光电材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
光致发光材料
发光过程
(1) 基质晶格或激活剂(或称发光中心)吸收激发能; (2) 基质晶格将吸收的激发能传递给激活剂; (3) 被激活的激活剂发出一定波长的光而返回基态,同
时伴随有部分非发光跃迁,能量以热的形式散发。
A:激活剂 S:敏化剂(能强烈地吸 收激发能,然后将能量传递给激活剂)8
(4) (5)
为余辉时间,简称余辉。
人眼能够感觉到余辉的长发光期间者为磷光;
人眼感觉不到余辉的短发光期间者为荧光。
短于10-8s的称为荧光,长于10-8s的称为磷光。
极短余辉:余辉时间<1s的发光; 短余辉: 余辉时间1~10s的发光; 中短余辉:余辉时间10-2~1ms的发光; 中余辉: 余辉时间1~100ms的发光; 长余辉: 余辉时间10-1~1s的发光; 极长余辉:余辉时间>1s的发光
光电材料
1
10.1 发光材料
光的发射是物体中电子从高能态到低能态的跃迁产生的, 物体要发光,首先就得使物体中的电子处于高能态。
以某种方式将能量传递给物体使电子提升到一定高能态 的过程,称为激发过程。 发光就是将所吸收的激发能转化为光辐射的过程。
发光与激发方式无关
对应于不同的吸收能量来源: 物理能、机械能、化学能、生物能等
激光致冷就是利用反斯托克斯现象不断将物体的振动
能以光的形式发射出去,使物体温度降低。
10
当激发发光体后,发光将逐渐衰减,直至发光消失。随后,
热释发光 逐渐升高发光体的温度,有的发光材料又会逐渐发光,并逐 渐变强,在某一温度时达到最大值后又逐渐变弱,这种变化 随着温度的上升,可以重复几次,直到高温时发光才消失。
(1) (2源自文库 (3)
(1)导带电子与俘获的空穴 复合
(2)俘获的电子与价带的空 穴复合
(3)激发能传给孤立中心, 发光跃迁在分立的中心内部
(4)导带中的电子直接与价 带中的空穴复合
(5)俘获的电子与俘获的空 穴复合
9
斯托克斯规则
发光波长总是大于激发波长。即发光的光子能量必 然小于激发光的光子能量。
相应地有: 物理发光、机械发光、化学发光、生物发光等。2
材料的发光机理
分立中心发光 复合发光
激发态能级 俘获能级 (陷阱)
基态能级
自发发光:受激发的粒子 (如电子),受粒子内部 电场作用从激发态A而回 到基态G时的发光。 受迫发光:受激发的电子 只有在外界因素的影响下 才发光(亚稳态发光)。
分立中心发光
6
发光材料分类(按激发方式来分)
光致发光材料 电致发光材料
发光材料在光(紫外光、红外光、可见光等) 照射下激发发光。
发光材料在电场或电流作用下的激发发光。
射线致发光材料 发光材料在电子束或其它射线束的轰击下
的激发发光。
热致发光材料 发光材料在热作用下的激发发光。
等离子发光材料 发光材料在等离子体的作用下的激发发光。
量子效率:发光的量子数与激发源输入的量子数的比值。 能量效率(功率效率):发光的能量与激发源输入的能量的比值。 流明效率(光度效率):发光的流明数与激发源输入的能量的比值 (lm/W)。
3. 发光持续时间特征
5
规定当激发停止时,其发光亮度L衰减
发光持续时间特征 到初始亮度L0的10%时所经历的时间
用紫外线激发发光材料时,可得到可见光区域的各 种颜色的光。
用蓝光激发,只能得到红光、橙光,至多是绿光。
若周围环境的振动能比较高,而发光中心的激发态所 处的振动能级比较低,此时发光中心有可能得到一部 分振动能而升到比较高的激发态。从激发态到基态的 跃迁所伴随的发光的能量就比激发能量高,发光的波 长比激发光的波长短,称为反斯托克斯发光。
由于基态吸收比较弱,开始时 激发态E1上的电子数不多,达 到E2上的电子也不多,上转换 发光较弱。
但处于激发态E2的离子和处于 基态G的另一个离子相互作用, 发生交叉弛豫,A离子E2上电 子跃迁到E1,同时B离子基态 的电子跃迁到E1,导致E1的电 子数增加了2个。此过程使E1 上的电子数目倍增,于是,从 E上1跃转迁换到发E光2的加电强子。数目也倍增1,4
发到3F2能级,由于 3F2、3F3、3H4相距很 近,电子很快弛豫到
3H4。在此,它可能 吸收第2个光子跃迁
至1D2;也可能跃迁 到基态或3F4发出红 外光。3F4上的电子 吸收第2个光子跃迁
到1G4,1G4上的电子 吸收第3个电子跃迁
到3P1,然后弛豫到
Tm:铥 1I6,再…
13
吸收雪崩
该现象易发生在基态对激发光的吸收比 激发态弱,而且离子间相互作用强的体 系中。
在材料的禁带中,存在着不同深度的陷 阱。在激发过程中,有的电子就掉进了 这些深度不同的陷阱。陷阱中的电子回 到导带的几率为:
若温度T大,则P大,即导带中的电子数 目增多,复合的次数增多,发光增强。 陷阱中的电子数目是有限的,这些电子 耗尽了,即使继续升温,也没有可以参 与复合的电子,因此不再发光。 陷阱可有不同深度,使电子释放出来所 需的温度就有高有低。
短复合发光,单分子过程,<10-10s 长复合发光,双分子过程
4
材料的发光特征
1. 颜色特征
不同的发光材料有着不同的发光颜色。
2. 发光强度特征
发光强度代表发射光的能量,是一个客观数值;发光的亮度是人眼的 感觉,是主观判断的结果,其中包含了眼睛对不同颜色视觉的差别。 发光效率用来表征材料的发光本领。
11
上转换发光
如果一个激发光光子产生 一个发射光光子,发射光 子的能量必然不会大于激 发光光子的能量。
如果发光材料能够吸收两 个或多个光子而产生一个 光子,可能发射出波长短 的光,这种现象称为上转 换发光。
上转换发光可以由激发态 吸收或连续能量传递产生。
12
例:
上转换发光的激
发过程:
第1个光子将电子激
发光材料的发光中心受激发 时并未离化,发光过程全部 局限在中心内部。被激发的 发光中心内的电子虽然获得 了跃迁至激发态的能量,但 并未离开中心,迟早会释放 出激发能,回到基态而发出 光来。
这种发光是单分子过程,并 不伴随有光电导,故又称为 “非光电导型”发光。 3
复合发光
发光材料受激发时分离出一对带异号电荷的粒子,一 般为空穴和电子,这两种粒子复合时便发光,称为复 合发光。 由于离化的带电粒子在发光材料中漂移或扩散,从而 构成特征性光电导,故又称为“光电导型”发光。
相关文档
最新文档