼆期末复习)第⼆章概率总结⼀、知识结构⼆、知识点1.随机试验的特点:①试验可以在相同的情形下重复进⾏;②试验的所有可能结果是明确可知的,并且不⽌⼀个③每次试验总是恰好出现这些结果中的⼀个,但在⼀次试验之前却不能肯定这次试验会出现哪⼀个结果.2.分类随机变量(如果随机试验可能出现的结果可以⽤⼀个变量X 来表⽰,并且X 是随着试验的结果的不同⽽变化,那么这样的变量叫做随机变量.随机变量常⽤⼤写字母X 、Y 等或希腊字母ξ、η等表⽰。

)离散型随机变量在上⾯的射击、产品检验等例⼦中,对于随机变量X 可能取的值,我们可以按⼀定次序⼀⼀列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某⼀区间内的⼀切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以⼀⼀列出.随机变量条件概率事件的独⽴性正态分布超⼏何分布⼆项分布数学期望⽅差离散型随机变量的数字特征离散型随机变量连续性随机变量3.离散型随机变量的分布列⼀般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每⼀个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③⼀般地,离散型随机变量在某⼀范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤例题:篮球运动员在⽐赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球⼀次的得分的分布列.解:⽤随机变量X表⽰“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出⼆点分布如果随机变量X的分布列为:其中0超⼏何分布⼀般地, 设总数为N 件的两类物品,其中⼀类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是⼀个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超⼏何分布列,且称随机变量X 服从参数N 、M 、n 的超⼏何分布注意:(1)超⼏何分布的模型是不放回抽样;(2)超⼏何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中⼀类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了⼀个摸奖游戏,在⼀个⼝袋中装有10个红球和20个⽩球,这些球除颜⾊外完全相同.游戏者⼀次从中摸出5个球.⾄少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超⼏何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题⽬可知,⾄少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发⽣的条件下事件B 发⽣的概率,叫做条件概率P(B|A),读作A 发⽣的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发⽣所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发⽣的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第⼀个取到次品,求第⼆取到次品的概率.解:设 A = {第⼀个取到次品}, B = {第⼆个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第⼆个⼜取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P 发⽣的条件下样本点数在包含的样本点数发⽣的条件下在A B A )A |B (=P 包含的样本点数包含的样本点数A AB =总数包含的样本点数总数包含的样本点数//AB A =) (P(AB)A P =公式推导过程.1)|(0)()|()(0)A (P ≤≤?=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==?C C AB P .103)(=A P相互独⽴事件1.定义:事件A(或B)是否发⽣对事件B(或A)发⽣的概率没有影响,这样的两个事件叫做相互独⽴2.相互独⽴事件同时发⽣的概率公式两个相互独⽴事件同时发⽣的概率,等于每个事件发⽣的概率的积。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。

那么完成这件事情共有M1+M2+。

+MN种不同的方法。

2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。

那么完成这件事情共有XXX种不同的方法。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。

从n个不同元素中取出m个元素的一个排列数,用符号An表示。

An=m!/(n-m)!(m≤n,n,m∈N)。

5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。

*(n-m+1)=n!/(n-m)。

6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。

8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。

+C(n,n)*a^0*b^n。

9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。

10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。

11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN111--++=⋅+=m nm n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--=5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m mm n mn-=+--==;m n n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r+-==101() 10、二项式系数C nr为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r n n r==- ()系数和:…2C C C n n nn n012+++=(3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第 n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

数学选修2-3知识点总结

数学选修2-3知识点总结

第二章概率总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。

)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X 可能取的值为 x 1,x 2,,x i ,,x nX 取每一个值xi(i=1,2, )的概率 P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi ≥0,i=1,2,… ; ②p 1+p 2+…+p n =1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤随机变量 条件概率 事件的独立性 正态分布超几何分布二项分布数学期望 方差离散型随机变量的数字特征 离散型随机变量连续性随机变例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X 表示“每次罚球得的分值”,依题可知,X 可能的取值为:1,0 且P (X=1)=0.7,P (X=0)=0.3 因此所求分布列为:引出超几何分布 一般地,设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnN C C P X k k m C --===,其中{}min ,m M n =, 且*,,,,n N M N n M N N ∈≤≤则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4,5.由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++≈0.191 答:中奖概率为0.191.条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积D=A ∩B 或D=AB3.条件概率计算公式: 二点分布如果随机变量X 的分布列为: 其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二到次品的概率. 解:设A={第一个取到次品},B={第二个取到次品},所以,P(B|A)=P(AB)/P(A)=2/9 答:第二个又取到次品的概率为2/9.相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

高中数学选修2-3排列组合

高中数学选修2-3排列组合

计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

种不同的方法。

2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

种不同的方法。

二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。

2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

;人教版高中数学选修 2-3知识点梳理重点题型(常考知识点)巩固练习排 列【学习目标】1.理解排列的概念.2.能利用计数原理推导排列数公式.3.能利用排列数公式解决简单的实际问题. 【要点梳理】要点一、排列的概念1. 排列的定义一般地,从 n 个不同的元素中取出 m (m≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列.要点诠释:(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.(2)从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.(3)如何判断一个具体问题是不是排列问题,就要看从 n 个不同元素中取出 m 个元素后,再安排这 m 个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.要点二:排列数1.排列数的定义从 n 个不同元素中,任取 m ( m ≤ n )个元素的所有排列的个数叫做从 n 个元素中取出 m 元素的排列数,用符号 A m 表示.n要点诠释:(1)“排列”和“排列数”是两个不同的概念,一个排列是指“从 n 个不同的元素中,任取 m (m≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一个排列(也就是具体的一件事)(2)排列数是指“从 n 个不同元素中取出 m (m≤n )个元素的所有不同排列的个数”,它是一个数.比如从 3 个元素 a 、b 、c 中每次取出 2 个元素,按照一定的顺序排成一列,有如下几种:ab ,ac ,ba ,bc ,ca ,cb ,每一种都是一个排列,共有 6 种,而数字 6 就是排列数,符号 A m 表示排列数,在此n题中 A 2 = 6 .32.排列数公式A m = n (n - 1)(n - 2) (n - m + 1) ,其中 n ,m ∈N +,且 m≤n .要点诠释:(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n-m+1,共有m个因数。

高中数学知识点总结选修2-3

高中数学知识点总结选修2-3

高中数学知识点总结选修 2-3第一章计数原理1.1 分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第第 2 类方案中有n 种不同的方法,那么完成这件事共有“不重不漏”。

1 类方案中有m 种不同的方法,在N=m+n 种不同的方法。

分类要做到分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=m× n 种不同的方法。

分步要做到“步骤完整”。

n 元集合A={a1 , a2?, an} 的不同子集有2n 个。

1.2 排列与组合1.2.1 排列一般地,从n 个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。

从 n 个不同元素中取出m(m≤n) 个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号Amn 表示。

排列数公式:n个元素的全排列数规定: 0!=11.2.2 组合一般地,从 n 个不同元素中取出m(m≤n) 个元素合成一组,叫做从n个不同元素中取出元素的一个组合(combination) 。

从 n 个不同元素中取出m(m≤n) 个元素的所有不同组合的个数,叫做从n 个nm 不同元素中取出m 个元素的组合数,用符号Cn 或 m 表示。

m 个组合数公式:mm∵ Amn=Cn?Am∴规定: ?? =组合数的性质:1.3 二项式定理1.3.1 二项式定理 (binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2杨“辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当 n 是偶数时,共有奇数项,中间的一项Cnn+12 取得最大值;n+1当 n 是奇数时,共有偶数项,中间的两项Cn ,Cn 同时取得最大值。

(3)各二项式系数的和为012kn2n=Cn+Cn+Cn+ ?+Cn+ ?+Cn(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:024135Cn+Cn+Cn+ ?=Cn+Cn+Cn+ ? n-1(5)一般地,rrrrr+1Cr+Cr+1+Cr+2+ ?+Cn-1=Cn(n&gt; )第二章随机变量及其分布2.1 离散型随机变量及其分布2.1.1 离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable) 。

高二数学选修2-3排列知识点

高二数学选修2-3排列知识点

高二数学选修2-3排列知识点排列是数学中的一个重要概念,在高二数学选修2-3中,我们将深入学习排列的相关概念和应用。

本文将从基本概念、排列的计算方法和排列的应用几个方面进行探讨。

一、基本概念1. 排列的定义:排列是从给定的元素中选取一部分按照一定的顺序排列的方式。

2. 全排列:全排列指的是从给定的元素中选取所有元素按照不同的顺序进行排列的方式。

3. 循环排列:循环排列是一种特殊的排列方式,即在排列的过程中,首尾相连形成一个环。

二、排列的计算方法1. 排列的计算公式:在计算排列的数量时,我们可以使用排列的计算公式,即n个不同元素的全排列数量为n!。

2. 有重复元素的排列:当排列中存在重复的元素时,计算排列的数量需要考虑重复元素的情况,我们可以使用排列计算公式的变形公式,即在n个元素中,有n1个元素相同,n2个元素相同,...,nk个元素相同,则排列的数量为n!/(n1! * n2! * ... * nk!)。

三、排列的应用1. 字母组合:排列的概念在字母组合的问题中经常被应用。

例如,计算一个字母串中可能的组合数量、字母的全排列数量等。

2. 座位安排:排列的概念也被广泛应用于座位安排的问题中。

例如,如何安排n个人坐在一排座位上的不同方式数量。

3. 时间安排:排列还可以应用于时间安排问题。

例如,在参加一场比赛的选手中,如何安排他们的比赛顺序,使得每个选手都能与其他选手进行比赛。

4. 数字密码:排列的概念在密码学中也扮演着重要的角色。

例如,当设置数字密码时,我们可以使用排列的方式来确定密码的顺序与组合。

综上所述,排列作为高二数学选修2-3中的重要知识点,具有一定的理论基础和应用价值。

通过深入学习和实践,我们可以更好地掌握排列的计算方法和应用技巧,进一步提升我们的数学能力和问题解决能力。

高中数学选修2-3知识点、考点、附典型例题教学文稿

高中数学选修2-3知识点、考点、附典型例题教学文稿

7、公式:C
Cmn mn
A A
mAn mn mmAmm
n(nn(n
1)1)(n(n m!m!
m m
1)1)
C
Cmn mn
n!n! m!m(n!(n m )m!)!
C
m n
C
nm n
;
C
mn1C
m n
C
m n1
8、二项式定理: ( a b ) n C 0 n a n C 1 n a n 1 b C 2 n a n 2 b 2 … C n r a n r b r … C n n b n
每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同
学甲不参加“围棋苑”,则不同的参加方法的种数为
()
A.72
B.108
C.180
D.216
★★2.在 ( x 1 )24 的展开式中,x 的幂的指数是整数的项共有 3x
()
A.3 项
B.4 项
C.5 项
D.6 项
★★3.现有 12 件商品摆放在货架上,摆成上层 4 件下层 8 件,现要从下层 8 件中取 2 件调整到上层,
若其他商品的相对顺序不变,则不同调整方法的种数是
A.420
B.560
C.840
D.20160
★★4.把编号为 1,2,3,4 的四封电子邮件分别发送到编号为 1,2,3,4 的四个网址,则至多有一封
邮件的编号与网址的编号相同的概率为
★★5. (x 1 )8 的展开式中 x2 的系数为 x
A.-56
P(B | A) P( AB) , P( A) 0. P( A)
9、相互独立事件:事件 A(或 B)是否发生对事件 B(或 A)发生的概率没有影响,这样的两个事件叫做相互 独立事件。 P( A B) P( A) P(B)

选修2-3 概率知识点

选修2-3 概率知识点
k n k
一、离散型随机变量及其分布列
1. 离散型随机变量 : 若随机变量的取值能够一一列举出
来,这样的随机变量称为离散随机变量. 随机变量的线性组合 Y aX b ( a , b 是常数) 也是随机变量 2.离散型随机变量 X 的的分布列 设离散型随机变量 X 的取值为 a1 , a2 , 概率为 pi (i 1, 2,
选修 2-3
第二章
概率知 知识点
三、两个重要的分布
1.超几何分布: 一般地,设有 N 件产品,其中有 M ( M N ) 件次品, 从中任取 n (n N ) 件产品, 用 X 表示取出的 n 件产品中次 品的件数,那么 P ( X k ) C M C M N . 〔其中 k 为非负整 n
DX (a1 EX )2 p1 (a2 EX )2 p2
B) P ( B)
称为 X 的方差. 显然 DX 0 , 故 X
(ar EX )2 pr
DX , X 为 X 的标准差.
B 也可以记成 AB ).条件概率可以依照定义在压
缩的样本空间中计算;条件概率也可以按公式计算. 2.相互独立事件的概率: (1)对两个事件 A, B , 如果事件 B 发生与否不影响事件 A 发 生的概率,则称 A, B 相互独立,即有 P ( AB) P ( A) P ( B) . (2)若事件 A 与 B 独立,则 A 与 B , B 与 A , A 与 B 也 相互独立. (3)对多个事件,如果 A1 , A2 ,
CN
数〕.如果一个随机变量的分布列由上式确定,则称 X 服从 参数为 N , M , n 的超几何分布. 2、二项分布
, an , X 取 a i 的
进行 n 次试验,如果满足下列条件: (1)每次试验只有两种相互对立的结果,可以分别称为 “成功”和“失败”; (2)每次试验“成功”的概率均为 p ,“失败” 的概率 均为 1 p ;

选修2-3第一章知识点总结

选修2-3第一章知识点总结

选修2-3 第一章 排列、组合、二项式定理一、备考知识点:排列数公式 排列排列应用题分类计数原理分步计数原理排列、组合应用题 组合数公式及性质 组合组合应用题二项式系数的性质二项式定理二项式定理的应用 二、知识点:1.两个基本原理:(1)分类计数原理:完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12...n N m m m =+++种不同的方法.(2)分步计数原理:完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法,那么完成这件事共有:12...n N m m m =∙∙∙种不同的方法.2.排列和排列数公式:(1)排列:从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数:从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记作m n A .(3)排列数公式:!(1)(2)(1)()!(1)(2)321!! 1.mn n n n A n n n n m n m A n n n n o =--⋅⋅⋅⋅⋅-+=-=--⋅⋅⋅⋅⋅⋅⋅==3.组合、组合数公式和性质:(1)组合:从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数:从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作mn C .(3)组合数公式: (1)(2)(1)!!!!()!C 1mm nn on A n n n n m n Cm m m n m --⋅⋅⋅-+===-=(4)组合数性质:① mn n m n C C -=② mn m n m n C C C 11+-=+③ 11--=k n k n nC kC4.二项式定理和二项式系数的性质:(1)二项式定理:11222()n o n n n n nn n n n a b C a C a b C a b C b --+=+++⋅⋅⋅+通项公式:rr n r n r b a C T -+=1(2)二项式系数的性质:① 对称性:到二项展开式首末两项距离相等的项的二次式系数相等.② 单调性:以二项展开式中间项为分界,二项式系数先单调增,后单调减.③ 122o n nn n n n C C C C +++⋅⋅⋅+=④ 2413512o n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=第1课时 排列组合基础知识【基础练习】1.若,643m m C A =则=m 7 .2.若,425225+=x x C C 则=x 7或4 .3.=++-n n n nC C 321383 466 . 分析:由1038321=-≥≥+n n n n 得代入计算将466。

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 组合(理)(基础)

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 组合(理)(基础)

人教版高中数学选修2-3知识点梳理重点题型(常考知识点)巩固练习组合【学习目标】1.理解组合的概念.2.能利用计数原理推导组合数公式.3.能解决简单的实际问题.4.理解组合与排列之间的联系与区别.【要点梳理】要点一:组合1.定义:≤)个元素并成一组,叫做从n个不同元素中取出m个元一般地,从n个不同元素中取出m(m n素的一个组合.要点诠释:①从排列与组合的定义可知,一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关.排列与元素的顺序有关,而组合与元素的顺序无关,这是它们的根本区别.②如果两个组合中的元素相同,那么不管元素的顺序怎样都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.因此组合问题的本质是分组问题,它主要涉及元素被取到或未被取到.要点二:组合数及其公式1.组合数的定义:m≤)个元素的所有组合的个数,叫做从n个不同元素中取出m个元从n个不同元素中取出m(nC.素的组合数.记作mn要点诠释:“组合”与“组合数”是两个不同的概念:一个组合是指“从n个不同的元素中取出m(m≤n)个元素并成一组”,它不是一个数,而是具体的一件事;组合数是指“从n个不同元素中取出m(m≤n)个元素的所有组合的个数”,它是一个数.例如,从3个不同元素a,b,c中取出2个元素的组合为ab,ac,bc,其中每一种都叫做一个组合,而数字3就是组合数.2.组合数的公式及推导A,可以按以下两步来考虑:求从n个不同元素中取出m个元素的排列数mn第一步,先求出从这n 个不同元素中取出m 个元素的组合数mn C ; 第二步,求每一个组合中m 个元素的全排列数mm A .根据分步计数原理,得到m m mn n m A C A =⋅.因此2)(!n m m -+ 这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为!()!mn n A n m =-,所以组合数公式还可表示为:!!()!mn n C m n m =-.要点诠释:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修2-3基础知识归纳(排列组合、概率问题)
一.基本原理
1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。

四.处理排列组合应用题
1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。

2.解排列、组合题的基本策略
(1)两种思路:
①直接法:
②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。

在处理排列组合问题时,常常既要分类,又要分步。

其原则是先分类,后分步。

(4)两种途径:①元素分析法;②位置分析法。

3.排列应用题:
(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;
(2) 特殊元素优先考虑、特殊位置优先考虑;
例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公
益广告,则共有种不同的播放方式(结果用数值表示).
解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.
例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?
解一:间接法:即
解二:(1)分类求解:按甲排与不排在最右端分类.
(3)相邻问题:捆邦法:
对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

(4)全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

(5)顺序一定,除法处理。

先排后除或先定后插
解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总
的排列数除于这几个元素的全排列数。

即先全排,再除以定序元素的全排列。

解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元
素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;
例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少
种排法?
分析一:先在7个位置上任取4个位置排男生,有种排法.剩余的3个位置排女生,因要求“从矮到高”,
只有1种排法,故共有·1=840种.
(6)“小团体”排列问题——采用先整体后局部策略
对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排
列,最后再进行“小团体”内部的排列。

(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。

(8)数字问题(组成无重复数字的整数)
①能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。

②能被3整除的数的特征:各位数字之和是3的倍数;
③能被9整除的数的特征:各位数字之和是9的倍数。

④能被4整除的数的特征:末两位是4的倍数。

⑤能被5整除的数的特征:末位数是0或5。

⑥能被25整除的数的特征:末两位数是25,50,75。

⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。

4.组合应用题:
(1)“至少”“至多”问题用间接排除法或分类法:
1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有
解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种.
解析2:至少要甲型和乙型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有种.
(2)“含”与“不含” 用间接排除法或分类法:
2.从5名男生和4名女生中选出4人去参加辩论比赛
(1)如果4人中男生和女生各选2人,有种选法;
(2)如果男生中的甲与女生中的乙必须在内,有种选法;
(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;
(4)如果4人中必须既有男生又有女生,有种选法
5.分组问题:
均匀分组:分步取,得组合数相乘,再除以组数的阶乘。

即除法处理。

非均匀分组:分步取,得组合数相乘。

即组合处理。

混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。

6.分配问题:
定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。

7.隔板法:不可分辨的球即相同元素分组问题
五.二项式定理
3.二项式定理的应用
求二项展开式中的任何一项,特别是常数项:变量的指数为0、有理项:指数为整数;
证明整除或求余数;
利用赋值法证明某些组合恒等式;
近似计算。

4.二项式系数的性质:
5.区分
(1)某一项的二项式系数与系数
项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。

展开式中的系数就是二项式系数。

(2)二项式系数最大项与系数最大项
①二项式系数最大项是中间项
②系数最大项求法:设第k+1项的系数最大,由不等式组求k。

再求第k+1项值。

③系数的绝对值最大的项
二项展开式的系数绝对值最大项的求法,设第r+1项系数的绝对值最大,则此项系数的绝对值必不小于它左、右相邻两项系数的绝对值,即由
求r
注意:二项展开式中系数最大的项及系数最小的项的求法:先
求系数的绝对值最大项第r+1项,然后再求第r+1项的符号,若这一项的系数符号为正,则它为展开式中系数最大的项;若这一项的系数符号为负,则它为展开式中系数最小的项
(3)二项展开式中,二项式系数和与各项系数和
应用“赋值法”可求得二项展开式中各项系数和即令式子中变量为1。

注意:(1)二项展开式的各项系数绝对值的和相当于
的各项系数的和。

即令原式中的x=-1即可。

(2)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数?
六.事件分类
七.对某一事件概率的求法:
八.离散型随机变量
1.在的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
2.离散型随机变量的分布列
一般的,设离散型随机变量X可能取的值为
X取每一个值(i=1,2,)的概率,
则称表
为离散型随机变量X 的概率分布,简称分布列
性质:
③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

公式:期望或平均数、均值E(X)=
方差:
说明(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平
(2)的算术平方根为随机变量X的标准差,
(3)随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。

(4)性质:4.二项分布:在n次独立重复试验中,一次试验中某事件A发生的概率是p, 某
事件A发生的次数为X,
则在n次独立重复试验中,这个事件恰好发生k次的概率为p(X=k)=
X的分布列为
此时称ξ服从二项分布,记作X~B(n,p).
若X~B(n,p),则,。

相关文档
最新文档