解三角形方法大全
(完整版)解三角形专题题型归纳
《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
解三角形公式汇总
解三角形解三角形公式汇总一、正弦定理正弦定理:公式推论1:(边化角)推论2:(角化边)题(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
型(2)asin B=2b:方法:边化角,推论1,a:b=sinA :sinB(3)3sin A=5sinB 或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA :sinB=a:b二、余弦定理公余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)式2+b2-c2=2abcosC2+c2-a2=2bccosA2+c2-b2=2accosBaba题(1)已知a,b,角C,求c 2=a2+b2-2abcosC方法:已知两边及夹角,求第三边,余弦定理 c型(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2, b2+c2-a2=2bccosA1解三角形三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC 的面积.方法:带公式题型2:已知A,a,b+c,求△ABC 的面积.方法:四、判断三角形形状题型: b cosC c cosB asin A ,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin 2A,用三角恒等变换公式求解。
注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:2。
解三角形图形类问题
解三角形图形类问题三角形是几何学中的基本形状之一,它有着丰富的性质和特点。
解三角形图形类问题是数学学习中的重要内容之一。
本文将通过实例来解释和探讨不同类型的三角形图形问题,并给出相应的解决方法。
一、等边三角形问题等边三角形是一种特殊的三角形,它的三边长度相等,三个角也都是60度。
求解等边三角形问题需要考虑到等边三角形的性质以及利用相应的公式进行计算。
实例1:已知等边三角形的周长是18cm,求其面积。
解:设等边三角形的边长为a,则根据周长的定义,有3a=18cm,解得a=6cm。
等边三角形的面积公式为S=(√3/4)a²,带入边长a=6cm,即可计算得到三角形的面积S=9√3 cm²。
二、直角三角形问题直角三角形是一种至少有一个直角的三角形,其特点是其中一边的平方等于另外两边平方的和。
求解直角三角形问题通常包括求解三角形的边长、角度、面积等。
实例2:已知直角三角形的直角边长分别为3cm和4cm,求其斜边的长度。
解:根据直角三角形的性质,设斜边长度为c,根据勾股定理,有a²+b²=c²。
代入已知的直角边长,得到3²+4²=c²,解得c=5cm。
因此,直角三角形的斜边长度为5cm。
三、等腰三角形问题等腰三角形是一种至少有两边长度相等的三角形,其特点是两个底角也相等。
求解等腰三角形问题常常需要考虑到等腰三角形的性质和相关定理。
实例3:已知等腰三角形的顶角为30度,底边长度为8cm,求其周长和面积。
解:设等腰三角形的腰长为a,根据等腰三角形的性质,有顶角的度数等于底角的度数,所以底角度数为30度。
根据三角形角度和的性质,可以得到腰角的度数为(180-30)/2=75度。
根据正弦定理,可以得到a/√3=sin75°/sin30°。
通过计算,得到a≈6.93cm。
因此,等腰三角形的周长等于2a+8=21.86cm,面积等于(1/2)×8×6.93=27.72cm²。
解三角形最全知识点总结
解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。
五类解三角形题型--新高考数学大题秒杀技巧(学生版)
五类解三角形题型解三角形问题一般分为五类:类型1:三角形面积最值问题;类型2:三角形周长定值及最值;类型3:三角形涉及中线长问题;类型4:三角形涉及角平分线问题;类型5:三角形涉及长度最值问题。
类型1:面积最值问题技巧:正规方法:面积公式+基本不等式①S=12ab sin Ca2+b2−c2=2ab cos C⇒a2+b2=2ab cos C+c2≥2ab⇒ab≤c221−cos C②S=12ac sin Ba2+c2−b2=2ac cos B⇒a2+c2=2ac cos B+b2≥2ac⇒ac≤b221−cos B③S=12bc sin Ab2+c2−a2=2bc cos A⇒b2+c2=2bc cos A+a2≥2bc⇒bc≤a221−cos A秒杀方法:在ΔABC中,已知B=θ,AC=x则:SΔABC max=AB+BC2max8⋅sin B其中AB+BCmax=2R⋅m2+n2+2mn cosθm,n分别是BA、BC的系数2R=x sinθ面积最值问题专项练习1△ABC的内角A,B,C的对边分别为a,b,c,c=2a cos C-b,c2+a2=b2+3ac,b=2.(1)求A;(2)若M,N在线段BC上且和B,C都不重合,∠MAN=π3,求△AMN面积的取值范围.2已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3c sin B =a -b cos C .(1)求B ;(2)若DC =AD ,BD =2,求△ABC 的面积的最大值.3在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =2b -c sin B +c 2sin C -sin B .(1)求A ;(2)点D 在边BC 上,且BD =3DC ,AD =4,求△ABC 面积的最大值.4△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知c =2a cos C -b ,c 2+a 2=b 2+3ac ,b =2.(1)求A ;(2)若M 是直线BC 外一点,∠BMC =π3,求△BMC 面积的最大值.5在△ABC 中,角A ,B ,C 对边分别为a ,b ,c ,(sin A +sin B )(a -b )=c (sin C -sin B ),D 为BC 边上一点,AD 平分∠BAC ,AD =2.(1)求角A ;(2)求△ABC 面积的最小值.6在①m =2a -c ,b ,n =cos C ,cos B ,m ⎳n ;②b sin A =a cos B -π6;③a +b a -b =a -c c 三个条件中任选一个,补充在下面的问题中,并解决该问题.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足.注:如果选择多个条件分别解答,按第一个解答计分.(1)求角B ;(2)若b =2,求△ABC 面积的最大值.类型2:三角形周长定值及最值类型一:已知一角与两边乘积模型第一步:求两边乘积第二步:利用余弦定理求出两边之和类型二:已知一角与三角等量模型第一步:求三角各自的大小第二步:利用正弦定理求出三边的长度最值步骤如下:第一步:先表示出周长l =a +b +c第二步:利用正弦定理a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角第三步:多角化一角+辅助角公式,转化为三角函数求最值周长定值及最值问题专项练习7在锐角三角形△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,CD 为CA 在CB 方向上的投影向量,且满足2c sin B =5CD .(1)求cos C 的值;(2)若b =3,a =3c cos B ,求△ABC 的周长.8如图,在梯形ABCD 中,AB ⎳CD ,∠D =60°.(1)若AC =3,求△ACD 周长的最大值;(2)若CD =2AB ,∠BCD =75°,求tan ∠DAC 的值.9已知△ABC的面积为S,角A,B,C所对的边为a,b,c.点O为△ABC的内心,b=23且S=3 4(a2+c2-b2).(1)求B的大小;(2)求△AOC的周长的取值范围.10在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,已知sin A-sin B3a-c=sin Ca+b.(1)求角B的值;(2)若a=2,求△ABC的周长的取值范围.11在△ABC中,角A,B,C的对边分别是a,b,c,a-ca+c+b b-a=0.(1)求C;(2)若c=3,△ABC的面积是32,求△ABC的周长.类型3:三角形涉及中线长问题①中线长定理:(两次余弦定理推导可得)+(一次大三角形一次中线所在三角形+同余弦值)如:在ΔABC与ΔABD同用cos B求ADAB2+AC2=AD2+CD22②中线长常用方法cos∠ADB+cos∠ADC=0③已知AB+AC,求AD的范围∵AB+AC为定值,故满足椭圆的第一定义∴半短轴≤AD<半长轴三角形涉及中线长问题专项练习12在△ABC中,角A,B,C的对边分别为a,b,c,且b=7,c=5.(1)若sin B=78,求cos C的值;(2)若BC边上的中线长为21,求a的值.13在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=2,b=5,c=1.(1)求sin A,sin B,sin C中的最大值;(2)求AC边上的中线长.14在△ABC中,角A,B,C所对的边分别为a,b,c,且满足3b sin A=a cos B+a.(1)求角B的值;(2)若c=8,△ABC的面积为203,求BC边上中线AD的长.15如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,sin2C=sin B,且AD 为BC边上的中线,AE为∠BAC的角平分线.(1)求cos C及线段BC的长;(2)求△ADE的面积.16在△ABC中,∠A=2π3,AC=23,点D在AB上,CD=32.(1)若CD为中线,求△ABC的面积;(2)若CD平分∠ACB,求BC的长.17在①3b=a sin C+3cos C;②a sin C=c sin B+C2;③a cos C+12c=b,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求角A;(2)若b=1,c=3,求BC边上的中线AD的长.注:若选择多个条件分别进行解答,则按第一个解答进行计分.类型4:三角形涉及角平分线问题张角定理如图,在ΔABC中,D为BC边上一点,连接AD,设AD=l,∠BAD=α,∠CAD=β则一定有sinα+βl=sinαb+sinβc三角形涉及角平分线问题专项练习18设a,b,c分别是△ABC的内角A,B,C的对边,sin B-sin Cb=a-csin A+sin C.(1)求角A的大小;(2)从下面两个问题中任选一个作答,两个都作答则按第一个记分.①设角A的角平分线交BC边于点D,且AD=1,求△ABC面积的最小值.②设点D为BC边上的中点,且AD=1,求△ABC面积的最大值.19在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且c sin B+33b cos A+B=33b.(1)求角C的大小;(2)若c=3,角A与角B的内角平分线相交于点D,求△ABD面积的取值范围.20已知△ABC的三个内角A,B,C的对边分别为a,b,c满足b cos C+c cos Bsin B+3b cos A= 0.(1)求A;(2)若c=2,a=23,角B的角平分线交边AC于点D,求BD的长.21已知△ABC的内角A,B,C的对应边分别为a,b,c,且有3cos A c cos B+b cos C+a sin A=0.(1)求A;(2)设AD是△ABC的内角平分线,边b,c的长度是方程x2-6x+4=0的两根,求线段AD的长度.22在①b sin B+c sin C=233b sin C+asin A;②cos2C+sin B sin C=sin2B+cos2A;③2b=2a cos C+c这三个条件中任选一个,补充在下面的问题中并作答.在△ABC中,内角A,B,C的对边分别为a,b,c,已知△ABC外接圆的半径为1,且.(1)求角A;(2)若AC=2,AD是△ABC的内角平分线,求AD的长度.注:如果选择多个条件分别解答,按第一个解答计分.类型5:三角形涉及长度最值问题秒杀:解三角形中最值或范围问题,通常涉及与边长常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值三角形涉及长度最值问题专项练习23设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为34c 2-a 2-b 2 .(1)求C ;(2)延长BC 至D ,使BD =3BC ,若b =2,求AD AB 的最小值.24在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2-b 2=ac cos B -12bc(1)求A ;(2)若a =6,2BD =DC ,求线段AD 长的最大值.25锐角△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos A sin B +π3 .(1)求A ;(2)若b +c =6,求BC 边上的高AD 长的最大值.26在△ABC中,角A,B,C的对边分别是a,b,c,a sin B+C=b-csin B+c sin C.(1)求A;(2)若D在BC上,a=2,且AD⊥BC,求AD的最大值.27记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为312b2.(1)若A=π6,求sin B sin C;(2)求a2+c2ac的最大值.。
完整版)解三角形知识点归纳总结
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
专题训练(八)解直角三角形常见的七种方法
专题训练(八) 解直角三角形常见的七种方法►方法一已知两边解直角三角形1.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下面的条件解直角三角形.(1)b=6,c=2 2;(2)a=4,b=4 3.2.如图8-ZT-1,已知AD为△BAC的角平分线,且AD=2,AC=3,∠C=90°,求BC的长及AB的长.图8-ZT-1►方法二已知一边和一个锐角解直角三角形3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)∠A=60°,a=6;(2)∠A=30°,b=10 3.4.已知:如图8-ZT -2,在Rt △ABC 中,∠C =90°,AC =3,D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长.(结果保留根号)图8-ZT -2► 方法三 已知一边和一锐角的三角函数值解直角三角形5.2018·自贡改编如图8-ZT -3,在△ABC 中,CH ⊥AB 于点H ,BC =12,tan A =34,∠B =30°;求AC 和AB 的长.图8-ZT -36.如图8-ZT -4,在△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 的中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长; (2)求cos ∠DBE 的值.图8-ZT -4►方法四“化斜为直法”解三角形7.如图8-ZT-5,在△ABC中,∠A=30°,∠B=45°,AC=2 3.求AB的长.图8-ZT-58.如图8-ZT-6,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数及AB的长;(2)求tan∠CDB的值.图8-ZT -6► 方法五 “参数法”解直角三角形9.2018·马鞍山一模如图8-ZT -7,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,E 是AB的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.图8-ZT -7► 方法六 “等角代换法”解直角三角形10.2018·当涂县六校联考如图8-ZT -8,在四边形ABCD 中,AC ,BD 是它的对角线,相交于点O ,∠ABC =∠ADC =90°,∠BCD 是锐角,BD =BC .求证:sin ∠BCD =BD AC.图8-ZT -8► 方法七 “等比代换法”解直角三角形11.如图8-ZT -9所示,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点B ,A ,与反比例函数的图象交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO =12,OB =4,OE =2.(1)求该反比例函数的表达式;(2)求直线AB对应的函数表达式.图8-ZT-9教师详解详析1.解:(1)在Rt △ABC 中,由勾股定理,得a =c 2-b 2=8-6= 2. ∵tan B =b a =62=3,∴∠B =60°,∴∠A =90°-∠B =30°.(2)∵在△ABC 中,∠C =90°,a =4,b =4 3, ∴c =a 2+b 2=8.∵sin A =a c =48=12,∴∠A =30°,∴∠B =90°-∠A =60°.2.解:∵AD =2,AC =3,∠C =90°, ∴cos ∠CAD =AC AD =32,∴∠CAD =30°.∵AD 为△BAC 的角平分线, ∴∠BAC =2∠CAD =60°,∴BC =AC ·tan ∠BAC =3×tan60°=3×3=3. ∵△ABC 是直角三角形,∴AB =BC 2+AC 2=9+3=2 3.3.解:(1)∠B =90°-∠A =90°-60°=30°. ∵sin A =a c ,∴c =6sin60°=632=4 3.∵sin B =bc,∴b =4 3×sin30°=4 3×12=2 3.(2)∠B =90°-∠A =90°-30°=60°. ∵tan A =ab,∴a =10 3×tan30°=10 3×33=10. ∵sin A =a c ,∴c =10sin30°=1012=20.4.解:在Rt △ADC 中,∵sin ∠ADC =ACAD ,∴AD =AC sin ∠ADC =3sin60°=2,∴BD =2AD =4. ∵tan ∠ADC =ACDC ,∴DC =AC tan ∠ADC =3tan60°=1,∴BC =BD +DC =5.在Rt △ABC 中,AB =AC 2+BC 2=2 7,∴△ABC 的周长=AB +BC +AC =2 7+5+ 3. 5.解:在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH =BC 2-CH 2=6 3.在Rt △ACH 中,tan A =34=CHAH ,∴AH =8,∴AC =AH 2+CH 2=10,6.解:(1)在△ABC 中,∵∠ACB =90°, ∴sin A =BC AB =45.又∵BC =8,∴AB =10.∵D 是AB 的中点,∴CD =12AB =5.(2)在Rt △ABC 中,∵AB =10,BC =8, ∴AC =AB 2-BC 2=6.∵D 是AB 的中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425.7.解:过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°. ∵∠B =45°, ∴∠BCD =∠B =45°, ∴CD =BD .∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3,答:AB 的长是3+ 3.8.解:(1)如图,过点C 作CE ⊥AB 于点E .设CE =x .在Rt △ACE 中,∵tan A =CE AE =12,∴AE =2x ,∴AC =x 2+(2x )2=5x , ∴5x =3 5,解得x =3,∴CE =3,AE =6.在Rt △BCE 中,∵sin B =22,∴∠B =45°, ∴△BCE 为等腰直角三角形, ∴BE =CE =3,∴AB =AE +BE =9. (2)∵CD 是边AB 上的中线, ∴BD =12AB =4.5,∴DE =BD -BE =4.5-3=1.5, ∴tan ∠CDE =CE DE =31.5=2,即tan ∠CDB 的值为2. 9.解:∵AC ⊥BD , ∴∠ACB =∠ACD =90°. ∵E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD=2, ∴AC =4x .在Rt △ACB 中,由勾股定理,得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=2 5x =2 5×25=4 55.10.证明:如图,过点B 作AD 的垂线BE 交DA 的延长线于点E ,延长CB 与DA 交于点F .∵∠ABC =∠ADC =90°,∴∠ADC +∠ABC =180°,∠FBA =∠FDC , ∴∠BCD +∠BAD =180°, ∠EAB =∠BCD .∵∠F =∠F ,∠FBA =∠FDC , ∴△FBA ∽△FDC ,∴FB FD =F AFC ,∴FB F A =FD FC. ∵∠F =∠F ,∴△FBD ∽△F AC ,∴∠FDB =∠BCA . ∵∠BED =∠ABC =90°, ∴△BED ∽△ABC ,∴BD AC =BEAB=sin ∠EAB =sin ∠BCD , 即sin ∠BCD =BDAC.11.解:(1)∵OB =4,OE =2, ∴EB =OB +OE =6. ∵tan ∠ABO =AO OB =12=CEEB ,∴CE =3,AO =2,∴A (0,2),B (4,0),C (-2,3). 设反比例函数的表达式为y =kx .∵点C 在反比例函数的图象上, ∴将点C (-2,3)代入,得k =-6, 即反比例函数的表达式为y =-6x.(2)设直线AB 对应的函数表达式为y =k 1x +b .将A (0,2),B (4,0)代入y =k 1x +b ,可得b =2,k 1=-12,∴直线AB 对应的函数表达式为y =-12x +2.。
解三角形-公式汇总
题型: b cosC c cos B a sin A ,判断三角形形状 方法 1:角化边 公式:sinA:sinB:sinC=a:b:c 或 结论:
方法 2:边化角 公式:a:b:c = sinA:sinB:sinC 将原式转化为 sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。 注: 三角形内常见角度转化:
型 (2)已知 a:b:c=1:2: ,求 cosB
方法:已知三边求角,余弦定理推论 1,
(3)已知
,求 cosA
方法:已知三边平方关系,余弦定理推论 2,b2+c2-a2=2bccosA1三、求三角形面积
公式:
题型 1:已知 a,b,c,A 求△ABC 的面积. 方法:带公式 题型 2:已知 A,a,b+c,求△ABC 的面积. 方法:
一、正弦定理 公 正弦定理: 式
推论 1:(边化角)
解三角形 公式汇总
解三角形
推论 2:(角化边)
题 (1)已知 sinB 求 B:一题多解型 判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
型 (2)asin B=2b: 方法:边化角,推论 1,a:b=sinA:sinB
(3)3sin A=5sinB 或 sinA:sinB:sinC=1:2:3 方法:角化边,推论 2,sinA:sinB=a:b
五、解三角形应用举例
仰角: 俯角: 坡度:
2
解三角形
二、余弦定理
公
余弦定理:
推论 1:
(已知两边及夹角,求第三边) (已知三边,求角)
式
推论 2: (三边的平方关系)
a2+b2-c2=2abcosC b2+c2-a2=2bccosA a2+c2-b2=2accosB
(完整版)解三角形公式汇总
解三角形公式汇总一、正弦定理公式正弦定理:推论1:(边化角)推论2:(角化边)题型(1)已知sinB求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
(2)asin B=2b:方法:边化角,推论1,a:b=sinA:sinB(3)3sin A=5sinB或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA:sinB=a:b二、余弦定理公式余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)a2+b2-c2=2abcosCb2+c2-a2=2bccosAa2+c2-b2=2accosB题型(1)已知a,b,角C,求c方法:已知两边及夹角,求第三边,余弦定理c2=a2+b2-2abcosC (2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2,b2+c2-a2=2bccosA三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC的面积.方法:带公式题型2:已知A,a,b+c,求△ABC的面积.方法:四、判断三角形形状题型:cos cos sin+=,判断三角形形状b Cc B a A方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。
注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:。
解三角形方法与技巧例题和知识点总结
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
解三角形常见题型及技巧
解三角形常见题型及技巧1.正弦定理 a sin A =b sin B =c sin C=2R 其中2R 为△ABC 外接圆直径。
变式1:a =2R sin A ,b =2R sin B ,c =2R sin C 。
变式2:sin 2a A R =,sin 2b B R =,sin 2c C R= 变式3:a ∶b ∶c =sin A ∶sin B ∶sin C 。
变式4:R CB A cb a C Ac a C B c b B A b a A a 2sin sin sin sin sin sin sin sin sin sin =++++=++=++=++= 2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C 。
(边换角后)sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。
变式1:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。
变式2:a 2=(b +c )2-2b c (1+cos A )(题目已知b +c ,bc 或可求时常用) 3.解三角形(知道三个元素,且含有边)(1)已知三边a ,b ,c 或两边a ,b 及夹角C 都用余弦定理(2)已知两边a ,b 及一边对角A,一般先用正弦定理,求sin B ,sin B =b sin Aa 。
(3)已知一边a 及两角A ,B (或B ,C )用正弦定理(已知两角,第三角就可以求)。
4.三角形常用面积公式(1)S =12a ·h (2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R (3)S =12r (a +b +c )(r 为内切圆半径)5.在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。
解三角形知识点总结
解三角形知识点总结解三角形向来是数学中的一个考点,那么相关的解三角形知识点又有什么呢?下面是推荐给大家的解三角形知识点总结,希望能带给大家帮助。
解三角形知识点总结解三角形定义:一般地,高中历史,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做解三角形。
主要方法:正弦定理、余弦定理。
解三角形常用方法:已知一边和两角解三角形:已知一边和两角(设为b、A、B),解三角形的步骤:2.已知两边及其中一边的对角解三角形:已知三角形两边及其中一边的对角,求该三角形的其他边角时,首先必须判断是否有解,例如在中,已知,问题就无解。
如果有解,是一解,还是两解。
解得个数讨论见下表:3.已知两边及其夹角解三角形:已知两边及其夹角(设为a,b,C),解三角形的步骤:4.已知三边解三角形:已知三边a,b,c,解三角形的步骤:①利用余弦定理求出一个角;②由正弦定理及A +B+C=π,求其他两角.5.三角形形状的判定:判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形,要特别注意等腰直角三角形与等腰三角形或直角三角形的区别,依据已知条件中的边角关系判断时,主要有如下两条途径:①利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;②利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数的恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B +C=π这个结论,在以上两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.6.解斜三角形应用题的一般思路:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如坡度、仰角、俯角、视角、象限角、方位角、方向角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要算法简练,计算准确,最后作答,。
解三角形最值问题方法总结
解三角形最值问题方法总结
解三角形最值问题是高中数学中的一个重要部分,对于学生来说也是比较难掌握的一种题型。
在解题过程中,我们可以采用以下几种方法来帮助我们更好地解决这类问题。
第一种方法是利用勾股定理来解题。
当我们在解题过程中遇到一组已知的直角三角形时,可以利用勾股定理来求出未知边的长度。
在此基础上,我们可以进一步求出三角形的周长、面积等相关值。
第二种方法是应用正弦、余弦、正切等三角函数来解题。
当我们在解题过程中遇到一组已知三角形的一个角和一个边长时,可以利用三角函数的定义式求出其他未知量的值。
第三种方法是利用面积公式来解题。
当我们在解题过程中遇到一组已知三角形的底边和高时,可以利用面积公式求出三角形的面积。
在此基础上,我们可以进一步求出周长、角度等相关值。
以上就是解三角形最值问题的三种常用方法。
在实际解题过程中,我们可以结合具体题目的特点灵活运用这些方法,以便更好地解决问题。
- 1 -。
(完整版)解三角形完整讲义
正余弦定理知识要点:3、解斜三角形的常规思维方法是:(1)已知两角和一边(如 A 、 B 、 C ),由 A+B+C = π求 C ,由正弦定理求 a 、b ; (2)已知两边和夹角(如 a 、b 、c ),应用余弦定理求 c 边;再应用正弦定理先求较短边所 对的角,然后利用 A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如 a 、b 、A ),应用正弦定理求 B ,由 A+B+C = π求 C , 再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边 a 、b 、c ,应余弦定理求 A 、B ,再由 A+B+C = π,求角 C 。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定 理及几何作图来帮助理解” 。
6、已知三角形两边 a,b,这两边夹角 C ,则 S =1/2 * absinC7、三角学中的射影定理:在△ ABC 中, b a cosC c cosA ,⋯8、两内角与其正弦值:在△ ABC 中, A B sin A sinB ,例题】在锐角三角形 ABC 中,有 (A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinA正弦定理专题:公式的直接应用1、已知 △ ABC 中, a2,b 3, B 60o ,那么角 A 等于( )A . 135oB . 90oC .45oD .30o2、在△ ABC 中, a = 2 3 ,b = 2 2 , B = 45°,则 A 等于( C )A .30°B . 60°C .60°或 120°D . 30°或 150°3、△ABC 的内角 A ,B ,C 的对边分别为 a , b ,c ,若 c 2,b 6,B 120o ,则 a1、 正弦定理a sin Ab sin B 2R 或变形: a:b:c sinCsin A :sin B :sin C .2a b 22c 2bc cos AcosA2、余弦定理:b 22a 2 c 2accosB 或 cosB2cb 2 2 a 2ba cosCcosCb 22c 2 a2bc222a cb 22ac222b 2a c2abB )B . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA9、三角形内切圆的半径:2S bc,特别地, r 直a b c 斜616、已知 ABC 的内角 A , B ,C 所对的边分别为 a ,b ,c ,若sin A ,b3sinB ,33则 a 等于 . ( 3 )336 12 6,12 6 24)2、已知 △ ABC 的周长为 2 1,且sinA sinB 2sinC .(1)求边 AB 的长;1(2)若 △ ABC 的面积为 sin C ,求角 C 的度数.专题:三角形个数4、已知△ ABC中,A 30o , C 105o , b 8,则 a 等于(B )A . 4B.4 2C.4 3D.4 55、在△ ABC 中,a=10,B=60°,C=45° ,则 c 等于 ( B)A . 10 3B . 10 3 1C . 3 1D . 10 3C . 3D . 2等于( )A . 6B .27、△ ABC 中, B 45o,C60o , c 1,则最短边的边长等于(B.3: 2两部分,则 cosA ( C )1 13 A .B .C .324cos2Acos2B119、在△ ABC 中,证2222ab 2a 2b 2D .0证明:cos2Acos2B 1 2sin 2 Ab 21 2sin2 Bb 21 1 sin2 A sin 2 B 222 2 2a b a b由正弦定理得:sin 2 Aa 22sinb 2cos2A 2a专题:两边之和1、在△ ABC 中,A =60°, B =45°, cos2B b 21b 2ab 12, a =;b = .8、△ ABC 中,A:B1: 2,C 的平分线 CD 把三角形面积分成1、△ ABC中,∠ A=60°, a= 6 , b=4, 那么满足条件的△ ABC ( C ) A.有一个解 B.有两个解C.无解D.不能确定2、Δ ABC中,a=1,b= 3 , ∠ A=30° ,则∠ B等于( B )A.60°B.60°或120° C.30°或150° D.120°3、在△ ABC 中,根据下列条件解三角形,则其中有两个解的是( D )A.b = 10,A = 45°, B = 70°B.a = 60,c = 48,B = 100°C.a = 7,b = 5,A = 80°D.a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b= 2 ,∠ A=30°专题:等比叠加D. 32专题:变式应用1、在△ ABC中,若∠ A:∠ B:∠C=1:2:3,则a : b : c 1: 3:22、已知△ABC中,a∶b∶c=1∶3 ∶2,则A∶B∶C等于( A )A.1∶2∶3B.2∶3∶1C.1:3:2D.3:1:23、在△ ABC 中,周长为7.5cm ,且sinA :sinB:sinC=4:5:6,下列结论:① a:b:c4:5:6② a:b:c 2: 5 : 6 ③a2cm,b 2.5cm,c 3cm④ A: B:C 4:5:6其中成立的个数是( C )A.0 个B. 1 个C.2个D.3个5、C.a=1,b=2,∠ A=100°C.b=c=1, ∠B=45°在△ ABC中,a=12,b=13,C=60°,此三角形的解的情况是(A.无解B.一解C.二解B)D.不能确定6、满足A=45 ,c= 6 ,a=2 的△ ABC 的个数记为m, 则 a m 的值为( A )7、8、A.4 B.2 C.1 D.不定已知△ ABC 中,a181,b 209,A 121 ,则此三角形解的情况是无解在△ ABC中,已知50 3 ,c 150 ,B 30o,则边长a。
数学解三角形技巧大全
数学解三角形技巧大全
解三角形是数学中的重要内容,以下是解三角形的一些常见技巧和方法:
1. 三角函数法:利用正弦、余弦、正切等三角函数的定义和性质,根据已知的两个角或边长求解第三个角或边长。
2. 面积法:利用三角形面积公式,即1/2×底边×高,求解三角形的各个边长和角度。
3. 直角三角形法:利用直角三角形中勾股定理和正弦、余弦、正切等三角函数的关系,求解三角形的各个边长和角度。
4. 正弦定理和余弦定理:利用正弦定理和余弦定理,可以求解三角形的各个边长和角度。
5. 海龙公式:利用海龙公式,即S=sqrt[p(p-a)(p-b)(p-c)],其中S为三角形的面积,a、b、c为三角形的边长,p为半周长,可以求解三角形的各个边长和角度。
以上是解三角形的常见方法和技巧,可以根据具体题目的情况选择合适的方法进行求解。
高中数学——解三角公式
1解三角形 公式汇总一、正弦定理二、余弦定理公式正弦定理:推论1:(边化角)推论2:(角化边)题型(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
(2)asin B =2b:方法:边化角,推论1,a :b=sinA :sinB(3)3sin A =5sinB 或 sinA:sinB:sinC=1:2:3 方法:角化边,推论2,sinA :sinB=a :b公式余弦定理: (已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)a 2+b 2-c 2=2abcosC b 2+c 2-a 2=2bccosA a 2+c 2-b 2=2accosB题型(1)已知a ,b ,角C,求c方法:已知两边及夹角,求第三边,余弦定理c 2=a 2+b 2-2abcosC(2)已知a :b :c=1:2:,求cosB 方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2,b 2+c 2-a 2=2bccosA2三、求三角形面积公式:题型1:已知a ,b ,c ,A 求△ABC 的面积. 方法:带公式题型2:已知A ,a ,b +c ,求△ABC 的面积. 方法:四、判断三角形形状题型:cos cos sin b C c B a A +=,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC +sinCcosB=sin 2A ,用三角恒等变换公式求解。
注:三角形内常见角度转化:。
解三角形公式整理
解三角形公式1、内角和: 180=++C B A ;1800,1800,1800<<<<<<C B A2、(1))(180C B A +-= ;)(180C A B +-= ;)(180B A C +-= ;(2))sin(sin C B A +=;)sin(sin C A B +=;)sin(sin B A C +=;)cos(cos C B A +-=;)cos(cos C A B +-=;)cos(cos B A C +-=;3、(1)2902C B A +-= ;2902C A B +-= ;2902B A C +-= ; (2)2cos 2sin C B A +=;2cos 2sin C A B +=;2cos 2sin B A C +=; 2sin 2cos C B A +=;2sin 2cos C A B +=;2sin 2cos B A C +=; 4、两边之和大于第三边,两边之差小于第三边;5、大边对大角,大角对大边;6、正弦定理:R Cc B b A a 2sin sin sin ===(R 指三角形外接圆半径) ((1) 解三角形:①已知两边和其中一边的对角;②已知两角和一边;(2) 注意已知两边和其中一边的对角解三角形有一解、两解及无解情形) 变形:C R c B R b A R a sin 2,sin 2,sin 2⋅=⋅=⋅=C B A c b a sin :sin :sin ::=asinB=bsinA ,bsinC=csinB ,asinC=csinAsinA =R a 2,sinB =R b 2,sinC =Rc 2 7、余弦定理: 变形:A bc c b a cos 2222-+=; bc a c b A 2cos 222-+=; B ca a c b cos 2222-+=; ca b a c B 2cos 222-+=; C ab b a c cos 2222-+=; ab c b a C 2cos 222-+=; sin 2A =sin 2B+sin 2C-2sinBsinCcosA ;tanA+tanB+tanC= tanA ×tanB ×tanC(解三角形①已知两边一夹角;②已知三边)8、已知形如b a +或b a -,由ab b a b a ab b a b a 2)(,2)(22222+-=+-+=+变形; 如C ab ab b a C ab b a c cos 22)(cos 22222--+=-+=9、S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2 =))()((c p b p a p p --- =21(a+b+c)r=pr (其中)(21c b a p ++=, r 为三角形内切圆半径) ABC ∆中,若向量CB a =,CA b =,则2221()2ABCS a b a b ∆=-⋅. 10、判定三角形形状时的常用结论有:① 设a 、b 、c 是△ABC 的角A 、B 、C 的对边,⑴ 若a 2+b 2 = c 2,则C=90°;⑵ 若a 2+b 2>c 2,则C <90°;⑶ 若a 2+b 2<c 2,则C >90°;⑷ 若sin2A=sin2B ,则2A=2B 或2A+2B=π。
解三角形的技巧与方法归纳
第1页,-共1页 解三角形的 【2 】技能与办法归纳一.常见的常识1.C B A sin )sin(=+,C B A cos )cos(-=+,2cos )2sin(C B A =+. 2.323sin π=⇒=A A 或32π=A (两解);623cos π=⇒=A A (一解). 3.降幂公式:22cos 1cos 2A A +=,22cos 1sin 2A A -=; 合一公式:)sin(cos sin 22ϕ++=+A b a A b A a .4.b a B A >⇔>B A B A cos cos sin sin <⇔>⇔.5.此类题型常消失:已知)3sin(2)(π+=A A f ,30π<<A ,求)(A f 得规模. 我们常把换元法与数形结正当一升引!二.化简所给的三角等式时的办法与留意1.办法:边化角或角化边;但有时也可能要边角混杂(此情形有但很少).2.转化办法无非运用三个公式:正弦定理.余弦定理.面积公式.3.细心化简,切不可随便在等式双方同除一个不肯定是否不为0的式子.4.若化成角时,要留意π=++C B A 的运用(消元).三.求最值或规模的问题,一般是化成某个角的三角函数,并精确给出角的规模. 举例:在锐角三角形ABC 中,3π=B ,求A A cos 3sin 3+得规模.四.作图,把已知前提都标在图上,剖断所给前提的类型选择正弦或余弦定理.1.一般地,是SSA,SAS,SSS 时常用余弦定理;是AAS 或SSA 常用正弦定理.2.有时也可以联合三角形的其他几何性质:如:已知2=a ,3π=A ,可以画出其外接圆,点A 在优弧BC 上移动.如:作某一边上的高后,可以用平面几何常识求解.3.三角形的中线性质:三角形ABC 中,AD 是BC 边上的中线, 则)(2)2(2222AC AB BC AD +=+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅰ)求A的大小;(Ⅱ)求 的最大值
.
(天津·17)在△ABC中,BC= ,AC=3,sinC=2sinA.( I )求AB的值;( II )求 的值。
(安徽·16)在△ABC中,sin(C-A)=1 , sinB= . I )求sinA的值;( II )设AC= ,求△ABC的面积。
3.如上图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南 的方向上,行驶5km后到达B处,测得此山顶在东偏南 的方向上,仰角为 ,求此山的高度CD.
4. (2009·辽宁卷·17)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离。(计算结果精确到0.01km, 1.414, 2.449)
且
(1)求 的大小;(2)求 的最大值
【例】在 中,角 的对边分别为 ,,
(1)求 的大小;(2)求 的范围
【例】(11全国2)设 的内角 的对边分别为 ,已知 ,
,求
【11江西文】在 中,角 的对边分别是 ,已知
(1)求 的值;(2)若 , ,求边 的值
解三角形
正余弦定理的应用:
1.正弦定理适用于有两个角存在的情况,下图是“边边角”的情况:(a<bsinA无解)
余弦定理: , 其变式为:
2.余弦定理及其变式可用来解决以下两类三角形问题:
(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;
(2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;
(3)在 中,若 , , ,求
【例】(1)在 中,若 , , ,则 中最大角的余弦值为________
(2)(10上海理)某人要制作一个三角形,要求它的三条高的长度分别为 ,则( )
A.不能作出这样的三角形 B.作出一个锐角三角形
C.作出一个直角三角形 D.作出一个钝角三角形
(3)以 为三边组成一个锐角三角形,则 的取值范围为__________
(1)若 为钝角或直角,则当 时, 有唯一解;否则无解。
(2)若 为锐角,则当 时,三角形无解;
当 时,三角形有唯一解;
当 时,三角形有两解;
当 时,三角形有唯一解
实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定式
1.余弦定理:在 中,角 的对边分别为 ,则有
三:解三角形综合问题
高考题
(湖北·3) 在△ABC中,a=15,b=10 ,∠A= ,则cosB=。
(山东·15)在△ABC中,角A,B,C所对的边分别为a,b,c,若a= ,b=2,sinB+cosB= ,则角A的大小为。
(广东· 11) 已知a ,b ,c分别是△ 的三个内角 所对的边.若 =1, = , ,则sinC=。
解三角形
解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求
其他元素的过程叫作解三角形。
以下若无特殊说明,均设 的三个内角 的对边分别为 ,则有以下关系成立:
(1)边的关系: , , (或满足:两条较短的边长之和大于较长边)
(2)角的关系: , , , ,
, , ,
一:正弦定理及其应用
1.正弦定理: ,其中 为 的外接圆半径
2.正弦定理适用于两类解三角形问题:
(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;
(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解
的可能),再计算第三角,最后根据正弦定理求出第三边
【例】在 中, , , ,求 的值和 的面积
【例】在 中,角 的对边分别为 ,已知 ,
(1)若 的面积等于 ,求 ;
(2)若 ,求 的面积
【例5】(09江西理)在 中,角 的对边分别为 ,且 ,
(1)求 (2)若 ,求
【例】(09安徽理)在 中, ,
(1)求 的值;(2)设 ,求 的面积
【例】(10辽宁理)在 中,角 的对边分别为 ,
例:化简bcosC+ccosB=。
基本思想方法——余弦定理的配凑
例1:a2=b2+c2+bc,则A等于。
例2: ,则B等于。
基本思想方法——灵活运用
1.观查每一个已知式表达了哪些字母的关系,分析为了得到结论需要消去哪些角。
2.例:在△ABC中,sin(C-A)=1 , sinB= ,求sinA=。
3.因为 ,所以sinC中含有sinAcosB这一部分,二者可以相减。
3、在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于。
4、已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值为。
5、△ABC中,A=60°,b=1,这个三角形的面积为 ,则△ABC外接圆的直径为。
6、在△ABC中,BC=3,AB=2,且 ,A=。
3、已知△ABC中,a=10,B=60°,C=45°,则c=。
4、在△ABC中,已知 ,那么这个三角形是。
5、在 中, ,则A为。
6、在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为。
总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能
如图,在 中,已知 、 、
(3)(07天津理)在 中,若 , ,则 _____
(4)(10江苏)在锐角 中,若 ,则 _________
【例】判断满足下列条件的三角形形状
(1) ; (2) ; (3) ;
(4) ; (5) ,
综合运用
1、已知在△ABC中,c=10,A=45°,C=30°,求a、b和B。
2、在△ABC中,c=2 ,tanA=3,tanB=2,试求a、b及此三角形的面积。
(北京·15) 在△ABC中,角A, B, C的对边分别为a, b, c,B= ,cosA= ,b= .
( I )求sinC的值;( II )求△ABC的面积。
【例】(09全国2)
在 中,角 的对边分别为 、 、 , , ,求
【例】(11西城一模)在 中,角 的对边分别为 ,且 ,
(1)当 时,求角 的度数;(2)求 面积的最大值
【例1】考查正弦定理的应用
(1) 中,若 , , ,则 _____;
(2) 中,若 , , ,则 ____;
(3) 中,若 , , ,则 ____;
(4) 中,若 ,则 的最大值为_____。
基本运用
1、△A BC中,sin2A=sin2B+sin2C,则△ABC为。
2、在△ABC中,bcosA=acosB,则三角形为。
a=bsinA,一解 b sinA<a<b,两解 a=b,一解 a>b,一解
2.余弦定理应用于两种情况:
(1)已知三边求三角(2)已知两角和其中一边的对角,求其他边角
基本思想方法——边与角的转化
1.正弦定理能将两边长及其所对角的正弦进行等比例转化。例: ,求C.
2.余弦定理能将角的余弦化为边长,从而将三角问题转化为代数问题。
说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决
3.三角形的面积公式
(1) ( 、 、 分别表示 、 、 上的高);
(2)
(3) ( 为外接圆半径)
(4) ;
(5) 其中
(6) ( 是内切圆的半径, 是三角形的周长)
【例】考查余弦定理的基本应用
(1)在 中,若 , , ,求 ;
(2)在 中,若 , , ,求边 上的高 ;
基本运用
1、在△ABC中,a2=b2+c2+bc,则A等于。
2、已知△ABC的面积 ,解此三角形。
3、在△ABC中, ,求A、B、C。
4、在△ABC中,化简bcosC+ccosB=。
5、在△ABC中,化简 。
【例】考查正余弦定理的灵活使用
(1)在 中,若 ,其面积 ,则 _____
(2)在 中,若 ,则 _____
4.例1:在△ABC中,已知 ,那么△ABC一定是。
5.例2:在△ABC中, ,那么△ABC一定是。
解三角形应用题
1. 如右图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是 米, , ,求A、B两点的距离。
2.如下图,A、B两点都在河的对岸(不可到达),在河岸选取相距40米的C、D两点,测得 , , , ,求A、B两点间的距离。