中考数学试题-初三数学答案 最新
初三中考数学试题(附答案)
初三数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31o C.5tan31oD.5cot正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
初三数学试卷(含答案)
初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。
初三数学正数和负数试题答案及解析
初三数学正数和负数试题答案及解析1.在﹣2,﹣1,0,2这四个数中,最大的数是().A.﹣2B.﹣1C.0D.2【答案】D【解析】根据正数大于0,负数小于0,负数绝对值越大越小即可求解.在-2、-1、0、1这四个数中,大小顺序为:-2<-1<0<1,所以最大的数是1.故选D.【考点】有理数大小比较2.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1B.﹣2<﹣3<1C.1<﹣2<﹣3D.1<﹣3<﹣2【答案】A.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵﹣3<﹣2<0<1,∴﹣3<﹣2<1正确.故选A.【考点】有理数大小比较.3.下列各数中,既不是正数也不是负数的是A.0B.-1C.D.2【答案】A【解析】0是正负数的分界线,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。
【考点】有理数4.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)【答案】n2+4n【解析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.【考点】规律型:图形的变化类.5.若x,y为实数,且,则的值为 .【答案】1.【解析】∵x,y为实数,且,∴.∴.【考点】1.绝对值和二次根式被开方数的非负性质;2.有理数的乘方.6.如果零上5℃记作+5℃,那么零下7℃可记作 ()A.-7℃B.+7℃C.+12℃D.-12℃【答案】A【解析】∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作-7℃.7.如果规定向东为正,那么向西即为负。
最新中考数学试题及答案
最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。
答案:±42. 一个数的绝对值是7,那么这个数是______。
答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。
答案:284. 一个圆的半径是4,那么这个圆的面积是______。
答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。
答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。
中考数学试卷含答案初三九年级数学试题
中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。
2024年中考数学真题-附有答案
8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )
A B. C. D.
9. 如图,点 为 的对角线 上一点,AC=5,CE=1,连接 并延长至点 ,使得 ,连接 ,则 为( )
A. B. 3C. D. 4
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
17. (1)计算: ;
(2)先化简,再求值: ,其中 .
18. 【实践课题】测量湖边观测点 和湖心岛上鸟类栖息点 之间的距离
实践工具】皮尺、测角仪等测量工具
实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点 .测量 , 两点间的距离以及 和 ,测量三次取平均值,得到数据: 米, , 画出示意图,如图
16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系 中,将点 中的 , 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中 , 均为正整数.例如,点 经过第1次运算得到点 ,经过第2次运算得到点 ,以此类推.则点 经过2024次运算后得到点________.
1
1
________
________
________
7
(1)求 、 的值,并补全表格;
(2)结合表格,当 图像在 的图像上方时,直接写出 的取值范围.
21. 如图,在四边形 中 , 以点 为圆心,以 为半径作 交 于点 ,以点 为圆心,以 为半径作 所交 于点 ,连接 交 于另一点 ,连接 .
(1)求证: 为 所在圆的切线;
初三数学试卷的试题及答案
一、选择题(每题4分,共40分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a² + b²的值为:A. 1B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于x轴的对称点为:A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)3. 若sinθ = 0.8,且θ在第二象限,则cosθ的值为:A. -0.6B. 0.6C. -0.9D. 0.94. 下列函数中,y = x² - 4x + 4的图像是:A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 圆5. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°6. 若x + y = 5,xy = 6,则x² + y²的值为:A. 17B. 25C. 26D. 357. 下列不等式中,正确的是:A. 3x > 2xB. 2x < 3xC. 3x ≥ 2xD. 2x ≤ 3x8. 若a、b、c是等差数列,且a + b + c = 15,a² + b² + c² = 45,则ab + bc + ca的值为:A. 15B. 25C. 35D. 459. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 一般三角形10. 若x² - 2x - 3 = 0,则x² - 5x + 6的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若sinα = 0.6,cosα = 0.8,则tanα = _______。
12. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项an = _______。
中考数学最新真题试题汇编及解析(湖南怀化)
=1+ -1+2-2
=2- .
【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.
18.解不等式组,并把解集在数轴上表示出来.
【答案】 ,数轴见解析
【解析】
【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.
7.一个多边形的内角和为900°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
【答案】A
【解析】
【分析】根据n边形的内角和是(n﹣2)•180°,列出方程即可求解.
【详解】解:根据n边形的内角和公式,得
(n﹣2)•180°=900°,
解得n=7,
∴这个多边形的边数是7,
故选:A.
【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程.
设CD=x,则BD=2.4-x,
在Rt△ACD中,∠ACD=45°,
∴∠CAD=45°,
∴AD=CD=x.
在Rt△ABD中, ,
即 ,
解得x=0.88,
可知AD=0 88千米=880米,
因为880米>800米,所以公路不穿过纪念园.
【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.
【详解】解:连接OC,
∵AB与⊙O相切于点C,
∴OC⊥AB,即∠OCA=90°,
在Rt△OCA中,AO=3,OC=2,
∴AC= ,
故答案为: .
【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
初三数学反比例函数试题答案及解析
初三数学反比例函数试题答案及解析1.如果反比例函数的图象经过点(1,-2),那么这个函数的解析式是【答案】y=-.【解析】设反比例函数解析式为(k≠0),把点(1,-2)代入函数解析式(k≠0),即可求得k的值.试题解析:设反比例函数的解析式为(k≠0).由图象可知,函数经过点(1,-2),∴-2=,得k=-2.∴反比例函数解析式为y=-.【考点】待定系数法求反比例函数解析式.2.已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为【答案】y=-.【解析】根据图象关于y轴对称,可得出所求的函数解析式.试题解析:关于y轴对称,横坐标互为相反数,纵坐标相等,即y=,∴y=-【考点】反比例函数的性质.3.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C 交x轴于点E,双曲线经过点D,则k的值为【答案】1.【解析】解由一次函数图象上点的坐标特征即可求得点C的坐标,则根据矩形的性质易求点D的坐标,所以把点D的坐标代入双曲线解析式即可求得k的值.试题解析:根据矩形的性质知点C的纵坐标是y=1,∵经过点C,∴解得,x=4,即点C的坐标是(4,1).∵矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,∴D(1,1),∵双曲线经过点D,∴k=xy=1×1=1,即k的值为1.【考点】1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征.4. 如图,点A 是反比例函数y=的图象上﹣点,过点A 作AB ⊥x 轴,垂足为点B ,线段AB 交反比例函数y=的图象于点C ,则△OAC 的面积为 .【答案】2【解析】∵AB ⊥x 轴,∴S △AOB =×|6|=3,S △COB =×|2|=1,∴S △ACB =S △AOB ﹣S △COB =2. 故答案为2.【考点】反比例函数系数k 的几何意义5. 如图,在平面直角坐标系中,直线l 与x 轴相交于点M ,与y 轴相交于点N ,Rt △MON 的外心为点A (,﹣2),反比例函数y=(x >0)的图象过点A . (1)求直线l 的解析式;(2)在函数y=(x >0)的图象上取异于点A 的一点B ,作BC ⊥x 轴于点C ,连接OB 交直线l 于点P .若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.【答案】(1)y=x ﹣4;(2)(,﹣1).【解析】(1)由A 为直角三角形外心,得到A 为斜边MN 中点,根据A 坐标确定出M 与N 坐标,设直线l 解析式为y=mx+n ,将M 与N 坐标代入求出m 与n 的值,即可确定出直线l 解析式; (2)将A 坐标代入反比例解析式求出k 的值,确定出反比例解析式,利用反比例函数k 的意义求出△OBC 的面积,由△ONP 的面积是△OBC 面积的3倍求出△ONP 的面积,确定出P 的横坐标,即可得出P 坐标.试题解析:(1)∵Rt △MON 的外心为点A (,﹣2), ∴A 为MN 中点,即M (3,0),N (0,﹣4), 设直线l 解析式为y=mx+n , 将M 与N 代入得:,解得:m=,n=﹣4, 则直线l 解析式为y=x ﹣4;(2)将A (,﹣2)代入反比例解析式得:k=﹣3, ∴反比例解析式为y=﹣,∵B 为反比例函数图象上的点,且BC ⊥x 轴,∴S △OBC =, ∵S △ONP =3S △OBC , ∴S △ONP =,设P 横坐标为a (a >0), ∴ON•a=3×,即a=,则P 坐标为(,﹣1). 【考点】反比例函数综合题.6. 如图,A 、B 是双曲线上的点,A 、B 两点的横坐标分别是、,线段AB 的延长线交x 轴于点C ,若,则的值为( )A .2B .3C .4D .6 【答案】B.【解析】分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点 ∴S △AOD =S △AOF =,∵A 、B 两点的横坐标分别是a 、3a , ∴AD=3BE ,∴点B 是AC 的三等分点, ∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF -S △AOF =(OE+CE+AF )×OF-=×5a×-=6,解得k=3. 故选B.考点: 反比例函数系数k 的几何意义.7. 如果反比例函数y =的图象经过点(-1,-2),则k 的值是 ( ) A .2B .-2C .-3D .3【答案】D【解析】∵反比例函数图象过点(-1,-2) ∴-2=.k =3.故选D.8. 双曲线y =的图象经过第二、四象限,则k 的取值范围是________.【答案】k <【解析】因反比例函数的图象经过第二、四象限,所以2k-1<0,即k<.故答案是k<.9.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.10.如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=kx(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为_________.【答案】B(4,).【解析】由矩形OABC的顶点A、B在双曲线y=(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),利用待定系数法即可求得反比例函数与直线OA的解析式,又由OA⊥AB,可得直线AB的系数,继而可求得直线AB的解析式,将直线AB与反比例函数联立,即可求得点B 的坐标.试题解析:∵矩形OABC的顶点A、B在双曲线y=(x>0)上,点A的坐标为(1,2),∴2=,解得:k=2,∴双曲线的解析式为:y=,直线OA的解析式为:y=2x,∵OA⊥AB,∴设直线AB的解析式为:y=-x+b,∴2=-×1+b,解得:b=,∴直线AB的解析式为:y=-x+,将直线AB与反比例函数联立得出:,解得:或∴点B(4,).考点: 反比例函数综合题.11.已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.【答案】(1)m的值为2;(2)C(﹣4,0).【解析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.试题解析:(1)∵图象过点A(﹣1,6),∴=6,解得m=2.故m的值为2;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(﹣1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴,∵AB=2BC,∴,∴,∴BD=2.即点B的纵坐标为2.当y=2时,x=﹣3,即B(﹣3,2),设直线AB解析式为:y=kx+b,把A和B代入得:,解得,∴直线AB解析式为y=2x+8,令y=0,解得x=﹣4,∴C(﹣4,0).【考点】反比例函数综合题.12.如图,点A是正比例函数y=﹣x与反比例函数y=在第二象限的交点,AB⊥OA交x轴于点B ,△AOB 的面积为4,则k 的值是_____________.【答案】-4.【解析】反比例系数k 的几何意义:过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.同时考查了正比例函数的性质,等腰三角形的性质.过点A 作AC ⊥OB 于C ,先由正比例函数的性质及AB ⊥OA ,得出△AOB 是等腰直角三角形,根据等腰三角形三线合一的性质得出BC=OC ,则2S △AOC =S △AOB =4,所以k=±4,由反比例函数的图象在第二象限可知:k<0.故k=-4.【考点】1、反比例函数系数k 的几何意义;2、等腰直角三角形.13. 若反比例函数的图象上有两点P 1(1,y 1)和P 2(2,y 2),那么( ) A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0【答案】D.【解析】把两点P 1(1,y 1)和P 2(2,y 2)分别代入反比例函数y= ,求出y 2、y 1的值即可作出判断.解答:解:把点P 1(1,y 1)代入反比例函数y=得,y 1=1;点P 2(2,y 2)代入反比例函数y=求得,y 2=, ∵1>>0,∴y 1>y 2>0. 故选D .考点: 反比例函数图象上点的坐标特征.14. 某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(2,3) B .(3,2) C .(-3,2) D .(6,1)【答案】C【解析】根据反比例函数的图象上点的横纵坐标之积等于定值k 得到反比例函数图象经过点(-1,6),则反比例函数的解析式为,然后计算各点的横纵坐标之积,再进行判断.【考点】反比例函数图象上点的坐标特征.15. 若反比例函数经过点(1,2),则下列点也在此函数图象上的是( ) A .(1,-2) B .(-1,﹣2) C .(0,﹣1) D .(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1. ∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.16.如图,P1是反比例函数在第一象限图像上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的横坐标为A.B.C.D.【答案】C【解析】过点P1作P1C⊥OA2,垂足为C,∵△P1OA1为边长是2的等边三角形,OC=1,,∴P1(1,)。
成都中考数学试题及答案word版
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2024年中考数学试卷(附答案)
2024年中考数学试卷(附答案)学校:___________班级:___________姓名:___________考号:___________数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、单项选择题(每小题2分,共12分) 1.若()3-⨯的运算结果为正数,则内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( ) A .()221x -=- B .()220x -= C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分. 7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 . 8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒则EFBC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .OA=1m ,OB=10m ,40AOD ∠=︒则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率. 17.如图,在ABCD 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE=BC .18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图②中,画出经过点E的O的切线.20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元? (2)直接写出20192023-年全国居民人均可支配收入的中位数. (3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒= cos370.80︒= tan370.75︒=)五、解答题(每小题8分,共16分) 23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题. 【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少? 24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB=BC ,BD AC ⊥垂足为点D .若CD=2,BD=1,则ABCS =______.(2)如图②,在菱形A B C D ''''中4''=A C ,2B D ''=则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,FH=3,则EFGH S =四边形______;若EG a =,FH=b ,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想. 【理解运用】(4)如图④,在MNK △中,MN=3,KN=4,MK=5,点P 为边MN 上一点. 小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ; (ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧; (ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ . 请你直接写出MPKQ S 四边形的值. 六、解答题(每小题10分,共20分)25.如图,在ABC 中,∠C=90°,∠B=30°,AC=3cm ,AD 是ABC 的角平分线.动点P 从点A 出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2). Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=- ()313-⨯=- ()300-⨯= ()()313-⨯-= 四个算式的运算结果中,只有3是正数 故选:D . 2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:92040000000 2.0410⨯= 故选B . 3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案. 【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段 故选:A . 4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<故该方程无实数解,故本选项不符合题意; B 、()220x -=解得:122x x ==,故本选项符合题意;C 、()221x -= 21x -=±解得123,1x x ==,故本选项不符合题意;D 、()222x -= 2x -=1222x x == 故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,90OA B ''∠=︒ 据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2 ∴42OA OC ==, ∵四边形OABC 是矩形 ∴290AB OC ABC ===︒,∠∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''' ∴42OA OA A B AB '''====, 90OA B ''∠=︒ ∴A B y ''⊥轴 ∴点B '的坐标为()2,4 故选:C . 6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解. 【详解】解:∵BE AD ∥ 50BEC ∠=︒ ∴50D BEC ∠=∠=︒ ∵四边形ABCD 内接于O ∴180ABC D ∠+∠=︒ ∴18050130ABC ∠=︒-︒=︒ 故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案. 【详解】解:∵分式11x +的值为正数 ∴10x +> ∴1x >-∴满足题意的x 的值可以为0 故答案为:0(答案不唯一).8.a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:2030x x ->⎧⎨-<⎩①② 解不等式①得:2x >解不等式②得:3x <∴原不等式组的解集为23x <<故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720° ∴正六边形的每个内角为:7201206︒=︒ 故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒ AD BC = 再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =. 【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O∴45OAD ∠=︒,AD=BC∵点E 是OA 的中点 ∴12OE OA = ∵45FEO ∠=︒∴EF AD ∥∴OEF OAD △∽△ ∴12EF OE AD OA ==,即12EF BC = 故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键. 设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+∵AB B C '⊥由勾股定理得:222AC B C AB ''+=∴()22220.5x x +=+故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.15.22a 6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =当a =原式22=⨯ 6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种 ∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==. 17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴OAE OBC OCB E ==∠∠,∠∠∵点O 是AB 的中点∴OA OB =∴()AAS AOE BOC △≌△∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =∴白色琴键:361652+=(个)答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R= (2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ∴这个反比例函数的解析式为36I R =; (2)解:在36I R =中,当3R =Ω时 3612A 3I == ∴此时的电流I 为12A .21.(1)8485元 (2)35128元 (3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △ tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG == 90DGA ∠=︒在Rt GAD 中45EAD ∠=︒ ∴873tan DG AG DG EAD===∠ 在Rt GAC △中37EAC ∠=︒∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=∴873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1)解:设函数解析式为:()0y kx b k =+≠∵当16.5,115.5x y == 23.1,148.5x y ==∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩ ∴函数解析式为:533y x =+经检验其余点均在直线533y x =+上∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=解得:36x =∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152 12EFGH ab S =四边形 证明见详解,(4)10 【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解; (4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB=BC BD AC ⊥ 2CD =∴2AD CD ==∴4AC = ∴122ABC S AC BD =⨯⨯= 故答案为:2;(2)∵在菱形A B C D ''''中4''=A C 2B D ''= ∴142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4;(3)∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵5EG = 3FH = ∴11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵EG a = FH b = ∴12EFGH ab S =四边形; (4)根据尺规作图可知:QPM MKN ∠=∠∵在MNK △中3MN = 4KN = 5MK =∴222MK KN MN =+∴MNK △是直角三角形,且90MNK ∠=︒∴90NMK MKN ∠+∠=︒∵QPM MKN ∠=∠∴90NMK QPM ∠+∠=︒∴MK PQ ⊥∵4PQ KN == 5MK =∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形AQ t = (2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =; (2)由PQE 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G 12PG AP == 则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 23CF CE E t =⋅∠-,因此)21232FCE SCE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △, 此时PD =-)1PC CD PD t =+- 解直角三角形得1tan PC QC t PQC ==-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒ 30B ∠=︒∴60BAC ∠=︒∵AD 平分BAC ∠∴30PAQ BAD ∠=∠=︒∵PQ AB ∥∴30APQ BAD ∠=∠=︒∴PAQ APQ =∠∠∴QA QP =∴APQ △为等腰三角形 ∵QH AP ⊥∴12HA AP == ∴在Rt AHQ △中cos AH AQ t PAQ==∠; (2)解:如图∵PQE 为等边三角形 ∴QE QP =由(1)得QA QP = ∴QE QA =即223AE AQ t === ∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G∵30PAQ ∠=︒∴12PG AP == ∵PQE 是等边三角形 ∴QE PQ AQ t ===∴212S QE PG =⋅= 由(2)知当点E 与点C 重合时32t =∴2302S t ⎛⎫<≤ ⎪⎝⎭; 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图∵PQE 是等边三角形∴60E ∠=︒而23CE AE AC t =-=-∴)tan 23CF CE E t =⋅∠-∴()))21123232322FCE S CE CF t t t =⋅=--=-∴)2223234PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中cos AC AD AP DAC ===∠ ∴2t =∴2322S t ⎫=+<<⎪⎭; 当点P 在DB 上,重合部分为PQC △,如图∵30DAC ∠=︒90DCA ∠=︒由上知DC =∴AD =∴此时PD =-∴)1PC CD PD t =+=-∵PQE 是等边三角形∴60PQE ∠=︒∴1tan PC QC t PQC ===-∠∴)2112S QC PC t =⋅=- ∵30B BAD ∠=∠=︒∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =∴)()2124S t t =-≤<综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩. 【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+,当0x >时223y x x =-+对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x ,10k =>故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解; Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值当0x =时3y =最大值 当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,y=3,x=-1时,y=2,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤. 【详解】(1)解:∵20x =-<∴将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =∵20,30x x =>=>∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩ 解得:12a b =⎧⎨=-⎩; (2)解:Ⅰ,∵1,1,2k a b ===-∴一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+当0x >时223y x x =-+,对称为直线1x =,开口向上∴1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x 10k =>∴0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=∴23ax bx t ++=,在04x <<时无解∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ∵对于223y x x =-+,当1x =时2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点; 当4x = 168311y =-+=∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 ∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解; Ⅲ:∵,1P Q x m x m ==-+∴()1122m m +-+= ∴点P 、Q 关于直线12x =对称 当1x =,1232y =-+=最小值当0x =时3y =最大值∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时3y =,=1x -时2y = ∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩∴12m ≤≤; ②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩ ∴10m -≤≤综上:10m -≤≤或12m ≤≤.。
(完整版)最新人教版中考数学试题及答案
8题图CABD E]命题人:仁怀市 夏容遵义市初中毕业生学业(升学)统一考试数学试题卷(全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回.一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.2-3等于A .5B 。
—5 C.—1 D 。
12.一种花瓣的花粉颗粒直径约为0.0000065米,0。
0000065用科学记数法表示为A.71065.0-⨯B 。
66.510-⨯ C.76.510-⨯D.66510-⨯3.图3-1是由5个大小相同的正方体摆成的立方体图形,它的主视图是图3—2中的4.下列数字分别为A 、B 、C 、D4位学生手中各拿的三根木条的长度,能组成三角形的是 A .1、2、3 B .4、5、3 C .6、4、1 D .3、7、3 5下列式子计算结果等于6x 的是A. 33x x + B 。
32x x ⋅ C. 6632x x - D. 23)(x - 6.一枚质地均匀的正方体骰子,其六面上分别刻有1、2、3、4、5、6 六个数字,投掷这个骰子一次,则向上一面的数字小于4的概率是 21.A 61.B 31.C 32.D 7.如下图,小明拿一张矩形纸,沿虚线向下对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是( )A .都是等腰三角形B .都是等边三角形C .两个直角三角形,一个等腰三角形D .两个直角三角形,一个等腰梯形8.如图,在△ABC 中,D 、E 分别为AC 、AB 上的点,且∠DEA=∠C , 如果AE=1,△ADE 的面积为4,四边形BCDE 的面积为5,则AC 的长为A 。
初三数学试卷答案及解析
1. 已知等差数列{an}中,a1=2,公差d=3,则a10的值为()A. 2B. 5C. 8D. 11答案:D解析:由等差数列通项公式an=a1+(n-1)d,代入a1=2,d=3,n=10,得a10=2+(10-1)×3=11。
2. 若函数f(x)=x^2+2x+1在区间[-2,3]上的最大值和最小值分别为M和m,则M-m 的值为()A. 0B. 2C. 4D. 6答案:B解析:函数f(x)=x^2+2x+1是一个开口向上的抛物线,其顶点为(-1,0)。
在区间[-2,3]上,函数的最大值和最小值分别发生在端点处。
当x=-2时,f(x)=(-2)^2+2×(-2)+1=1;当x=3时,f(x)=3^2+2×3+1=14。
所以M=14,m=1,M-m=14-1=2。
3. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 8答案:A解析:由勾股定理得AB^2=AC^2+BC^2=3^2+4^2=9+16=25,所以AB=√25=5。
4. 下列命题中,正确的是()A. 若x>0,则x^2>0B. 若a>b,则a^2>b^2C. 若a>b,则a^2>b^2D. 若a>b,则a^2>b^2答案:A解析:A选项中,若x>0,则x^2>0,正确;B、C、D选项中,若a>b,则a^2>b^2,不正确。
5. 已知函数f(x)=x^2-2x+1,则f(x)的对称轴为()A. x=1B. x=2C. y=1D. y=2答案:A解析:函数f(x)=x^2-2x+1是一个开口向上的抛物线,其对称轴为x=-b/2a,代入a=1,b=-2,得对称轴为x=1。
二、填空题(每题5分,共20分)6. 若等比数列{an}中,a1=2,公比q=3,则a5的值为______。
初三数学全套试卷及答案
一、选择题(每题4分,共40分)1. 若实数a、b满足a+b=1,则a^2+b^2的最小值为()。
A. 0B. 1C. 2D. 32. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()。
A. 45°B. 60°C. 75°D. 90°3. 下列函数中,在其定义域内单调递增的是()。
A. y=x^2B. y=2^xC. y=x^3D. y=x^44. 若方程x^2-4x+4=0的两个根分别为a和b,则a+b和ab的值分别是()。
A. 4,4B. 4,-4C. 2,4D. 2,-45. 已知数列{an}的通项公式为an=3n-2,则数列的前10项和S10为()。
A. 145B. 150C. 155D. 1606. 在平面直角坐标系中,点P(-2,3)关于原点的对称点为()。
A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)7. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn=()。
A. na1+n(n-1)d/2B. n(a1+an)/2C. n(a1+an)/4D. n(a1+an)/38. 若函数y=f(x)在区间[0,1]上单调递增,且f(0)=1,f(1)=3,则f(0.5)的值在()。
A. 1.5~2之间B. 1~1.5之间C. 0.5~1之间D. 0~0.5之间9. 下列图形中,对称轴为x=1的是()。
A. B. C. D.10. 若等比数列{an}的公比为q,首项为a1,且a1+a2+a3=27,a2+a3+a4=81,则q 的值为()。
A. 2B. 3C. 4D. 5二、填空题(每题4分,共40分)11. 若x=2+√3,则x^2-4x+3的值为______。
12. 在△ABC中,若∠A=30°,∠B=45°,则△ABC的外接圆半径R为______。
13. 函数y=2^x在定义域内是______函数。
初三数学试卷题及答案
初三数学试卷题及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列各数中,最小的数是()A.-3B.0C.2D.5答案:A2.已知a>b,则下列不等式中成立的是()A.a3>b3B.a+3<b+3C.a3<b3D.a+3>b+3答案:A3.下列各式中,不是同类二次根式的是()A.√2B.√3C.2√2D.√8答案:B4.若a=2b,则下列等式中成立的是()A.a^2=4b^2B.a^2=2b^2C.a^2=b^2D.a^2=0答案:A5.下列函数中,是一次函数的是()A.y=2x+1B.y=x^2+1C.y=2/xD.y=|x|答案:A6.已知一组数据的平均数为5,则这组数据中至少有一个数()A.大于5B.小于5C.等于5D.无法确定答案:A7.下列各式中,不是分式的是()A.1/xB.x/2C.2/xD.x^2/2答案:B二、判断题(每题1分,共20分)1.两个负数相乘,积为正数。
()答案:正确2.若a>b,则ac>bc。
()答案:正确3.任何数的平方都是非负数。
()答案:正确4.两个同类二次根式相乘,结果仍为同类二次根式。
()答案:正确5.任何数的立方都是非负数。
()答案:错误6.两个负数相除,商为正数。
()答案:正确7.任何数的平方根都是非负数。
()答案:错误8.两个同类二次根式相除,结果仍为同类二次根式。
()答案:正确9.任何数的立方根都是非负数。
()答案:错误10.两个负数相加,和为负数。
()答案:正确三、填空题(每空1分,共10分)1.2x3=7,解得x=___.答案:52.若a=3,b=-2,则a+b=___.答案:13.若a=2,b=3,则a^2+b^2=___.答案:134.若a=4,b=-2,则ab=___.答案:65.若a=5,b=2,则a/b=___.答案:2.5四、简答题(每题10分,共10分)1.解释一次函数的定义及图像特点。
甘肃省2023年中考:《数学》考试真题与参考答案
甘肃省中考数学科目:2023年考试真题与参考答案适用:平凉、天水、武威临夏、庆阳、定西、白银目录选择题…………01页填空题…………05页解答题…………07页参考答案………13页甘肃省2023年中考:《数学》考试真题与参考答案一、选择题本大题共10小题,每小题3分,共30分,在以下每小题给出的四个选项中,只有一个正确选项。
1.9的算术平方根是( ) A.3± B.9± C.3D.3- 2.若32a b=,则ab =( ) A.6 B.32C.1D.233.计算:()22a a a +-=( ) A.2 B.2a C.22a a +D.22a a -4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为( ) A.2- B.1-C.12-D.25.如图,BD 是等边ABC △的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=( )A.20︒B.25︒C.30︒D.35︒ 6.方程211x x =+的解为( ) A.2x =- B.2x = C.4x =-D.4x =7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为( )A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( ) 年龄范围(岁)人数(人)90-91 2592-93 94-95 96-97 11 98-99 10 100-101 mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92-93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96-97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”。
四川省成都市中考数学试题及答案
精品基础教育教学资料,仅供参考,需要可下载使用!成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( ) (A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A) 34° (B) 56°(C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 <0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()302162sin302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
初三数学试卷带答案解析
初三数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B. C. D.2.下列函数的图像在每一个象限内,值随值的增大而增大的是A. B. C. D.3.将抛物线y=3x2+6经过平移后,抛物线上的点(0,6)平移到点(2,9),那么平移后的抛物线解析式为A.y=3(x-2)2+9 B.y=3(x+2)2+9 C.y=3x2-5 D.y=3(x-2)2-94.已知M、N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数的图象上,设点M的坐标为(a,b),则二次函数()A.有最小值,且最小值是B.有最大值,且最大值是C.有最大值,且最大值是D.有最小值,且最小值是5.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2 D.y=2(x+3)26.等腰三角形底边长为10㎝,周长为36cm,那么底角的余弦等于().A. B. C. D.7.如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=50°,则∠A的度数是().A. B. C. D.8.如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是【】A.2 B.3 C.4 D.59.某电视台“走基层”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是【 】A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后4.5h 到达采访地10.如图,在△OAB 中,C 是AB 的中点,反比例函数y= (k >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为( )A .2B .4C .8D .16二、判断题11.解不等式组,并把它的解集在数轴上表示出来.12.如果y 是x 的反比例函数,那么当x 增大时,y 就减小13.课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0).(1)△A 1OB 1的面积是 ; A 1点的坐标为( , );B 1点的坐标为 ( , );(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA 于D ,O′A′交轴于E .此时A′、O′和B′的坐标分别为(1,3)、(3,-1)和(3,2),且O′B′ 经过B 点.求旋转到90°时重叠部分四边形CEBD 的面积; (3)求:①△AOB 外接圆的半径等于 ;②在(2)的条件下,四边形CEBD 的外接圆的周长等于 .14.数学活动课上,老师出示了一个问题:如图1,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC .现将△ABC 与△DEF 按如图所示的方式叠放在一起,现将△ABC 保持不动, △DEF 运动,且满足点E 在BC 边从B 向C 移动(不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M .求证:△ABE ∽△ECM . (1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF 绕点E 按逆时针旋转, DE 、EF 分别交线段AB 、AC 边于点N 、M ,连接MN ,如图2,当EB=EC 时,小明猜想△NEM 与△ECM 相似.小明的猜想正确吗?请你作出判断,并说明理由.(3)在(2)的条件下,以E 为圆心,作⊙E ,使得AB 与⊙E 相切,请在图3中画出⊙E ,并判断直线MN 与⊙E 的位置关系,说明理由.15.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.评卷人得分三、填空题16.若两个相似三角形的周长比是4:9,则对应角平分线的比是______.17.正六边形的内角和为▲度.18.已知关于的一元二次方程的一个根是1,写出一个符合条件的方程:19.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;……按照这样的规律进行下去,点An的坐标为.20.a是方程x2-x-1=0的根,则2a2-2a+5=▲.评卷人得分四、计算题21.化简:.22.计算:.五、解答题23.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)请你通过计算说明△ABC的形状为___ _.;(2)画线段AD∥BC且使AD =BC,连接CD.请你判断四边形ABCD的形状,并求出它的面积;(3)若E为AC中点,则sin∠ABE=_______,cos∠CAD=____.24.已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.(1)求证:△ABE≌△FCE ;(2)若BC⊥AB,且BC=16,AB=17,求AF的长.参考答案1 .D.【解析】试题分析:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=,故选D.考点:三角形的外接圆与外心;等腰三角形的性质.2 .D【解析】解:A、k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.3 .A.【解析】试题分析:根据抛物线上的点(0,6)平移到点(2,9),可得抛物线右移2,上移3个单位,根据平移规律,可得答案.试题解析:抛物线y=3x2+c经过平移后,抛物线上的点(0,6),c=6抛物线上的点(0,6)平移到点(2,9),∴抛物线右移2,上移3个单位,将抛物线y=3x2+c经过平移后抛物线的解析式为y=3(x-2)2+9,故选A.考点:二次函数图象与几何变换.4 .A【解析】略5 .A.【解析】试题分析:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.考点:二次函数图象与几何变换.6 .A【解析】试题分析:过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=.故选A.考点:本题考查的是解直角三角形点评:解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年松江区初中毕业学业模拟考试数学参考答案及评分标准
2018.4
一、选择题
1、D ;
2、C ;
3、B ;
4、D ;
5、A ;
6、A 二、填空题
7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0;
13、
51; 14、5; 15、8; 16、4; 17、31
32+; 18、52 三、解答题
19.解:原式=13133)32(322-++---………………………………5分 =734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分
)3(2)3(2942
--++-=x x x x …………………………………………2分
整理得:0342
=+-x x …………………………………………………2分
解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分 所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点
∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴42
1
==
AC EF ………………………………………3分 又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB
∵2tan ==
∠BF
AF
B ,∴22=BF ,∴102=AB ……………………3分 22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分
(4)5000………………3分
23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD
∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分
∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF
∴四边形DECF 是平行四边形………………………………………………2分
∵CE 平分∠BCD 、CF 平分∠GCD
∴DCG DCF BCD DCE ∠=∠∠=
∠2
1
,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)2
1
(21DCG BCD DCF DCE ………………………2分
即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分
24.解:(1)因为直线34
3
+-=x y 分别与x 轴、y 轴交于点A 和点B .
由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42
中,得
⎩⎨
⎧=++=043c a a c , 解得⎪⎩
⎪
⎨⎧-==533
a c …………………………………2分 ∴这个二次函数的解析式为35
12
5
32
++
-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )5
27,2( ………………………………1分
(2)设二次函数图象的对称轴与直线34
3
+-=x y 交于E 点,与x 轴交于F 点
把2-=x 代入34
3
+-=x y 得,
23=y , ∴)23,2(E ,∴1039
23527=-=PE …………………………1分
∵PE//OB ,OF=AF , ∴AE BE =
∵AD ∥BP ,∴DE PE =,5
39
2==PE PD ……………………………2分
(3)∵)2
3,2(E , ∴2
5
494=+
=
OE ,∴OE ED > 设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴2
5
1039=-
r , 解得:5321=r ,572=r ……………………………3分 即圆O 的半径为
532或5
7
25.解:1(1)∵ 90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分
∵
90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分
(2)∵PDC Rt ∆中,CP DE ⊥,∴
90=∠=∠CED CDP
∴△DEC ∽△PDC ,∴
DC
PD
EC DE = ………………………………………1分 ∵△DEF ∽△CEB ,∴DC
DF
CB DF EC DE ==…………………………………1分 ∴DC
DF
DC PD =,∴DF PD =………………………………………………1分 ∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分
)10(<<x …………………………………………………………………1分
(3)∵△DEF ∽△CEB ,∴2
2
CB DF S S CE B DE F =
∆∆ (1) …………………………1分 ∵
CF DF S S CE F DE F =∆∆(2),∴(1)÷(2)得2
CB
CF
DF S S CE B cE F ⋅=∆∆ ……………1分 又∵E F C B E C S S ∆∆=4,∴4
1
2=⋅=∆∆CB CF DF S S CE B cE F ……………………………1分 当P 点在边DA 上时, 有
411)1(=⋅-x x ,解得2
1
=x ………………………………………………2分 当P 点在边DA 的延长线上时,
41
1)1(=⋅+x x ,解得2
1
2-=x ……………………………………………1分。