解三角形的技巧与方法归纳
新高考解三角形解答题技巧
新高考解三角形解答题技巧
解三角形解答题是高考的热点题型,主要涉及正弦定理、余弦定理以及三角函数公式等知识。
以下是一些解题技巧:
1. 熟悉基础知识:解三角形的问题需要熟练掌握正弦定理、余弦定理以及三角函数公式等基础知识。
2. 审题清晰:认真审题,明确题目要求,弄清楚已知条件和未知数,再根据已知条件进行推导。
3. 善于运用三角形的性质:在解题过程中,要善于运用三角形的性质,如角平分线定理、中线定理等,这些性质可以帮助我们简化计算过程。
4. 观察三角形形状:通过已知条件和推导结果,观察三角形的形状,如直角三角形、等腰三角形等,这有助于我们找到解题的突破口。
5. 灵活运用公式:在解题过程中,要灵活运用正弦定理、余弦定理以及三角函数公式等公式,以适应不同的情况。
6. 逻辑清晰:在推导过程中,逻辑要清晰,每一步都要有明确的依据,避免出现跳跃或错误。
7. 细心计算:在计算过程中,要细心,避免因计算错误导致整个解题过程失败。
8. 多做练习:通过多做练习,可以熟悉各种题型,提高解题速度和准确性。
总之,解三角形解答题需要熟练掌握基础知识、善于运用三角形的性质和公式、逻辑清晰、细心计算等多方面的技巧。
同时,多做练习也是提高解题能力的有效途径。
解三角形的技巧与方法归纳
解三角形的技巧与方法归纳三角形是几何学中一个非常重要的图形,研究三角形的性质和解三角形的方法对于拓展数学应用和解决实际问题都有着重要的意义。
下面是关于解三角形的一些常用技巧和方法的归纳。
一、根据已知边长和角度解三角形1. 正弦定理:如果三角形的边长和夹角都已知,可以使用正弦定理来解三角形。
正弦定理可以表示为: a/sinA = b/sinB = c/sinC,其中a、b、c分别表示三角形的边长,A、B、C分别表示三角形的角度。
2. 余弦定理:如果三角形的两边和夹角或三边之间的关系已知,可以使用余弦定理来解三角形。
余弦定理可以表示为:c² = a² + b² -2abcosC,其中a、b、c分别表示三角形的边长,C表示三角形的角度。
二、根据已知边长解直角三角形1.求斜边:如果已知一个直角三角形的两个直角边,可利用勾股定理求出斜边的长度。
勾股定理可以表示为:c²=a²+b²,其中a、b分别表示直角三角形的两个直角边,c表示斜边的长度。
2.求直角边:如果已知一个直角三角形的斜边和一个直角边,可利用勾股定理求出另一个直角边的长度。
勾股定理可以表示为:a²=c²-b²或b²=c²-a²,其中a、b分别表示直角三角形的直角边,c表示斜边的长度。
三、利用特殊角度解三角形1.30-60-90三角形:当一个三角形的角度为30度、60度和90度时,称为30-60-90三角形。
在30-60-90三角形中,斜边的长度是短边的两倍,短边的长度是斜边的一半。
2.45-45-90三角形:当一个三角形的两个角度都为45度时,称为45-45-90三角形。
在45-45-90三角形中,两条直角边的长度相等,斜边的长度是直角边的根号2倍。
四、利用相似三角形解三角形1.比较边长比例:如果两个三角形的相应边长比例相等,那么这两个三角形是相似的。
解三角形的基本方法与应用知识点总结
解三角形的基本方法与应用知识点总结三角形是几何学中的重要概念,研究三角形的性质和解三角形的方法对于解决相关问题具有重要意义。
本文将总结解三角形的基本方法和应用知识点,帮助读者更好地理解和掌握相关内容。
一、三角形基本概念回顾在开始讨论解三角形的方法之前,我们先回顾一下三角形的基本概念。
三角形是由三条线段组成的图形,其中两条线段的和要大于第三条线段,这是三角形存在的必要条件。
根据角的大小,三角形可以分为直角三角形、锐角三角形和钝角三角形。
二、解三角形的基本方法1. 已知两边和夹角如果已知三角形的两边和夹角,可以使用余弦定理来求解第三边,然后利用正弦定理或余弦定理计算其他未知角度。
2. 已知三边若已知三角形的三条边的长度,可以通过余弦定理计算其中的一个角度,然后利用正弦定理或余弦定理求解其他未知角度。
3. 已知一边和两个角已知三角形的一边和两个角度,可以利用三角形内角和为180°的性质计算第三个角度,然后根据正弦定理或余弦定理求解其他未知边长或角度。
三、解三角形的应用知识点1. 三角形面积的计算已知三角形的底和高,可以利用面积公式计算三角形的面积。
面积公式为:面积 = 1/2 * 底 * 高。
2. 三角形的内切圆和外接圆三角形的内切圆是唯一与三角形的三条边都相切的圆,而外接圆则是唯一通过三角形三个顶点的圆。
这些圆与三角形的边和角度之间有一定的关系,例如内切圆的半径可以通过三角形的半周长和面积计算。
3. 三角形的相似性及比例关系如果两个三角形的对应角度相等,那么它们是相似的。
利用相似三角形的性质,我们可以得到三角形边长的比例关系,从而解决一些相关问题。
4. 三角形的中线、高线和垂心三角形的中线是连接三角形一个顶点与对边中点的线段,三角形的高线是从顶点到对边的垂线段。
垂心是三角形三条高线的交点。
这些概念与三角形的性质和解题方法密切相关。
总结:解三角形的方法涉及到三角函数和三角形的基本性质,对于解决与三角形相关的几何问题具有重要的应用价值。
三角形全等解题方法及技巧
三角形全等的解题方法及技巧如下:1. 掌握全等三角形的判定条件:全等三角形的判定条件是全等三角形的基础知识,必须熟练掌握。
2. 学会利用已知条件寻找全等三角形:根据已知条件,通过构造或变换,使两个三角形满足全等条件,从而解决问题。
3. 掌握辅助线的构造方法:在解题过程中,有时需要添加辅助线来帮助解决问题。
常见的辅助线包括中线、高线、角平分线等。
4. 学会利用全等三角形的性质:全等三角形的性质是解题的重要依据,如对应边相等、对应角相等、对应高相等、对应中线相等等。
5. 掌握一些常见的解题技巧:如利用角平分线的性质、利用高线的性质、利用中线的性质等。
6. 理解并掌握全等三角形的不同类型:全等三角形有多种类型,如SSS、SAS、ASA、AAS等。
每种类型都有其特定的判定条件,理解并掌握这些类型有助于更灵活地解决全等三角形问题。
7. 注重解题步骤和思路:在解决全等三角形问题时,要注意解题步骤和思路的清晰。
要明确问题的需求,确定所使用的判定条件和辅助线,然后逐步推导并证明。
8. 练习大量的题目:通过大量的练习,可以加深对全等三角形判定条件和性质的理解,提高解题的速度和准确性。
同时,也可以掌握一些常见的解题技巧和方法。
9. 善于总结和归纳:在解决全等三角形问题时,要及时总结和归纳所使用的判定条件、辅助线、性质和技巧。
这样可以加深对全等三角形知识的理解和记忆,并为以后解决类似问题提供帮助。
10. 保持耐心和细心:全等三角形问题有时可能会比较复杂和繁琐,需要耐心和细心地推导和证明。
在解题过程中,要注意细节,避免因为粗心大意而犯错。
总之,三角形全等的解题方法及技巧需要多练习、多总结,通过不断的实践来提高自己的解题能力。
解三角形的各种方法与注意事项
解三角形的各种方法与注意事项在几何学中,三角形是一个有着很多有趣性质的形状。
在解决三角形的问题时,我们需要了解不同的解法和注意事项,以便确保我们的解答是正确的。
本文将介绍解三角形的各种方法和注意事项。
第一种方法:正弦定理正弦定理是解三角形问题中经常使用的方法之一。
它是指在任何三角形ABC中,一条边的长度与其对应角的正弦值成比例。
公式如下: sin(A) / a = sin(B) / b = sin(C) / c在这个公式中,a、b和c是三角形的边长,A、B和C则是三角形对应的角度。
如果我们已知三角形中两个角的度数和一条边的长度,我们可以使用正弦定理来计算另外两条边的长度。
第二种方法:余弦定理余弦定理也是解决三角形问题的有效方法之一。
它指出,在任何三角形ABC中,一条边的长度和与之相邻的两个角的余弦值成反比例。
公式如下:c² = a² + b² - 2ab cos(C)根据这个公式,如果我们知道了三角形中的三条边中的两条边和这两条边之间所形成的角度,我们就可以计算第三条边的长度。
第三种方法:海伦公式海伦公式是解决三角形问题中的另一个重要工具。
它可以用来计算任何三角形的面积。
它指出,在任何三角形ABC中,如果知道了三条边的长度,可以使用以下公式来计算三角形的面积:S = √s(s-a)(s-b)(s-c)其中,S是三角形的面积,a,b和c是三角形的边长,s是周长一半(也就是三条边的和除以2)。
注意事项解决三角形问题时,我们还需要注意一些细节。
首先,我们需要确保我们选取的角是正确的。
如果我们错误地选择了一个不是对应角度的角,我们得到的结果可能是错误的。
其次,我们需要注意在使用正弦定理,余弦定理和海伦公式时单位的一致性。
我们不能同时使用英寸和厘米或者度和弧度,必须确保我们在使用相同的单位。
最后,我们需要在计算时注意精度。
如果我们使用了不够精确的坐标,我们可能会得到不准确的答案。
解三角解题方法归纳总结
解三角解题方法归纳总结在数学学科中,三角函数是一种重要的概念。
而解三角形问题,在中学数学中占据着重要的位置。
为了帮助学生更好地掌握解三角解题方法,本文将对解三角解题方法进行归纳总结。
一、正弦定理正弦定理是解决三角形中任意一角的问题时常用的方法之一。
正弦定理的表达式为:a/sinA=b/sinB=c/sinC,其中 a、b、c 代表三角形的三边的长度,A、B、C 代表对应的三个内角。
以解题中常见的“已知三边求三角形内角”问题为例,可以利用正弦定理进行求解。
首先,根据正弦定理的表达式,将已知数据代入,得到一个含有未知角度的等式。
然后,通过解等式,求得未知角度的数值。
二、余弦定理余弦定理也是解决三角形中任意一边的问题时常用的方法之一。
余弦定理的表达式为:c² = a² + b² - 2abcosC,其中 a、b、c 代表三角形的三边的长度,C 代表对应的夹角度数。
以解题中常见的“已知两边和夹角求第三边”问题为例,可以利用余弦定理进行求解。
首先,根据余弦定理的表达式,将已知数据代入,得到一个含有未知边长的等式。
然后,通过解等式,求得未知边长的数值。
三、正切函数正切函数是三角函数中的一种,解决三角形内角问题时,可以通过正切函数来求解。
正切函数的表达式为:tanθ = 对边/邻边。
以解题中常见的“已知一角和对边求邻边”问题为例,可以利用正切函数进行求解。
首先,根据正切函数的表达式,将已知数据代入,得到一个含有未知边长的等式。
然后,通过解等式,求得未知边长的数值。
四、角平分线定理角平分线定理是解决三角形内角问题时常用的方法之一。
角平分线定理指出,三角形内一条角平分线将对边分成两条线段,那么这两条线段的比等于另外两条边的比。
以解题中常见的“已知两边和其夹角,求夹角的平分线”问题为例,可以利用角平分线定理进行求解。
首先,根据角平分线定理的表达式,将已知的两边和夹角的数据代入,得到一个含有未知角度的等式。
解直角三角形的方法和技巧
解直角三角形的方法和技巧直角三角形是三角形中最为基础和重要的一类三角形,因为它具有很多特殊的性质和应用。
解直角三角形的方法和技巧在数学的学习过程中非常重要,本文将为大家介绍10条关于解直角三角形的方法和技巧,并展开详细描述。
一、勾股定理勾股定理是解直角三角形最基本的定理,也是解直角三角形的最快捷的方法。
勾股定理的公式为:a² + b² = c²。
a和b表示直角边,c表示斜边。
当已知a和b的长度时,可以通过计算c的长度来确定直角三角形的大小和形状。
勾股定理非常广泛地应用于工程、科学和数学等领域,可以帮助我们计算物体的大小、距离和位置等。
二、正弦定理正弦定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:a/sinA = b/sinB = c/sinC。
a、b、c分别表示三角形任意两边和斜边,A、B、C表示这些边对应的角度。
如果已知了两个长度和一个角度,则可以通过正弦定理计算第三个长度。
正弦定理的应用十分广泛,可以帮助我们计算三角形的任意边的长度。
三、余弦定理余弦定理也是解直角三角形的一种基本方法,它也是一个三角形中的三角函数,公式为:c² = a² + b² - 2abcosC。
a、b表示三角形中两个边的长度,c表示斜边的长度,C表示斜边对应的角度。
如果已知了两个长度和一个角度,则可以通过余弦定理计算第三个长度。
余弦定理也是应用广泛的一个数学公式,可以帮助我们计算三角形的任意边的长度。
四、正切定理正切定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:tanA = a/b或tanB = b/a。
a、b分别表示三角形中的两个直角边,A、B是它们对应的角度。
通过正切定理可以求得角度的大小或两直角边的比例。
五、特殊直角三角形的知识特殊直角三角形是指那些具有特殊边长和角度的直角三角形。
其中最为常见的是边长为3、4、5的特殊直角三角形。
解三角形题型汇总(最新人教版优质教案)( 含解析 )
解三角形图形类问题【方法技巧与总结】解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.【题型归纳目录】题型一:妙用两次正弦定理题型二:两角使用余弦定理题型三:张角定理与等面积法题型四:角平分线问题题型五:中线问题题型六:高问题题型七:重心性质及其应用题型八:外心及外接圆问题题型九:两边夹问题题型十:内心及内切圆问题【典例例题】题型一:妙用两次正弦定理例⒈(2022·全国·高三专题练习)在①cos Bcos C=-b2a+c,②sin Asin B-sin C=b+ca+c,③2S=-3BA⋅BC三个条件中任选一个补充在下面的横线上,并加以解答.在△ABC中,角A,B,C的对边分别为a,b,c且______,作AB⊥AD,使得四边形ABCD满足∠ACD=π3,AD=3,求BC的取值范围.例⒉(2020·北京·北师大二附中高三期中)如图,四边形ABCD中∠BAC=90∘,∠ABC=30∘,AD⊥CD,设∠ACD=θ.(1)若ΔABC面积是ΔACD面积的4倍,求sin2θ;(2)若∠ADB=π6,求tanθ.例⒊(江苏省南京市宁海中学2022届高三下学期4月模拟考试数学试题)在△ABC中,内角A,B,C的对边分别为a,b,c,A=150∘,点D在边BC上,满足CD=2BD,且sin∠BADb+sin∠CADc=32a.(1)求证:AD=13a;(2)求cos∠ADC.例⒋(广东省2022届高三二模数学试题)如图,已知△ABC 内有一点P ,满足∠PAB =∠PBC =∠PCA =α.(1)证明:PB sin ABC =AB sin α.(2)若∠ABC =90∘,AB =BC =1,求PC .例⒌(2022·全国·高三专题练习)如图,在梯形ABCD 中,AB ⎳CD ,AB =2,CD =5,∠ABC =2π3.(1)若AC =27,求梯形ABCD 的面积;(2)若AC ⊥BD ,求tan ∠ABD .例⒍(2022·河南安阳·模拟预测(理))如图,在平面四边形ABCD中,DC =2AD =42,∠BAD =π2,∠BDC =π6.(1)若cos ∠ABD =53,求△ABD 的面积;(2)若∠C =∠ADC ,求BC .例⒎(2019·安徽省怀远第一中学高三阶段练习(理))ΔABC的内角A,B,C的对边分别为a,b,c,设(sin A +sin B+sin C)⋅(sin A+sin B-sin C)=2sin A sin B.(1)求C;(2)若D为BC边上的点,M为AD上的点,CD=1,∠CAB=∠MB D=∠D MB.求AM.例⒏(2022·山东烟台·一模)如图,四边形ABCD中,AB2+BC2+AB⋅BC=AC2.(1)若AB=3BC=3,求△ABC的面积;(2)若CD=3BC,∠CAD=30∘,∠BCD=120∘,求∠ACB的值.例⒐(2022·全国·高三专题练习)在①AB=2AD,②sin∠ACB=2sin∠ACD,③S△ABC=2S△ACD这三个条件中任选一个,补充在下面问题中,并解答.已知在四边形ABCD中,∠ABC+∠ADC=π,BC=CD=2,且______.(1)证明:tan∠ABC=3tan∠BAC;(2)若AC=3,求四边形ABCD的面积.例⒑(2022·福建·厦门一中高一阶段练习)在平面四边形ABCD 中,∠ABC =π3,∠ADC =π2,BC =4.(1)若△ABC 的面积为33,求AC ;(2)若AD =33,∠BAC =∠DAC ,求tan ∠DAC .例⒒(2022·湖北武汉·模拟预测)如图,在平面四边形ABCD 中,∠BCD =π2,AB =1,∠ABC =3π4.(1)当BC =2,CD =7时,求△ACD 的面积;(2)当∠ADC =π6,AD =2时,求cos ∠ACD .题型二:两角使用余弦定理例⒓(2022·湖北·襄阳四中模拟预测)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D .(1)证明:AB AC=DB DC ,AD 2=AB ⋅AC -DB ⋅DC ;(2)若AD =1,A =2π3,求DB ⋅DC 的最小值.例⒔(2022·湖北武汉·二模)如图,△ABC内一点P满足PB⊥PC,AC=BP=2.(1)若AB=6,PC=2,求sin∠ACP的值;(2)若AB=5,sin∠ACP=110,求AP的长.例⒕(2022·江苏·泗阳县实验高级中学高一阶段练习)如图,在凸四边形ABCD中,已知AB=AD=4,BC=6.(1)若∠ADB=π6,C=π3,求cos∠BDC的值;(2)若CD=2,四边形ABCD的面积为4,求cos A+C的值.例⒖(2021·全国·高考真题)记△ABC是内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC 上,BD sin∠ABC=a sin C.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.例⒗(2022·全国·高三专题练习(理))如图,在△ABC中,D是AC边上一点,∠ABC为钝角,∠DBC= 90°.(1)证明:cos∠ADB+sin C=0;(2)若AB=27,BC=2,再从下面①②中选取一个作为条件,求△ABD的面积.①sin∠ABC=32114;②AC=3AD.注:若选择两个条件分别解答,则按第一个解答计分.例⒘(2022·重庆·二模)已知△ABC的外心为O,M,N为线段AB,AC上的两点,且O恰为MN中点.(1)证明:|AM|⋅|MB|=|AN|⋅|NC|(2)若|AO|=3,|OM|=1,求S△AMNS△ABC的最大值.题型三:张角定理与等面积法例⒙(广东省2022届高三三模数学试题)已知△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A= 2b+csin B+2c+bsin C.(1)求角A的大小;(2)设点D为BC上一点,AD是△ABC的角平分线,且AD=2,b=3,求△ABC的面积.例⒚(2022·湖北武汉·模拟预测)在△ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且c -b sin C =a -b sin A +sin B(1)求A ;(2)若D 为BC 上的点,AD 平分角A ,且c =32,AD =3,求BD DC.例⒛(2022·辽宁·高一期中)如图,在△ABC 中,AB =2,3sin 2B -2cos B -2=0,且点D 在线段BC 上.(1)若∠ADC =2π3,求AD 的长;(2)若BD =2DC ,sin ∠BAD sin ∠CAD=42,求△ABD 的面积.例21(2022·江苏·华罗庚中学三模)在△ABC 中,已知AB =4,AC =5,cos B =57. (1)求sin A 的值;(2)若AD 是∠BAC 的角平分线,求AD 的长.例22(2022·山东淄博·三模)已知函数f(x)=3sinωx cosωx-cos2ωx+12(ω>0),其图像上相邻的最高点和最低点间的距离为4+π2 4.(1)求函数f(x)的解析式;(2)记△ABC的内角A,B,C的对边分别为a,b,c,a=4,bc=12,f(A)=1.若角A的平分线AD交BC于D,求AD的长.例23(2022·黑龙江·哈尔滨三中高三阶段练习(理))在△ABC中,角A,B,C的对边分别是a,b,c,且2b cos C=2a+c.(1)求角B的大小;(2)若b=23,D为AC边上的一点,BD=1,且______,求△ABC的面积.①BD是∠B的平分线;②D为线段AC的中点.(从①,②两个条件中任选一个,补充在上面的横线上并作答).题型四:角平分线问题例24(2022·北京·首都师范大学附属中学三模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且3sin π6+B +sin π3-B =0.(1)求∠B 的值;(2)给出以下三个条件:条件①:a 2-b 2+c 2-3c =0;条件②a =3;条件③S △ABC =1534.这三个条件中仅有两个正确,请选出正确的条件并回答下面的问题:(i )求sin A 的值;(ii )求∠ABC 的角平分线BD 的长.例25(2022·江苏·南京师大附中模拟预测)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2c b=1+tan A tan B .(1)求角A ;(2)角A 的内角平分线交BC 于点M ,若a =47,AM =33,求sin ∠AMC .例26(2022·北京八十中模拟预测)在△ABC中,3sin B+π6=-cos B+π6.(1)求B的值;(2)给出以下三个条件:①a2-b2+c2+3c=0;②a=3,b=1;③S△ABC=1534,若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题:(i)求sin A的值;(ii)求∠ABC的角平分线BD的长.例27(2022·河南·模拟预测(理))如图,在△ABC中,D为边BC的中点,∠ACB的平分线分别交AB,AD于E,F两点.(1)证明:sin∠ABC⋅sin∠CAD=sin∠ACB⋅sin∠BAD;(2)若∠BAC=π2,sin∠ABC=23,AD=32,求DE.例28(2022·广东佛山·三模)设△ABC的内角A、B、C的对边分别为a、b、c,已知b sin A+3a cos B= 0,∠ABC的平分线交AC于点D,且BD=2.(1)求B;(2)若a=3,求b.例29(2022·山东潍坊·模拟预测)已知△ABC的内角A、B、C的对边分别为a、b、c,且△ABC的面积为3a2+b2-c24.(1)求∠C;(2)若∠A=π2,∠C的角平分线CE与边AB相交于点E,延长CE至点D,使得CE=DE,求cos∠ADB.题型五:中线问题例30(2022·广东佛山·高三期末)△ABC中,内角A,B,C所对的边分别为a,b,c,且a cos C=(2b-c) cos A.(1)求角A的大小;(2)若b=2,BC边上的中线AD=3,求△ABC的面积.例31(2022·全国·模拟预测)在△ABC中.sin A cos A-π6=34.(1)求角A;(2)若AC=8,点D是线段BC的中点,DE⊥AC于点E,且DE=334,求CE的长.例32(2022·海南海口·二模)在△ABC中,角A,B,C的对边分别为a,b,c,已知B=π3,b=75a.(1)求sin A;(2)若a=5,AB边的中点为D,求CD.例33(2022·山东·烟台二中模拟预测)设△ABC的内角A,B,C的对边分别为a,b,c,且b cos C+3c sin Ba+c=1.(1)求角B的大小;(2)设D,E分别为边AB,BC的中点,已知△BCD的周长为3+3,且AECD=192,若c<5a,求a.例34(2022·新疆克拉玛依·三模(理))在△ABC中,a,b,c分别为三个内角A,B,C的对边,若2a2=a2+c2-b21-sin B cos B.(1)求角C;(2)若c=210,sin A=1010,D为AC的中点,求BD的长度.例35(2022·湖北·模拟预测)记△ABC的内角A,B,C的对边分别为a,b,c,若b2+c2-a2=2ab sin C.(1)求角A;(2)若AB=32,AC=3,点P在线段BC上,且CP=13CB,Q是线段AC中点,AP与BQ交于点M,求cos∠A MB.例36(2022·陕西·交大附中模拟预测(理))设△ABC的内角A,B,C所对边的长分别为a,b,c,且a=b cos C+33c sin B.(1)求B;(2)若c=1,a=3,AC的中点为D,求BD的长.题型六:高问题例37(2022·河南·平顶山市第一高级中学模拟预测(理))在△ABC中,角A,B,C所对的边分别为a,b,c,且a2-b2=c a cos B-b2.(1)求角A的大小;(2)若c=8,△ABC的面积为43,求BC边上的高.例38(2022·江苏·南京市江宁高级中学模拟预测)从①A为锐角且sin B-cos C=c2-a22ab;②b=2a sin C+π6这两个条件中任选一个,填入横线上并完成解答.在三角形ABC中,已知角A,B,C 的对边分别为a,b,c,.(1)求角A;(2)若b=34c且BC边上的高AD为23,求CD的长.例39(2022·北京房山·二模)在△ABC中,a cos B+12b=c,b=2.(1)求∠A;(2)再从下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,求BC边上的高.条件①:cos B=-23;条件②:sin B=22;条件③:△ABC的面积为3+32.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.例40(2022·山东青岛·一模)在△ABC中,内角A,B,C的对边分别为a,b,c,且sin B-sin C2=sin2A -sin B sin C.(1)求角A;(2)若b=5,BC边上的高为1077,求边c.例41(2022·福建·模拟预测)已知△ABC的内角A,B,C的对边分别为a,b,c,2c-b=2a cos B.(1)求角A;(2)若3b2sin B+c-b2cos B=7,b-c=2,求BC边上的高.题型七:重心性质及其应用例42(2022·湖北省仙桃中学模拟预测)如图,在△ABC 中,已知AB =2,AC =23,∠BAC =30°,BC 边上的中线AM 与∠ABC 的角平分线BN 相交于点P .(1)∠MPN 的余弦值.(2)求四边形PMCN 的面积.例43(2022·全国·高三专题练习)G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,若20aGA +15bGB+12cGC =0 ,则cos A =( )A.0B.35C.45D.1例44(2022·全国·高三专题练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B +3a sin B=c +1,b =1,点G 是△ABC 的重心,且AG =213,则△ABC 的面积为( )A.32B.3C.3D.23例45(2022·全国·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的外接圆的面积为π,b -c sin B +2sin 2C =a sin A .(1)求A ;(2)AD 是角A 的平分线,若BD =3DC ,△ABC 的重心为G ,求AG 的长.题型八:外心及外接圆问题例46(2022·全国·高三专题练习)设O 为△ABC 的外心,若AO =AB +2AC ,则sin ∠BAC 的值为___________.例47(2022·江苏·泰兴市第一高级中学高三阶段练习)在△ABC 中,AB =4,AC =6,BC =5,点O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ=( )A.23B.35C.47D.59例48(2022·广东·模拟预测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 3sin B -cos C =c -b cos A .从下列①②③这三个条件中选择一个补充在横线处,并作答.①O 为△ABC 的内心;②O 为△ABC 的外心;③O 为△ABC 的重心.(1)求A ;(2)若b =6,c =10,__________,求△OBC 的面积.注:如果选择多个条件分别解答,则按第一个解答计分.例49(2022·黑龙江齐齐哈尔·二模(理))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 3sin B -cos C =c -b cos A .从下列①②这两个条件中选择一个补充在横线处,并作答.①O 为△ABC 的内心;②O 为△ABC 的外心.注:如果选择多个条件分别解答,则按第一个解答计分.(1)求A ;(2)若b =3,c =5,________,求△OBC 的面积.例50(2022·江苏省白蒲高级中学高三阶段练习)在△ABC中,角A,B,C的对边分别为a,b,c;3b=4c,cos C=45.(1)求cos A的值;(2)若△ABC的外心在其外部,a=7,求△ABC外接圆的面积.例51(2022·辽宁·三模)在△ABC中,内角A,B,C的对边分别为a,b,c.已知A=π3,c=4.(1)若sin B-cos B=22,求△ABC外接圆的直径;(2)若a=13,求△ABC的周长.例52(2022·四川·树德中学模拟预测(理))已知的数f x =3sin x2cosx2-cos2x2+12.(1)求f x 的单调增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,若f A =12,a=3,求△ABC外接圆的面积.例53(2022·湖南·长郡中学高三阶段练习)法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这个三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a cos B -C =cos A 23b sin C -a .以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3.(1)求A ;(2)若a =3,△O 1O 2O 3的面积为7312,求△ABC 的周长.题型九:两边夹问题例54(2021•双流区校级模拟)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos A +sin A -2sin B +cos B=0,则a +b c 的值是( )A.2 B.3 C.2 D.1例55(2020•苏州二模)在ΔABC中,已知边a,b,c所对的角分别为A,B,C,若2sin2B+3sin2C= 2sin A sin B sin C+sin2A,则tan A= .例56(2013•成都模拟)在ΔABC中,若(cos A+sin A)(cos B+sin B)=2,则角C= .例57(2018•如皋市二模)在ΔABC中,角A、B、C的对边分别为a,b,c,设S是ΔABC的面积,若b2+ c2=13a2+433S,则角A的值是 .题型十:内心及内切圆问题例58(2022·全国·高三专题练习)△ABC的内角A,B,C所对的边分别为a,b,c,a=6,b+12cos B=2c.(1)求A的大小;(2)M为△ABC内一点,AM的延长线交BC于点D,________,求△ABC的面积.请在下列三个条件中选择一个作为已知条件补充在横线上,使△ABC存在,并解决问题.①M为△ABC的外心,AM=4;②M为△ABC的垂心,MD=3;③M为△ABC的内心,AD=33.例59(2022·安徽·芜湖一中一模(理))已知ΔABC的内角A,B,C的对边分别为a,b,c,tan C= sin A2-cos A(1)求b c的值;(2)设M和N分别是ΔABC的重心和内心,若MN⎳BC且c=2,求a的值.例60(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且A 为锐角,a =32,AB ⋅AC =3,再从条件①:b sin B +C 2=a sin B ,条件②:b tan A =(2c -b )tan B ,这两个条件中选择一个作为已知.求:(1)角A ;(2)△ABC 的内切圆半径r .例61(2022·陕西·武功县普集高级中学一模(文))在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知b =4,c =2,且sin C =sin B +sin (A -B ).(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例62例62.(2022·全国·高三专题练习)如图,在△ABC 中,D 是BC 上一点,AD 平分∠BAC .(1)求证:BDDC =AB AC;(2)若AC =2,CD =1,AD =322,求△ABC 的内切圆面积.例63(2022·陕西·西北工业大学附属中学模拟预测(理))在△ABC中,a,b,c分别为角A,B,C的对边,且3b sin C-c cos B tan C=a.(1)求角A;(2)若△ABC的内切圆面积为4π,求△ABC面积S的最小值.例64(2022·全国·高三专题练习)已知函数f x =23sin x cos x+2cos2x(1)求函数f x =23sin x cos x+2cos2x的对称轴;对称中心;单调递增区间;(2)在ΔABC中,a,b,c分别是A,B,C所对的边,当f A =2,a=2时,求ΔABC内切圆面积的最大值.例65(2022·河南南阳·高三期末(理))在△ABC中,3sin C+cos C=sin B+sin Csin A.(1)求A;(2)若△ABC的内切圆半径r=2,求AB+AC的最小值.例66(2022·陕西·模拟预测(文))已知△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =6,b =54c ,A =2C ,设O 为△ABC 的内心,则△AOB 的面积为_________.例67(2022·全国·高三专题练习)已知点O 是ABC 的内心,若AO =49AB +19AC ,则cos ∠BAC =( )A.15B.16C.18D.19解三角形图形类问题【方法技巧与总结】解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.【题型归纳目录】题型一:妙用两次正弦定理题型二:两角使用余弦定理题型三:张角定理与等面积法题型四:角平分线问题题型五:中线问题题型六:高问题题型七:重心性质及其应用题型八:外心及外接圆问题题型九:两边夹问题题型十:内心及内切圆问题【典例例题】题型一:妙用两次正弦定理例⒈(2022·全国·高三专题练习)在①cos B cos C =-b 2a +c ,②sin A sin B -sin C =b +c a +c ,③2S =-3BA ⋅BC 三个条件中任选一个补充在下面的横线上,并加以解答.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB ⊥AD ,使得四边形ABCD 满足∠ACD =π3,AD =3,求BC 的取值范围.【答案】(0,2).【解析】根据题意,选择①②③求得B =2π3,设∠BAC =θ,则∠CAD =π2-θ,∠CDA =θ+π6,在△ACD 中,由正弦定理求得AC =2sin θ+π6 ,在△ABC 中,由正弦定理求得可得BC =43sin θ+π6 ⋅sin θ=233sin 2θ-π3 +1,结合0<θ<π3和三角函数的性质,即可求解.【详解】若选①:由cos B cos C =-b 2a +c ,根据正弦定理可得cos B cos C =-sin B 2sin A +sin C,即2sin A cos B +sin C cos B =-sin B cos C ,即2sin A cos B =-sin B cos C -sin C cos B =-sin B +C =-sin A ,可得cos B =-12,因为A ∈(0,π),所以B =2π3,设∠BAC =θ,则∠CAD =π2-θ,∠CDA =θ+π6,在△ACD 中,由正弦定理得AC sin ∠ADC =AD sin ∠ACD,可得AC =AD sin ∠ADC sin ∠ACD=3⋅sin θ+π6 sin π3=2sin θ+π6 ,在△ABC 中,由正弦定理得AC sin B =BC sin θ,可得BC =AC ⋅sin θsin B =2sin θ+π6 ⋅sin θsin 2π3=43sin θ+π6 ⋅sin θ=4332sin θ+12cos θ sin θ=4332sin 2θ+12sin θcos θ =13(23sin 2θ+2sin θcos θ)=1323×1-cos2θ2+sin2θ =13(sin2θ-3cos2θ)+1=233sin 2θ-π3 +1,因为0<θ<π3,可得-π3<2θ-π3<π3,当2θ-π3=π3时,即θ=π3,可得233sin π3+1=2,当2θ-π3=-π3时,即θ=0,可得233sin -π3+1=0,所以BC 的取值范围是(0,2).选②:由sin A sin B -sin C =b +c a +c ,根据正弦定理可得a b -c =b +c a +c ,可得a 2+ac =b 2-c 2,即a 2+c 2-b 2=-ac ,又由余弦定理,可得cos B =a 2+c 2-b 22ac =-ac 2ac =-12,因为A ∈(0,π),所以B =2π3,设∠BAC =θ,则∠CAD =π2-θ,∠CDA =θ+π6,在△ACD 中,由正弦定理得AC sin ∠ADC =AD sin ∠ACD,可得AC =AD sin ∠ADC sin ∠ACD=3⋅sin θ+π6 sin π3=2sin θ+π6 ,在△ABC 中,由正弦定理得AC sin B =BC sin θ,可得BC =AC ⋅sin θsin B =2sin θ+π6 ⋅sin θsin 2π3=43sin θ+π6 ⋅sin θ=4332sin θ+12cos θ sin θ=4332sin 2θ+12sin θcos θ =13(23sin 2θ+2sin θcos θ)=1323×1-cos2θ2+sin2θ =13(sin2θ-3cos2θ)+1=233sin 2θ-π3 +1,因为0<θ<π3,可得-π3<2θ-π3<π3,当2θ-π3=π3时,即θ=π3,可得233sin π3+1=2,当2θ-π3=-π3时,即θ=0,可得233sin -π3+1=0,所以BC 的取值范围是(0,2).若选③:由2S =-3BA ⋅BC ,可得2×12ac sin B =-3ac cos B ,即sin B =-3cos B ,可得tan B =-3,因为A ∈(0,π),所以B =2π3,设∠BAC =θ,则∠CAD =π2-θ,∠CDA =θ+π6,在△ACD 中,由正弦定理得AC sin ∠ADC =AD sin ∠ACD,可得AC =AD sin ∠ADC sin ∠ACD=3⋅sin θ+π6 sin π3=2sin θ+π6 ,在△ABC 中,由正弦定理得AC sin B =BC sin θ,可得BC =AC ⋅sin θsin B =2sin θ+π6 ⋅sin θsin 2π3=43sin θ+π6 ⋅sin θ=4332sin θ+12cos θ sin θ=4332sin 2θ+12sin θcos θ =13(23sin 2θ+2sin θcos θ)=1323×1-cos2θ2+sin2θ =13(sin2θ-3cos2θ)+1=233sin 2θ-π3 +1,因为0<θ<π3,可得-π3<2θ-π3<π3,当2θ-π3=π3时,即θ=π3,可得233sin π3+1=2,当2θ-π3=-π3时,即θ=0,可得233sin -π3+1=0,所以BC 的取值范围是(0,2).例⒉(2020·北京·北师大二附中高三期中)如图,四边形ABCD 中∠BAC =90∘,∠ABC =30∘,AD ⊥CD ,设∠ACD =θ.(1)若ΔABC 面积是ΔACD 面积的4倍,求sin2θ;(2)若∠ADB =π6,求tan θ.【答案】(1)sin2θ=32(2)tan θ=32【解析】(1)设AC =a ,可求AB =3a ,AD =a sin θ,CD =a cos θ,由题意S △ABC =4S △ACD ,利用三角形的面积公式即可求解;(2)在△ABD 中,△BCD 中,分别应用正弦定理,联立可得2sin π3+θ=3sin θ,利用两角和的正弦公式,同角三角函数基本关系式即可求解.【详解】(1)设AC =a ,则AB =3a ,AD =a sin θ,CD =a cos θ,由题意S ΔABC =4S ΔACD ,则12a ⋅3a =4⋅12a cos θ⋅a sin θ,所以sin2θ=32.(2)由正弦定理,ΔABD 中,BD sin ∠BAD =AB sin ∠ADB ,即BD sin π-θ =3a sin π6①ΔBCD 中,BD sin ∠BCD =BC sin ∠CDB ,即BD sin π3+θ =2asin π3②①÷②得:2sin π3+θ=3sin θ,化简得3cos θ=2sin θ,所以tan θ=32.例⒊(江苏省南京市宁海中学2022届高三下学期4月模拟考试数学试题)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,A =150∘,点D 在边BC 上,满足CD =2BD ,且sin ∠BAD b+sin ∠CAD c =32a .(1)求证:AD =13a ;(2)求cos ∠ADC .【答案】(1)证明见解析(2)1314【解析】(1)分别在△ABD 和△ACD 中利用正弦定理表示出sin ∠BAD ,sin ∠DAC ,,代入已知等式化简整理即可得到结果;(2)根据∠ADB =-∠ADC ,在△ABD 和△ACD 利用余弦定理可整理得到a 2-b 2=2c 2;在△ABC 中,利用余弦定理可得c =3b ,进而得到a =7b ,代入cos ∠ADC 中即可求得结果.(1)∵CD =2BD ,∴CD =23a ,BD =13a ;在△ABD 中,由正弦定理得:sin ∠BAD =BD sin B AD =a sin B3AD ;在△ACD 中,由正弦定理得:sin ∠DAC =CD sin C AD =2a sin C3AD;又sin B b=sin C c =sin A a =12a ,∴sin ∠BAD b +sin ∠CAD c =a sin B 3b ⋅AD +2a sin C 3c ⋅AD =a 3AD ⋅12a +2a 3AD ⋅12a=32a ,即9AD =3a ,∴AD =13a .(2)在△ABD 中,由余弦定理得:cos ∠ADB =BD 2+AD 2-AB 22BD ⋅AD =2a 2-9c 22a 2;在△ACD 中,由余弦定理得:cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD =5a 2-9b 24a 2;∵∠ADB +∠ADC =180∘,∴∠ADB =-∠ADC ,即2a 2-9c 22a 2=-5a 2-9b 24a 2,整理可得:a 2-b 2=2c 2;在△ABC 中,由余弦定理得:cos A =b 2+c 2-a 22bc =-32,则-c 22bc =-c 2b =-32,∴c =3b ,∴a 2-b 2=6b 2,即a =7b ;∴cos ∠ADC =5a 2-9b 24a 2=35b 2-9b 228b 2=1314.例⒋(广东省2022届高三二模数学试题)如图,已知△ABC 内有一点P ,满足∠PAB =∠PBC =∠PCA=α.(1)证明:PB sin ABC =AB sin α.(2)若∠ABC =90∘,AB =BC =1,求PC .【答案】(1)证明见解析(2)PC =105【解析】(1)由正弦定理得PB sin α=ABsin ∠APB,即PB sin ∠APB =AB sin α,即要证明sin ∠ABC =sin ∠APB 即可,由此利用三角形内角和证明可得结论;(2)由题意求得PB =sin α,继而求得PC =2sin α,在△PAB 中利用余弦定理求得sin α=55,即可求得答案.(1)证明:在△ABP 中,由正弦定理得PB sin α=ABsin ∠APB,即PB sin ∠APB =AB sin α,要证明PB sin ∠ABC =AB sin α,只需证明sin ∠ABC =sin ∠APB ,在△ABP 中,∠APB =π-α+∠ABP ,在△ABC 中,∠ABC =α+∠ABP ,所以∠APB =π-∠ABC ,所以sin ∠APB =sin π-∠ABC =sin ∠ABC ,所以PB sin ∠ABC =AB sin α.(2)由(1)知PB sin ∠ABC =AB sin α,又因为∠ABC =90∘,AB =1,所以PB =sin α,由已知得△ABC 为等腰直角三角形,所以∠BCA =∠CAB =π4,则∠BCP =π4-α,所以在△PBC 中,∠BPC =π-π4-α -α=3π4,由正弦定理得BC sin ∠BPC =PCsin ∠PBC,即1sin 3π4=PC sin α,即PC =2sin α.由余弦定理得sin 2α+2sin α 2-2sin α2sin α cos 3π4=1,由题意知sin α>0,故解得sin α=55,所以PC =105.例⒌(2022·全国·高三专题练习)如图,在梯形ABCD 中,AB ⎳CD ,AB =2,CD =5,∠ABC =2π3.(1)若AC =27,求梯形ABCD 的面积;(2)若AC ⊥BD ,求tan ∠ABD .【答案】(1)73;(2)tan ∠ABD =233.【解析】(1)△ABC 中,利用含∠ABC 的余弦定理表达式建立BC 的方程,求出BC 而得△ABC 面积,再利用面积关系求△ADC 的面积得解;(2)由题设中角的信息用∠ABD 表示出△ABC 与△BDC 中的相关角,再在这两个三角形中利用正弦定理建立两个方程,联立整理得tan ∠ABD 的方程,解之即得.【详解】(1)设BC =x ,在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ⋅BC cos ∠ABC 得:28=22+x 2-2⋅2⋅x ⋅cos2π3,即x 2+2x -24=0,而x >0,解得x =4,所以BC =4,则△ABC 的面积S △ABC =12AB ⋅BC ⋅sin ∠ABC =12⋅2⋅4⋅32=23,梯形ABCD 中,AB ⎳CD ,△ABC 与△ADC 等高,且CD =5AB2,所以△ADC 的面积S △ADC =5S △ABC2=53,则梯形ABCD 的面积S =S △ABC +S △ADC =73;(2)在梯形ABCD 中,设∠ABD =α,而AC ⊥BD ,则∠BDC =α,∠BAC =π2-α,∠DBC =2π3-a ,∠BCA =α-π6,在△ABC 中,由正弦定理AB sin ∠BCA =BC sin ∠BAC 得:2sin α-π6 =BCsin π2-α ,在△BDC 中,由正弦定理CD sin ∠DBC =BC sin ∠BDC 得:5sin 2π3-α =BCsin α,两式相除得:2sin 2π3-α 5sin α-π6 =sin αsin π2-α ⇒2⋅32cos α+12sin α5⋅32sin α-12cos α =sin αcos α,整理得53sin 2α-7sin αcos α-23cos 2α=0,即53tan 2α-7tan α-23=0解得tan α=233或tan α=-35,因为α∈π6,π2,则tan α=233,即tan ∠ABD =233.例⒍(2022·河南安阳·模拟预测(理))如图,在平面四边形ABCD中,DC =2AD =42,∠BAD =π2,∠BDC =π6.(1)若cos ∠ABD =53,求△ABD 的面积;(2)若∠C =∠ADC ,求BC .【答案】(1)25(2)210-22【解析】(1)根据cos ∠ABD =53求得tan ∠ABD ,再结合AD =22求解即可(2)设∠ADB =θ,再在△BCD 中利用正弦定理得出关于θ的方程,再根据三角函数恒等变换化简求解即可(1)由cos ∠ABD =53可得tan ∠ABD =32-525=25,又AD =22故AB =ADtan ∠ABD =10,故S △ABD =12AB ⋅AD =25(2)设∠ADB =θ,则cos θ=22BD ,∠C =θ+π6,在△BCD 中,由正弦定理可得BD sin C =DCsin ∠DBC,即22cos θsin θ+π6=42sin 2π3-θ ,交叉相乘化简得sin 2π3-θ =2cos θ⋅sin θ+π6 ,即sin θ+π3 =3cos θ⋅sin θ+cos 2θ,利用降幂公式有sin θ+π3 =32sin2θ+12cos2θ+12,利用辅助角公式有sin θ+π3 =sin 2θ+π6 +12,故sin θ+π3 =sin 2θ+2π3-π2 +12,利用诱导公式可得sin θ+π3 =-cos 2θ+2π3 +12=2sin 2θ+π3 -12,故2sin 2θ+π3 -sin θ+π3 -12=0,又sin θ+π3 >0,解得sin θ+π3 =1+54,又由正弦定理有42sin 2π3-θ =BC sinπ6,故BC =22sin θ+π3=221+54=210-22例⒎(2019·安徽省怀远第一中学高三阶段练习(理))ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin A+sin B +sin C )⋅(sin A +sin B -sin C )=2sin A sin B .(1)求C ;(2)若D 为BC 边上的点,M 为AD 上的点,CD =1,∠CAB =∠MB D =∠D MB.求AM .【答案】(1)C =90∘;(2)2【解析】(1)根据正弦定理进行边角互化,利用余弦定理即可求解;(2)设∠CAB =∠MB D =∠D MB =θ,将三角形中其余角用θ表示出来,结合CD =1,表示边长,即可解出.【详解】(1)由(sin A +sin B +sin C )⋅(sin A +sin B -sin C )=2sin A sin B ,得a +b 2-c 2=2ab ,即a 2+b 2=c 2∴C =90∘;(2)令∠CAB =∠MB D =∠D MB =θ,则在ΔA MB 中,∠MB A =90∘-2θ,∠BMA =180∘-θ由正弦定理得:AM sin 90∘-2θ =AB sin 180∘-θ ,即AM =AB ⋅cos2θsin θ在ΔACD 中,∠ACD =90∘,∠CDA =2θ由正切定义:AC =tan2θ在ΔACB 中,∠ACB =90∘,∠BAC =θ由正切定义:AB =AC cos θ=tan2θcos θ,∴AM =tan2θcos θ⋅cos2θsin θ=2例⒏(2022·山东烟台·一模)如图,四边形ABCD 中,AB 2+BC 2+AB ⋅BC =AC 2.(1)若AB =3BC =3,求△ABC 的面积;(2)若CD =3BC ,∠CAD =30∘,∠BCD =120∘,求∠ACB 的值.【答案】(1)334(2)∠ACB =45∘【解析】(1)依据题意求得角B ,利用正弦定理去求△ABC 的面积;(2)利用正弦定理解三角形即可求得∠ACB 的值.(1)在△ABC 中,cos B =AB 2+BC 2-AC 22AB ⋅BC =-AB ⋅BC 2AB ⋅BC =-12,因为0∘<B <180∘,所以B =120∘.S △ABC =12AB ⋅BC sin120∘=12×3×1×32=334.(2)设∠ACB =θ,则∠ACD =120∘-θ,∠ADC =30∘+θ,∠BAC =60∘-θ.在△ACD 中,由AC sin 30∘+θ =CDsin30∘,得AC =sin 30∘+θ sin30∘CD .在△ABC 中,由AC sin120∘=BC sin 60∘-θ ,得AC =sin120∘sin 60∘-θBC .联立上式,并由CD=3BC得3sin30∘+θsin30∘=sin120∘sin60∘-θ,整理得sin30∘+θsin60∘-θ=14,所以sin60∘+2θ=12,因为0∘<θ<60∘,所以60∘<60∘+2θ<180∘,所以60∘+2θ=150∘,解得θ=45∘,即∠ACB的值为45∘.例⒐(2022·全国·高三专题练习)在①AB=2AD,②sin∠ACB=2sin∠ACD,③S△ABC=2S△ACD这三个条件中任选一个,补充在下面问题中,并解答.已知在四边形ABCD中,∠ABC+∠ADC=π,BC=CD=2,且______.(1)证明:tan∠ABC=3tan∠BAC;(2)若AC=3,求四边形ABCD的面积.【答案】(1)证明见解析(2)9158【解析】(1)选择①,由正弦定理及角度关系推出∠BAC=∠DAC及sin∠ACB=2sin∠ACD,结合两角和的正弦公式及诱导公式,进行证明;选择②,利用正弦定理推导出∠BAC=∠DAC,直接利用两角和的正弦公式及诱导公式即可推出结论;选择③,由正弦定理,面积公式及面积的倍数关系得到∠BAC=∠DAC,sin∠ACB=2sin∠ACD,使用两角和的正弦公式及诱导公式进行证明;(2)在证明出第一问的基础上,设出边长,利用余弦定理求出AD的长及角的正弦值,进而利用面积公式进行求解.(1)方案一:选条件①.在△ABC中,由正弦定理得,ACsin∠ABC=BCsin∠BAC=ABsin∠ACB,在△ACD中,由正弦定理得,ACsin∠ADC=CDsin∠DAC=ADsin∠ACD,因为∠ABC+∠ADC=π,所以sin∠ABC=sin∠ADC,因为BC=CD,所以sin∠BAC=sin∠DAC,因为∠BAC+∠DAC<π,所以∠BAC=∠DAC,因为AB=2AD,所以sin∠ACB=2sin∠ACD.因为sin∠ACB=sin∠ABC+∠BAC,sin∠ACD=sin∠CAD+∠ADC=sin∠BAC+π-∠ABC=sin∠ABC-∠BAC,所以sin∠ABC+∠BAC=2sin∠ABC-∠BAC,即sin∠ABC cos∠BAC+cos∠ABC sin∠BAC=2sin∠ABC⋅cos∠BAC-cos∠ABC sin∠BAC,所以sin∠ABC cos∠BAC=3cos∠ABC sin∠BAC,所以tan∠ABC=3tan∠BAC.方案二:选条件②.在△ABC中,由正弦定理得,ACsin∠ABC=BCsin∠BAC,在△ACD中,由正弦定理得,ACsin∠ADC=CDsin∠DAC,因为∠ABC+∠ADC=π,所以sin∠ABC=sin∠ADC,因为BC=CD,所以sin∠BAC=sin∠DAC.因为∠BAC+∠DAC<π,所以∠BAC=∠DAC.因为sin∠ACB=sin∠ABC+∠BAC,sin∠ACD=sin∠CAD+∠ADC=sin∠BAC+π-∠ABC=sin∠ABC-∠BAC,sin∠ACB=2sin∠ACD,所以sin∠ABC+∠BAC=2sin∠ABC-∠BAC,即sin∠ABC cos∠BAC+cos∠ABC sin∠BAC=2sin∠ABC⋅cos∠BAC-cos∠ABC sin∠BAC,所以sin∠ABC cos∠BAC=3cos∠ABC sin∠BAC,所以tan∠ABC=3tan∠BAC.方案三:选条件③.因为S△ABC=12BC⋅AC⋅sin∠ACB,S△ACD=12CD⋅AC⋅sin∠ACD,且BC=CD,S△ABC=2S△ACD,所以sin∠ACB=2sin∠ACD在△ABC中,由正弦定理得,ACsin∠ABC=BCsin∠BAC,在△ACD中,由正弦定理得,ACsin∠ADC=CDsin∠DAC,因为∠ABC+∠ADC=π,所以sin∠ABC=sin∠ADC,因为BC=CD,所以sin∠BAC=sin∠DAC,因为∠BAC+∠DAC<π,所以∠BAC=∠DAC.因为sin∠ACB=sin∠ABC+∠BAC,sin∠ACD=sin∠CAD+∠ADC=sin∠BAC+π-∠ABC=sin∠ABC-∠BAC,所以sin∠ABC+∠BAC=2sin∠ABC-∠BAC,即sin∠ABC cos∠BAC+cos∠ABC sin∠BAC=2sin∠ABC⋅cos∠BAC-cos∠ABC sin∠BAC,所以sin∠ABC cos∠BAC=3cos∠ABC sin∠BAC,所以tan∠ABC=3tan∠BAC.(2)选择①②③,答案均相同,由(1)可设AD =x ,则AB =2x ,在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC =4x 2-58x ,在△ACD 中,由余弦定理得,cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD =x 2-54x ,因为cos ∠ABC =cos π-∠ADC =-cos ∠ADC ,所以4x 2-58x =-x 2-54x ,解得x =102或x =-102(舍去),所以cos ∠ABC =108,所以sin ∠ABC =sin ∠ADC =1-1082=368,所以四边形ABCD 的面积S =3S △ACD =32AD ⋅CD ⋅sin ∠ADC =9158.例⒑(2022·福建·厦门一中高一阶段练习)在平面四边形ABCD 中,∠ABC =π3,∠ADC =π2,BC =4.(1)若△ABC 的面积为33,求AC ;(2)若AD =33,∠BAC =∠DAC ,求tan ∠DAC .【答案】(1)13(2)23【解析】(1)应用三角形面积公式有S △ABC =12AB ⋅BC ⋅sin ∠ABC ,可求AB ,由余弦定理即可求AC ;(2)设∠DAC =α,在Rt △ACD 中AC =AD sin π2-α ,在△ABC 中应用正弦定理有BCsin ∠BAC =ACsin ∠ABC ,即可求tan α,得解.(1)在△ABC 中,BC =4,∠ABC =π3,∴S △ABC =12AB ⋅BC ⋅sin ∠ABC =33,可得AB =3,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ⋅BC ⋅cos ∠ABC =13,∴AC =13.(2)设∠DAC =α,则∠ACD =π2-α,在Rt △ACD 中,AD =33,易知:AC =AD sin π2-α =33cos α,在△ABC 中,由正弦定理得BC sin ∠BAC =AC sin ∠ABC ,即4sin α=3332cos α,∴2cos α=3sin α,可得tan α=23,即tan ∠DAC =23.例⒒(2022·湖北武汉·模拟预测)如图,在平面四边形ABCD 中,∠BCD =π2,AB =1,∠ABC =3π4.(1)当BC =2,CD =7时,求△ACD 的面积;(2)当∠ADC =π6,AD =2时,求cos ∠ACD .【答案】(1)3414;(2)cos ∠ACD =33.【解析】(1)利用余弦定理求出AC ,cos ∠ACB ,再利用诱导公式、三角形面积公式计算作答.(2)在△ABC 和△ACD 中用正弦定理求出AC ,再借助同角公式求解作答.(1)当BC =2时,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ⋅BC cos ∠ABC ,即AC 2=3-22cos 3π4=5,解得AC =5,cos ∠ACB =AC 2+BC 2-AB 22AC ⋅BC=31010,因为∠BCD =π2,则sin ∠ACD =cos ∠ACB =31010,又CD =7,所以△ACD 的面积是S △ACD =12AC ⋅CD sin ∠ACD =125×7×31010=3414.(2)在△ABC 中,由正弦定理得AB sin ∠ACB =AC sin ∠ABC ,即AC =AB sin 3π4sin ∠ACB =22cos ∠ACD ,在△ACD 中,由正弦定理得AD sin ∠ACD =AC sin ∠ADC ,即AC =AD sin π6sin ∠ACD =1sin ∠ACD ,则22cos ∠ACD =1sin ∠ACD,整理得sin ∠ACD =2cos ∠ACD ,而sin 2∠ACD +cos 2∠ACD =1,∠ACD 为锐角,所以cos∠ACD=3 3.题型二:两角使用余弦定理例⒓(2022·湖北·襄阳四中模拟预测)在△ABC中,内角A,B,C的对边分别为a,b,c,角A的平分线AD交BC边于点D.(1)证明:ABAC=DBDC,AD2=AB⋅AC-DB⋅DC;(2)若AD=1,A=2π3,求DB⋅DC的最小值.【答案】(1)证明见解析(2)3【解析】(1)根据题意得到sin∠BAD=sin∠CAD,sin∠ADB=sin∠ADC,由正弦定理得到ABsin∠ADB=BDsin∠BAD,ACsin∠ADC=DCsin∠CAD,两式相除得到ABAC=DBDC,进而得到BD=ABAB+AC BC,DC=ACAB+AC BC,根据余弦定理,并代入化简,即可求解.(2)根据S△ABD+S△ACD=S△ABC,得到b+c=bc,结合基本不等式求得bc≥4,进而求得DB⋅DC=bc -1,即可求解.(1)解:在△ABD和△BCD中,可得∠BAD=∠CAD,∠ADB+∠ADC=π,所以sin∠BAD=sin∠CAD,sin∠ADB=sin∠ADC,由正弦定理,得ABsin∠ADB=BDsin∠BAD,ACsin∠ADC=DCsin∠CAD,两式相除得ABAC=DBDC,可得BD=ABAB+AC BC,DC=ACAB+AC BC,又由cos∠ABD=cos∠ABC,根据余弦定理得AB2+BD2-AD22AB⋅BD=AB2+BC2-AC22AB⋅BC所以AD2=AB2+BD2-BDBC AB2+BC2-AC2=DCBC AB2+BDBC AC2-BD BC-BD代入可得AD2=ACAB+AC AB2+ABAB+AC AC2-BD⋅DC=AB⋅AC ABAB+AC+AC AB+AC-BD⋅DC=AB⋅AC-BD⋅DC.(2)解:由AD=1,A=2π3及S△ABD+S△ACD=S△ABC,可得b+c=bc根据基本不等式得bc=b+c≥2bc,解得bc≥4,当且仅当b=c=2时等号成立,。
高中数学的解三角形方法大全(总9页)
高中数学的解三角形方法大全(总9页) 解三角形的题目在高一数学中是一个重要的内容,以下是一些解三角形题目的技巧:
1.利用三角形内角和定理:三角形内角和为180度。
当已知部分角度时,可以通过180度减去已知角度的和,得到未知角度。
2.利用三角形的相似性:如果两个三角形的对应角度相等,那么它们是相似的。
利用三角形的相似性可以通过已知的比例关系求解未知的边长或角度。
3.利用三角形的正弦、余弦和正切定理:根据三角形的边长关系和对应的角度,可以利用正弦定理、余弦定理和正切定理计算未知边长或角度。
4.利用勾股定理:如果一个三角形是直角三角形,可以利用勾股定理(a²+b²=c²)求解未知边长。
5.利用海伦公式:如果已知三角形的三个边长,可以使用海伦公式(面积=√[s(s-a)(s-b)(s-c)],其中s为半周长)求解三角形的面积。
6.利用角平分线定理:通过角平分线定理,可以求解三角形内部的角度或边长。
7.利用相似三角形的高度比:如果两个三角形相似,可以利用相似三角形的高度比来求解未知高度。
以上是一些常用的解三角形的技巧,根据题目的具体内容选择合适的方法。
在解题时,注意将所给的条件和已知信息合理应用,
进行逻辑推理和计算。
多进行练习和积累经验,逐步提高解题的能力。
解析全等三角形题目的方法和技巧是什么?
解析全等三角形题目的方法和技巧是什么?解析全等三角形题目的方法和技巧是什么?在数学学习中,三角形是很重要的一个概念。
三角形全等是指有两个三角形的三条边和三个角分别相等,其形状也相同。
全等三角形的概念也是初中数学必学知识之一,掌握全等三角形的解法和技巧是解决数学问题中必须的知识点。
对于全等三角形题目的解法和技巧总结如下:一、重要定理1、SAS(边角边)判定法:两条边和它们之间的夹角相等的两个三角形全等。
意思是,当一个三角形中有两边边长相等,且夹角大小相等时,这条边是相等的。
2、SSS(边边边)判定法:三边相等的两个三角形全等。
意思是,当两个三角形的三条边边长分别相等时,这个三角形是全等的。
3、ASA(角边角)判定法:两个角和一个相对的边相等的两个三角形全等。
意思是,当两个三角形一个角、相对的边、一个角分别相等时,这个三角形是全等的。
4、AAS(角角边)判定法:两个角和这两个角中的一个相对的边的三角形,如果相等,那么这两个三角形是全等的。
以上四种定理是最常用的全等三角形定理,我们必须掌握。
二、重要性质1、重心性质:全等三角形的重心重合。
2、中心性质:全等三角形的外心、内心、重心、垂心、旁心都重合。
3、边长性质:全等三角形对应边角相等。
4、角平分线性质:全等三角形对应角的平分线重合,即三条角平分线的交点重合。
以上性质对于解全等三角形题目非常关键。
三、例题训练下面我们来看一些例题:1、已知△ABC 中,AB=AC,AB∥DE,AC∥DF,BE、CF 分别平分角 A 的对边 BC,连 BE、CF 交于点 G。
若 DG=7.5 cm,求 BG 的长。
首先,△ABE≌△ACF(因为 ASAS 判定法说明两个角和它们之间的夹边相等的两个三角形全等),设 BE=CF=a, BG=b,则 AG=a+b.在△DAG 中, AD=a+7.5, DG=7.5, AG=a+b,因此,a+7.5+7.5+b=2a+2b,解得 b=8 cm。
解三角形技巧归纳(学生版)
解三角形技巧总结(学生通用)一、 边角互化1. 基于正弦定理的边角互化,等号俩测同时存在边或正弦角/分式分号上下同时存在等次的边或正弦角,可以讲正弦角转化为边,反之也可以。
例1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5例2设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,cos A cos B =b a =2那么△ABC 的形状为________.2. 基于余弦定理的边化角,三边的平方同时出现时,优先选择余弦定理。
例1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;例2. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin Asin B +sin C,则角B =________.二、 三角之间的关系(工具性知识点)(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;三、 三角同时存在时处理技巧1. 合角例1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定2. 拆角例1. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3四、 切化弦例1.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc ,若sin(A-B )+sin C =2sin 2B ,则a +b =________.五、 根据角选公式,根据角选定理例1. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.例2. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.跟踪训练1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb,则B 的大小为( )A .30°B .45°C .60°D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =ac(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D. 65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B .(1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.。
高中数学解三角形的知识总结和题型归纳总结
解三角形的知识总结和题型归纳一、知识讲解1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(互余)(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.主要类型有:(1)正弦定理解三角形的问题:已知两角和任意一边,求其他的两边及一角.已知两角和其中一边的对角,求其他边角.(2)余弦定理解三角形的问题:已知三边求三角.已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
数学解三角形技巧大全
数学解三角形技巧大全解三角形是数学中的一个重要内容,也是高中数学中的一项基本知识。
掌握一些解三角形的技巧可以让我们更加方便地求解各种三角形的性质和关系。
本文将介绍一些常用的数学解三角形的技巧大全。
一、利用正弦定理求解三角形正弦定理是解三角形最基本也是最常用的方法之一。
对于任意一个三角形ABC,假设它的三个角度分别为∠A,∠B,∠C,边长分别为a,b,c。
正弦定理可以表达为:$\dfrac{a}{\sin{\angle A}} = \dfrac{b}{\sin{\angle B}} =\dfrac{c}{\sin{\angle C}}$利用正弦定理可以轻松求解三角形的任意边长或角度,只需知道已知边长或角度之间的比例关系即可。
二、利用余弦定理求解三角形余弦定理也是解三角形的重要方法之一。
当我们已知一个三角形的两边和夹角时,可以利用余弦定理求解第三边的长度。
对于任意一个三角形ABC,假设它的三个角度分别为∠A,∠B,∠C,边长分别为a,b,c。
余弦定理可以表达为:$c^2=a^2+b^2-2ab\cos{\angle C}$利用余弦定理可以解决一些不规则的三角形,或者求解已知两边和一个角的三角形。
三、利用解析几何方法求解三角形解析几何是利用坐标系和代数方法来解决几何问题的一种方法。
对于三角形ABC,如果我们已知三个顶点的坐标,可以利用解析几何的方法来求解三角形的各种性质。
首先,假设点A的坐标为$(x_1,y_1)$,点B的坐标为$(x_2,y_2)$,点C的坐标为$(x_3,y_3)$。
我们可以利用距离公式来求解三边的长度,即:$a=\sqrt{(x_2-x_3)^2+(y_2-y_3)^2}$$b=\sqrt{(x_1-x_3)^2+(y_1-y_3)^2}$$c=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$其中,$\sqrt{\cdot}$表示开根号运算。
通过解析几何方法,我们可以很方便地求解三角形的各种性质,如边长、角度、重心、外心等。
解三角形方法与技巧例题和知识点总结
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
解三角形求解题技巧
解三角形求解题技巧三角形是初中数学中的一个重点内容,其求解题目主要涉及到角度、边长、面积等方面的计算。
下面将介绍一些解三角形题目的技巧和方法。
一、根据已知条件确定解题思路在解三角形的题目中,首先需要根据已知条件来确定解题思路。
根据题目所给的已知条件,可以判断需要使用何种方法来求解。
根据已知条件可以分为以下几种情况:1. 已知两个角和一边:通过已知两个角和一边来确定三角形。
可以使用正弦定理、余弦定理来求解。
2. 已知两个边和一个夹角:通过已知两个边和一个夹角来确定三角形。
可以使用正弦定理、余弦定理来求解。
3. 已知两个边和一个高:通过已知两个边和一个高来确定三角形。
可以使用面积公式来求解。
4. 已知一个角和两个边:通过已知一个角和两个边来确定三角形。
可以使用正弦定理、余弦定理来求解。
5. 已知一个角和一个边:通过已知一个角和一个边来确定三角形。
可以使用正弦定理、余弦定理来求解。
二、应用正弦定理和余弦定理正弦定理和余弦定理是解三角形问题中最常用的方法之一。
1. 正弦定理:在一个三角形中,三个角的对边分别为a、b、c,三角形的内心到各边的垂线的长度分别为r1、r2、r3。
则有:a/sinA = b/sinB = c/sinC = 2R,其中R为三角形外接圆的半径。
通过此定理可以求解出三角形的边长和角度。
2. 余弦定理:在一个三角形中,三个角的对边分别为a、b、c。
则有:a² = b² + c² - 2bc·cosA,b² = a² + c² - 2ac·cosB,c² = a² + b² - 2ab·cosC,通过此定理可以求解出三角形的边长和角度。
三、解题步骤在解三角形问题时,可以按照以下步骤进行求解:1. 根据已知条件确定解题思路。
2. 根据已知条件选择使用合适的公式进行计算。
3. 根据公式计算出三角形的边长和角度。
三角形在数学解题中的思维方法与技巧
三角形在数学解题中的思维方法与技巧三角形是数学中常见的几何图形之一,广泛应用于解题中。
本文将重点探讨三角形在数学解题中的思维方法与技巧,并给出相关实例来进一步说明。
在解三角形相关的问题时,常常需要运用几何知识和三角函数进行分析和计算。
以下是解题中常用的思维方法与技巧。
1. 利用三角形的基本性质三角形有一些基本的性质,例如三角形内角和为180度,三边之间存在一些关系等。
在解题中,我们可以利用这些性质来得出有用的结论。
例如,题目给出一个三角形的两个角度,要求求出第三个角度的大小。
根据三角形内角和为180度的性质,我们可以得出第三个角度的大小为180度减去另外两个已知角度的和。
2. 利用三角形的相似性质在解决与三角形相似性质有关的问题时,我们可以利用相似三角形的性质来推导出结论。
例如,已知两个三角形的三个角均相等,我们可以推测这两个三角形是全等的。
利用全等三角形的性质,我们可以得出两个三角形的对应边长相等。
3. 利用三角函数三角函数是研究三角形的一类重要工具,应用于解决各种与三角形有关的问题中。
例如,题目给出一个直角三角形的一个角度和对边的长度,要求求出斜边的长度。
我们可以利用正弦函数将所给的已知量与待求的斜边的长度联系起来。
4. 利用三角形的特殊性质三角形有一些特殊的形态,例如等边三角形、等腰三角形等,这些特殊的三角形具有独特的性质,可以帮助我们在解题中找到更加简洁的解法。
例如,题目给出一个等边三角形的边长,要求求出该三角形的面积。
由于等边三角形的高与底边相等,且等边三角形的高与边长有一定的关系,我们可以利用这些性质来计算等边三角形的面积。
在实际解题过程中,我们还可以结合其他几何图形和概念来进一步分析和解决与三角形有关的问题。
以下是一些实例,用来详细说明上述的思维方法与技巧。
实例1:已知一个三角形的两个角度分别为30度和60度,求第三个角度的大小。
解:根据三角形内角和为180度的性质,第三个角度的大小为180度减去30度和60度的和,即90度。
高中数学解三角形问题的基本技巧
高中数学解三角形问题的基本技巧在高中数学中,解三角形问题是一个常见且重要的考点。
掌握解三角形问题的基本技巧对于提高数学成绩和解题能力至关重要。
本文将介绍解三角形问题的基本技巧,并通过具体题目的分析和解答,帮助读者更好地理解和应用这些技巧。
一、已知两边和夹角,求第三边在解三角形问题中,已知两边和夹角,求第三边是最常见的情况之一。
这种情况下,我们可以利用余弦定理来求解。
余弦定理表达式如下:c² = a² + b² - 2abcosC其中,a、b为已知边的长度,C为已知夹角的度数,c为待求边的长度。
举例说明:已知一三角形的两边分别为5cm、8cm,夹角为60°,求第三边的长度。
解答:根据余弦定理,我们可以得到:c² = 5² + 8² - 2×5×8×cos60°= 25 + 64 - 80×0.5= 89 - 40= 49因此,第三边的长度为√49 = 7cm。
在解题过程中,我们需要注意夹角的单位要与边长的单位一致,否则结果会产生误差。
二、已知两边和一个角,求另外两个角在解三角形问题中,已知两边和一个角,求另外两个角也是常见的情况。
这种情况下,我们可以利用正弦定理来求解。
正弦定理表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
举例说明:已知一三角形的两边分别为6cm、8cm,夹角为45°,求另外两个角的度数。
解答:根据正弦定理,我们可以得到:6/sin45° = 8/sinB化简得到:sinB = 8sin45°/6= 8/6√2= 4/3√2通过查表或使用计算器,我们可以求得sinB的值为约0.943。
因此,角B的度数为sin⁻¹(0.943) ≈ 70.53°。
解直角三角形的方法与技巧
解直角三角形的方法与技巧直角三角形是一种特殊的三角形,其中一个角度为90度。
在解决几何问题时,了解解直角三角形的方法与技巧能够帮助我们更高效地推导和计算相关的问题。
本文将介绍一些解直角三角形的方法和技巧,希望能够对读者有所启发。
1. 边长关系在直角三角形中,三条边的关系是解题的关键。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
这一关系可以表示为c^2 = a^2 + b^2,其中c表示斜边的长度,a和b分别表示两条直角边的长度。
2. 比例关系直角三角形中,两个角的比例关系也是解题时需要注意的重点。
根据正弦定理和余弦定理,我们可以得到解直角三角形的更多方法。
2.1 正弦定理在直角三角形中,通过正弦定理,我们可以得到以下关系:a/sinA= b/sinB = c/sinC。
其中a、b、c分别表示三个边的长度,A、B、C分别表示与边a、b、c相对的角度。
这一定理可以帮助我们在已知两个边和一个角度的情况下求解其他未知量。
2.2 余弦定理直角三角形中,通过余弦定理,我们可以得到以下关系:c^2 = a^2 + b^2 - 2abcosC。
其中c表示斜边的长度,a和b表示两条直角边的长度,C表示两条直角边之间的夹角。
这一定理可以帮助我们在已知三个边的长度时求解角度。
3. 特殊角度的解法解直角三角形时,特殊角度的解法也是十分常用的。
例如,当一个直角角度等于30度时,另外两个角度分别为60度和90度。
我们可以利用特殊角度的性质,直接计算边长和角度的数值。
4. 应用于实际问题解直角三角形的方法和技巧可以应用于各种实际问题中。
例如,在测量建筑物高度时,可以通过测量直角三角形的底边和仰角来计算建筑物的高度。
在导航中,可以利用直角三角形的边长关系来计算两点之间的距离。
5. 示例与练习为了更好地理解和应用解直角三角形的方法与技巧,我们可以通过一些实例和练习来加深学习。
以下是一些示例题目:5.1 已知一个直角三角形的斜边长为10厘米,一直角边长为6厘米,求另一直角边的长。
解三角形大题难题的九种技巧
解三角形大题难题的九种技巧
解三角形是高中数学中的一个重要知识点,以下是解三角形大题难题的九种技巧:
1. 边角互化:这是解三角形最基本的方法,通过正弦定理、余弦定理将边和角进行转化,从而简化问题。
2. 数边数角:在解决三角形问题时,要养成数边数角的习惯,这样可以帮助我们快速判断三角形的类型,以及使用相应的定理。
3. 三角化两角:当遇到求周长的取值范围或者最大值、求某角三角函数值的最值、求连续2-3 个角的三角函数值之和的取值范围、角平分线题以及三个三角形的问题时,可以利用三角函数的性质将问题转化为两角之间的关系。
4. 利用正余弦定理:正弦定理和余弦定理是解三角形的重要工具,要熟练掌握它们的公式,并在解题时灵活运用。
5. 三角形面积公式:三角形的面积可以通过底和高的乘积的一半来计算,也可以使用海伦公式或其他公式,根据具体题目选择合适的公式可以简化计算。
6. 利用三角形的内角和:三角形的内角和为180 度,在解题时可以利用这个性质来化简角度关系。
7. 利用三角形的外角定理:三角形的外角等于不相邻的两个内角之和,利用这个定理可以求解一些角度问题。
8. 利用特殊角:对于一些特殊角,如30 度、45 度、60 度等,可以利用它们的三角函数值来简化计算。
9. 画图辅助:在解决一些复杂的三角形问题时,可以通过画图来辅助理解和分析问题,有时可以帮助我们找到解题的思路。
这些技巧需要在实践中不断练习和掌握,通过多做练习题,可以提高解三角形的能力和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形的技巧与方法归纳标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII
解三角形的技巧与方法归纳
一、常见的知识
1、C B A sin )sin(=+,C B A cos )cos(-=+,2cos )2sin(
C B A =+。
2、323sin π=⇒=A A 或3
2π=A (两解);623cos π=⇒=A A (一解)。
3、降幂公式:22cos 1cos 2A A +=,2
2cos 1sin 2A A -=; 合一公式:)sin(cos sin 22ϕ++=+A b a A b A a 。
4、b a B A >⇔>B A B A cos cos sin sin <⇔>⇔。
5、此类题型常出现:已知)3sin(2)(π+
=A A f ,30π<<A ,求)(A f 得范围。
我们常把换元法与数形结合法一起用!
二、化简所给的三角等式时的方法与注意
1、方法:边化角或角化边;但有时也可能要边角混合(此情况有但很少)。
2、转化方法无非使用三个公式:正弦定理、余弦定理、面积公式。
3、仔细化简,切不可随意在等式两边同除一个不确定是否不为0的式子。
4、若化成角时,要注意π=++C B A 的应用(消元)。
三、求最值或范围的问题,一般是化成某个角的三角函数,并准确给出角的范围。
举例:在锐角三角形ABC 中,3
π=
B ,求A A cos 3sin 3+得范围。
四、作图,把已知条件都标在图上,判定所给条件的类型选择正弦或余弦定理。
1、一般地,是SSA ,SAS ,SSS 时常用余弦定理;是AAS 或SSA 常用正弦定理。
2、有时也可以结合三角形的其他几何性质:
如:已知2=a ,3
π
=A ,可以画出其外接圆,点A 在优弧BC 上移动。
如:作某一边上的高后,可以用平面几何知识求解。
3、三角形的中线性质:三角形ABC 中,AD 是BC 边上的中线,
则)(2)2(2222AC AB BC AD +=+。