溅渣护炉的基础资料

溅渣护炉的基础资料
溅渣护炉的基础资料

溅渣护炉工艺

一、冶炼过程炉渣的调整

二、终点渣成分控制

三、调渣剂的选择

四、留渣量的确定

五、调渣工艺

六、溅渣工艺参数的确定

七、溅渣操作程序

八、溅渣时间与溅渣频率

九、溅渣效果与炉况监测

十、氧枪(溅渣)的设计与维护

十一、炉底上涨的解决

十二、炉口结渣的清理

十三、溅渣与喷补的配合

十四、溅渣设备

十五、设备隐患与安全维护

一冶炼过程炉渣的调整

目的是在采用溅渣护炉技术后,减少炉渣对炉衬的化学侵蚀,在不影响脱磷、脱硫的前提下,合理控制终渣MgO 含量,使终渣适合于溅渣护炉的要求。

二终点渣成分控制

影响终耐火度的主要因素是MgO、TFe和碱度(CaO/SiO2)。碱度和氧化铁含量由原料和钢种决定,其中氧化铁在10%-30%范围波动,为使溅渣层有足够的耐火度成分,主要措施是调整(MgO)含量。

终渣MgO含量

三调渣剂的选择

带用调渣剂有:轻烧白云石、生白云石、轻烧菱镁球、冶金镁砂、菱镁矿渣和含MgO较高白石灰。

调渣剂的作用主要是提高(MgO)含量,因此,调渣剂中MgO、SiO2含量是重要物性参数。

在具体选择何种调渣剂的时候要综合考虑价格和热耗的问题。

生白云石粒度应为5-15mm,轻烧镁球和轻烧白云石稍大些,但不应大于25mm。

四留渣量的确定

溅渣层厚度取20mm,炉渣密度按305t/m3计,经计算为4.5吨,作为开始溅炉时的参考,经一段时间摸索,应据济钢具体情况,确定合理渣量。

五调整工艺

调整工艺指炼钢结束后,通过观察炉渣状况,判定炉况是否适宜溅渣。如炉渣过稠发干,应加入少量化渣剂稀释;反之加少量稠渣剂,使其适宜溅渣操作。

采用出钢后调渣工艺:

即在出钢后,据炉渣状况适当加入调渣剂,使其适当进行溅渣操作。该工艺适合于中小型转炉,出钢温度偏高,炉渣过热度较高的现状;同时原料条件不稳定,往往造成后吹,多次倒炉使(FeO)升高,渣稀且(MgO)达不到饱和值,故需在出钢后加入调渣剂进行调整。

调整操作程序:

1、吹炼终点,控制炉渣中的MgO含量达8%-10%。

2、出钢时,据炉渣状况,决定加入调渣剂的数量,进行炉后调渣。

3、调渣后进行溅渣操作。

六溅渣工艺参数的确定

七溅渣操作程序

1)出钢时,炉前工应密切注意钢水状况及渣况,保证出净钢水,严禁炉内留钢。

2)出钢过程中及结束后,应观察炉渣的颜色及流动性,判断炉渣的温度,粘度等状况,决定是否加入调渣剂。

3)炉前工仔细察看炉衬的熔损状况,决定是否对炉衬的某些部位进行重点溅渣或喷补。

4)将转炉摇至零位,如需调整渣况则另加入调渣剂。

5)将氧枪降到预定枪位,调节氮气流量到规程要求。

6)操作工在溅渣过程中,可适当改变枪位以达溅渣的最大效果。7)观察溅渣炉况,如果在正常时间内炉口喷射出小渣块,证明溅渣状况良好,可在规定时间内结束溅渣。

8)溅渣即将结束前,适当降低枪位,进一步提高溅渣量,结束溅渣,提枪切断氮气。

9)在结束溅渣提枪的同时观察氧枪是否粘枪。

10)在摇炉挂渣结束后,将残存的炉渣倒入渣罐。

11)观察溅渣后的炉衬,判断维护效果。

12)如氧枪粘枪严重,采取措施处理氧枪。

13)进行下一炉吹炼

八溅渣的时间和频率

溅渣时间是溅渣操作中的一个重要工艺参数,保持在2.5-4min 之间为宜。

溅渣频率:

1、开始溅渣护炉的时间,要据济钢的具体情况确定,原则上同炉前操后工根据对炉衬侵蚀情况的观察结果决定,从炉衬有明显损耗起即开始溅渣护炉;即在开始补炉时就应开始溅渣护炉。

2、溅渣频率

一般在炉役前期就开始溅渣,引两炉一溅。在炉衬厚度为350 mm左

右时,应炉炉溅渣,形成动态平衡。

具体概括为“前期少溅,中期两炉一溅,中后期炉炉溅”。

九溅渣效果与炉况监测

在溅渣操作的初期,各种工艺参数处于不断修正的时期,要不断加强对溅渣效果的观察。在炼钢过程的一倒、二倒及出钢过程中不断观察炉衬表面,确保对前炉渣层的工作效果及砖缝暴露情况,做到详细了解。针对济源钢厂转炉的各种不同的冶炼工艺条件下,每次溅补后可冶炼的炉数,应做到心中有数,有针对性地调整整个生产过程的相关工艺参数。

十氧枪(溅渣)的设计与维护

1、对溅渣护渣氧枪的要求:保证在3分钟左右的溅渣时间,各部

位形成要求的溅渣层厚度,较长的枪龄和低低的氮气耗量。2、对中小型转炉采用同一氧枪进行吹炼和溅渣操作,出口马赫数

要大于2.0,喷孔的喷孔数在3-4之间,喷孔倾角选在11-14°之间,要据具体情况适当调整。

3、刮渣器的增设

中P铁水的转炉,渣量大、易粘枪,采用刮渣器清理氧枪能取得良好效果,为使刮渣能力足够,要加固或改造氧枪提升系统。

4、氧枪的维护

1)避免烧枪

2)出钢时出净钢水,防止粘结冷钢

3)利用刮渣器清理氧枪

4)对氧枪端部结渣部位冷却,使其快冷、脱落

5)在枪体上喷涂耐火涂料,降低粘钢和粘结物,使其易于清理。

十一炉底上涨问题的处理

危害:炉龄长的转炉都存在炉底上涨的问题(包括熔池侧墙加厚)造成熔池液面上升,V/T下降。增加喷溅,炉帽易损坏等问题。

原因:是在溅渣护炉过程中逐渐形成的,由炉底结渣超过炼钢过程中炉底的损耗导致,每炉溅渣操作的后期由于熔池温度下降和渣中的高熔点相析出使炉渣粘度提高。溅渣结束后,粘渣倒不干净而粘结于炉底;在下一炉冶炼中,熔池部位的炉衬受不到炉渣的侵蚀,其熔损速度低于渣线和炉身上部的炉衬,导致前一炉的溅渣层在下一炉之后仍有残留,随炉龄加速,需及时处理,否则影响正常操作。

处置方案:

方法一:在处理炉底结渣时,加入0.7吨左右FeSi75,吹O2把硅铁氧化,利用放出的大量热量和生成的SiO2,把高碱度炉渣清理。

方法二:炉底结渣中总有一定量的残钢,利用氧枪吹氧使其氧化,生成FeO并发热,同时生成的FeO也有下降结渣熔点的作用,存在氧气利用率低、消耗大、且对炉身、炉帽的耐材有损伤,单纯靠提高枪位、加大喷吹压力、加大喷孔倾角等措施不能完全解决炉底上涨问题。

十二炉口结渣的清理

存在的问题:炉口结渣比不溅渣护炉时要严重,结渣过多

技术措施:用炼钢氧枪吹氧清理炉口,不利的方面是氧气利用率低、清理时间长、对炉衬有较大损伤。

可另设专用清理炉口的氧枪,喷枪与氧枪轴线夹角为70°,使氧气流以大的角度吹向炉口结渣部位,以清理速度快,节省O2,不过多损伤炉衬为厚则。

十三溅渣与喷补的配合

溅渣对局部严重损毁的区域不能灵活有效地实施维护。为提高炉龄,与喷补相结合是十分必要的工艺措施。

转炉溅渣可有效对炉膛及渣线部位进行维护,耳轴及炉帽部位是薄弱环节要适时采用喷补的方法来解决。对炉衬碳含量高的部位,溅渣结合不容易时,引先喷补一层后再进行溅渣。

喷补料采用不含碳的耐火材料,溅渣时和炉渣的润湿性好,溅渣

的附着率高,有利于提高溅渣层的厚度及结合强度。

喷补或溅渣在炉衬侵蚀近一半左右开始进行。

对出钢侧、装料侧或炉底侵蚀严重,可用贴补砖进行垫补,垫补过程如下:

A、在出钢时观察炉渣状况

B、将1/3-1/2的炉渣倒掉

C:向炉内侵蚀严重部位加入适量贴补砖

D:转动炉体,使炉渣将贴补砖烧结在内衬上。

喷补的方式及耐材选用

一、半干法:将喷补料放入压力罐,压送到喷射嘴时在其附近和水

混合的方法。

二、湿法:将细颗粒和大量粒度小于0.1mm的粉料放入罐内,加

水混合后,压送到喷嘴进行喷补的方法。

含水少时,在1000-1280℃喷补效果最佳。

含水多时,在1300-1400℃喷补效果最佳。

喷补料的化学指标要求:MgO>95﹪,CaO在2%左右,SiO2小于1%,Fe2O3和Al2O3总量不大于1%。

十四溅渣设备

一、对N2气源品质要求

要求流量大,压力稳定,水分含量低,严禁含油

二、供气系统的设备配置

1、氮气增压机

2、储气罐

3、输送管线

4、压力、流量及温度参数的检测,计量仪表

5、严密、无泄露的调节、控制阀门及电气控制系统

6、相应的防泄漏系统

氮气气源系统的合理设计,是溅渣护炉技术顺利安装、调试及成功投产的保证。

三、济源钢厂转炉参数确定

氮气增压机主要技术指标(两台一用一备)

45吨转炉炼钢车间(考虑2个工位)

十五设备隐患与安全维护采用溅渣护炉技术后,新增的供N2及吹N2系统,增加了维护点;且氧气一氮气气路的窜气会使钢水质量下降或发生爆炸事故;同时,由于炉龄的大幅度提高,其它相关设备的维护、可靠运行就成为整个炉使用期间转炉连续运转的重要保证。

一、烟罩及罩裙

故障多发部位是活动烟罩、固定烟罩首段及各部分管路,故障形

式多为开裂漏水。主要原因为:烟尘颗粒磨损、高温氧化、水质不良引起腐蚀,冷热应力疲劳、操作不当造成设备损伤等。必须加强点检、定期用气体直接清扫烟罩。

二、钢包台车及轨道

1、针对传动系统薄弱件损坏,如联轴器螺栓扭断、传动轴断裂、

车轮变形等,应加强点检及时更换易损件外,对个别设计不合

理的零件做局部改造。

2、针对电缆被红渣烧断,漏钢造成转炉正下方轨道损坏等,应进

行改造,强化防护条件。

三、氧枪系统

针对防坠落装置不可靠造成坠枪事故,氧枪烧损,钢丝绳频繁损坏等问题,除注意检修更换外,用金属软管替代胶管,在造当位置加装钢绳断股监测装置。对烧损氧枪问题,应判订严格的操作制度,加强管理。

四、供气系统

首要问题是防止氧氮互窜,防止氧气进入氮气管路造成爆炸;氮气进入氧气管路影响钢水质量。对有在线检测手段,采取氧气纯度在线检测超限报警,气路放散等方法防止事故发生;对没有检测手段时;位于氧枪前的N2-O2快速切换阀,要定期更换确保其密闭性。对系统中的高压容器,应进行定期探伤,以确保安全。

五、对于加料设备,注意进料口磨损情况及各气动阀工作是否正常。对倾炉机构注意减速机、联轴器、弹性元件及制动装置的损坏情况和润滑系统工作是否正常。

保护渣性能概述

连铸保护渣性能指标 连铸保护渣(1)(2008-12-01 00:32:16) 1.连铸保护渣的作用是什么? 在浇注过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料,称为保护渣。保护渣的作用有以下几方面: (1)绝热保温防止散热; (2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量; (3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液; (4)在结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止凝壳与铜板的粘结; (5)充填坯壳与结晶器之间的气隙,改善结晶器传热。 一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的目的。 2.对保护渣熔化模式有何要求? 在连铸过程中加入到结晶器的保护渣,要完成上述五个方面的功能,必须要求保护渣粉有规定的熔化模式,也就是要求在钢水面上形成所谓粉渣层—烧结层一液渣层的所谓三层结构。 添加到结晶器高温钢液(1500℃左右)面上低熔点(1100~1200℃)的渣粉,靠钢液提供热量,在钢液面上形成了一定厚度的液渣覆盖层(约10~l5mm),钢水向粉渣层传热减慢,在液渣层上的粉渣受热作用,渣粉之间互相烧结在一起形成所谓烧结层(温度在900~600℃),在烧结层上粉渣接受从钢水传递的热量更少,温度低(<500℃),故保持为粉状,均匀覆盖在钢水面上,防止了钢水散热,阻止了空气中的氧进入钢水。 在拉坯过程中,由于结晶器上下振动和凝固坯壳向下运动的作用,钢液面的液渣层不断通过钢水与铜壁的界面而挤入坯壳与铜壁之间,在铜壁表面形成一层固体渣膜,而在凝壳表面形成一层液体渣膜,这层液体渣膜在结晶器壁与坯壳表面起润滑作用,就象马达轴转动时加了润滑油一样。同时,渣膜充填了坯壳与铜壁之间气隙,减少了热阻,改善了结晶的传热。随着拉坯的进行,钢液面上的液渣不断消耗掉,而烧结层下降到钢液面熔化成液渣层,粉渣层变成烧结层,再往结晶器添加新的渣粉,使其保持为三层结构,如此循环,保护渣粉不断消耗。 3.如何实现使结晶器保护渣粉形成所谓“三层结构”? 要发挥保护渣5个方面功能,就必须使添加到结晶器渣粉形成“三层结构”。要形成“三层结构”关键是要控制保护渣粉的熔化速度,也就是说,加入到钢液面的渣粉不要一下子都熔化成液体,而是逐步熔化。为此,一般都是在保护渣中加入碳粒子作为熔速的调节剂。 碳粒子控制熔速的快慢决定于加入碳粒子种类和数量。碳是耐高温材料,极细的碳粉吸附在渣粒周围,使渣粒之间互相分隔开来阻碍了渣料之间的接触、融合,使熔化速度变缓。如果加入碳粉不足,渣层温度尚未达到渣料开始烧结温度,碳粒子就已烧尽,则烧结层发达,熔速过快,液渣层过厚。如果加入碳粉过多,渣料全熔化后尚有部分碳粒子存在,则会使烧结层萎缩,烧结层厚度过薄。加入碳粉数量适中时,在烧结层中有部分碳粒子烧尽,其余部分渣料尚受碳粒子的有效控制,这样就会得到合适厚度的烧结层和液渣层。 配碳材料有石墨和碳黑两种。石墨颗粒粗大,粒度为60~80μm,其分隔和阻滞作用较差,

水工保护施工方案1

云南忠诚水工保护施工方案1 4.13.2 主要水工保护区域 4.13.2.1湿陷性黄土地段 本区内植被覆盖率低,黄土以粉粒为主,抗冲蚀能力差,且本区暴雨集中,沟谷发育,为泥砂下泄提供了良好的通道。管道修建后,较易沿管沟开挖松动的土体产生侵蚀,导致管道悬空裸露,影响管道的安全运营。 4.13.2.2黄土冲沟地段 黄土冲沟极其发育,冲沟的坡降大,两岸陡峭,黄土抗冲蚀能力差,且本暴雨集中,来势凶猛。冲沟的下切、侧蚀、溯源侵蚀作用强烈,在此作用下沟坡下部不断遭受破坏,引起冲沟边坡失稳,产生滑坡、滑塌、泻溜等重力侵蚀,从而危及管道的安全。 4.13.2.3黄土陡坡地段 在黄土梁峁区广泛分布,对管道安全影响较大的主要在管道上下黄土梁峁段。主要表现在管道上下弯道处易产生应力集中,水易沿陡坡段管沟泄流,侵蚀管道周围填土,导致管道悬空,同时陡坡植被等受到施工破坏,造成水土流失,影响陡坡的稳定性。管道安装施工困难。 4.13.2.4滑坡地段 多发生于Ⅱ区,滑坡规模一般较大滑动面为马兰黄土与下伏第三系红土或基岩的接触面。滑塌规模较小,具成群分布的特点,具滑床坡度较大,滑动体厚度小和部分翻转的特点。形成原因多为马兰黄土的高陡边坡因水侵泡、地震作用及水力侵蚀等。 4.13.2.5崾岘 通常为梁的连接部,位于两条深切冲沟的沟头,两侧陡峭壁立、狭窄,宽度一般仅几米~十几米。崾岘地势较低,两端边沟及地表水均汇入崾岘两侧冲沟内,对崾岘造成较大的危害,部分崾岘两端并见有黄土塌穴、落水洞等。管道通过黄土崾岘采用从较宽的崾岘顶部通过或依傍狭窄崾岘夯筑土堤供管道通过。 4.13.2.6泥石流地段 多为粘性泥流,主要分布于Ⅱ区的沟谷。该区高差较大,一般为150~200m左

溅渣护炉技术 冶金

毕业设计(论文) 学校: 专业:冶金技术 班级: 学生: 学号: 指导教师:

摘要 溅渣护炉技术作为一项工艺简单、综合经济效益高的新技术,正别外国许多厂家推广、使用,分析了该技术的优势及存在的问题和解决办法,以及该技术的应用现状和应用前景。 转炉溅渣护炉是在出钢后,将转炉内留渣的粘度和氧化镁含量调整到合适的范围,在车间原有的氧枪或另设专用喷枪,向氧化镁含量、高粘度的炉渣喷一定压力和流量的氮气,将粘渣吹溅到炉衬上全面涂挂、冷却、凝固成一层炉渣质的保护层,避免了在冶炼时炉衬和炉渣的直接接触,从而起到减缓耐火材料的蚀损,延长转炉炉龄的作用。溅渣护炉作为一项实用技术,经过国内外许多钢厂实践后,对提高转炉炉龄和降低耐火材料消耗的效果非常显著。 关键词:溅渣护炉;转炉;应用

目录 1存在问题及解决办法 (1) 2溅渣护炉工艺的冶金因素及其优势 (2) 3国外溅渣炉技术的发展 (3) 4国内转炉炉龄现状及溅渣护炉技术的发展 (5) 5应用现状及应用前景 (6) 致谢信 (7) 参考文献 (8)

1存在问题及解决办法 任何一项技术的应用不可能没有缺陷,在一些早期设备上,氧枪结瘤就是一个问题。溅渣技术使用后,往往使枪结瘤出现次数增加。实践证明,在溅渣过程中,若炉内残留少量钢水,氧枪结瘤将更加严重。解决这个问题,有几种方法证明是有效的。第一,有充足冷却水的炉子不出现结瘤问题;第二,将用于吹炼的热氧枪移走,换上冷枪完成溅渣,氧枪结瘤几乎完全消除。这表明氧枪结瘤与温度和热量的传递有关。渣子和冷枪的表面结合并不紧密,如果在溅渣时冷凝钢不出现在氧枪上,那就不会再氧枪上形成粗糙的外壳以使炉渣粘附其上。溅渣后将氧枪停放在支架上,形成的渣壳将冷却,并与氧枪分离,脱落。使用底吹搅拌技术的BOF转炉对溅渣技术的应用提出了新的要求。在溅渣时炼钢工必须小心,不能使炉底的渣太多;氮气的流速必须足够高,以便将炉渣吹离炉底;另外要调整经过透气砖喷吹气体的压力、流量。最终,随着炉衬寿命的提高,额外的操作需要增加辅助设备的使用寿命,如BoF炉的烟罩、钢包车和轨道等设备。当这被认为是一个迫切需要解决的问题时,就要求计划停炉检修以保持和延长这些设备的寿命。在转炉从新砌筑时,这项工作的实施刻不容缓,因为过去被认为是正常的周期不再出现,而且炉衬不会因为耐材问题而被拆卸。 2溅渣护炉工艺的冶金因素及其优势 溅渣护炉工艺的步骤如下:(1)钢水从转炉浇入大包;(2)炼钢工目测炉渣以确定是否应向炉内加入添加料,同时也观察炉衬已决定那些特殊部位需要特别处理;(3)摇动转炉将装料侧和出钢侧炉衬挂上一层渣;(4)将氧枪下降到预定位置并切换成氮气。氮气射流与以设计好的氧枪射流相似;(5)氧枪的高度由计算机或炼钢工控制,以便炉渣涂满整个炉膛,或者氧枪保持在一固定位置,使炉渣涂挂在特殊部位,处理时间由炼钢工控制决定;(6)关掉氮气,移走氧枪,将炉内残留的炉渣倒入渣罐;(7)氧气顶吹转炉准备装料进行下一炉的冶炼。在倒炉过程中,由操作工取样、测量熔池地温度、检查炉衬状况。 在引进渐渣护炉时曾考虑的冶金因素包括可能引起钢中磷或硫含量的增加,但目前实践中还没有此种现象发生。使用高MgO炉渣护炉对炼钢工作者来说是一个

(完整版)连铸工初级工职业技能鉴定理论试题

填空(共题,将适当的词语填入题中的划线处,每题2分) *ac1. ________被称为连铸机的心脏. ab2.中间包钢流控制装置有____系统、滑板系统、塞棒和滑板组合系统。*ca3.铸坯的表面缺陷主要决定于钢水在_________ 的凝固过程。 *ca4.结晶器材质一般为_______。 *ab5.铸坯切割方式分为________、机械剪切两种。 *ab6.连铸机拉速提高,铸坯液芯长度增加,引起铸坯出结晶器后坯壳厚度变______,二次冷却段的铸坯易产生鼓肚。 *ca7.结晶器振动的主要参数为______________,频率。 *cb8.大包保护套管的作用是防止钢水飞溅,防止_____________. *ac9.铸机机型为R6.5/12-1200型板坯连铸机,其中6.5为________,1200为辊身长度。 *ba10.浇铸温度是指______________内的钢水温度. *a11.浇注温度偏低会使钢水夹杂物不易上浮,水口,浇注中断。 *ba12.第一炼钢厂方坯、3#板坯铸机、4#板坯铸机的冶金长度分别是9m,14.6m, m。 *bc13.目前第一炼钢厂方坯中间包使用的定径水口材质是质复合。 *ab14. 结晶器材质要求是性好,强度高,高温下膨胀差,易于切削加工和表面处理。 *cb15. 连铸二冷水系统装置由总管,支管,喷架和、等组成。*ca16.连铸漏钢常见有裂纹漏钢,漏钢,夹渣漏钢,漏钢,上挂漏钢,开浇漏钢等。 *bc17.我厂3#铸机、4#铸机结晶器振动时,振幅分别是±3.5mm, mm。*cb18.目前我厂3#、4#铸机使用的中间包工作包衬主要材质为质涂抹料。 *cb19. 铸坯的内部缺陷主要是中间裂纹,三角区裂纹,,中心线裂纹,中心和疏松、夹杂。 *ba20.连铸坯的矫直方式有固态全凝固矫直和_______ 矫直。 *cc21.拉矫机的作用是拉坯、矫直和________.

板坯连铸保护渣的选择与使用

板坯连铸保护渣的选择与使用 汪洪峰简明邹俊苏 (梅山炼钢厂) 摘要本文对板坯连铸保护渣的成分、性能的确定作了描述;对连铸板坯保护渣的性能与工艺条件、钢种的优化匹配进行了探讨。 1保护渣的熔化过程及作用机理 1.1保护渣的熔化过程 保护渣的熔化过程见下图1。 从图中可见,保护渣熔化时,在钢液面上由固态渣层(粉渣或颗粒渣)、烧结层、半熔化层和液态渣层组成;结晶器与坯壳之间的渣膜由固态渣膜和液态渣膜组成,固态渣膜又分为玻璃质膜和晶体质膜。 1.2保护渣的作用机理 保护渣在熔融过程中形成粉一烧结一液渣的层状结构。固态渣层将钢液面和液渣层绝热;液渣层可以防止钢液面被空气氧化,吸收从钢液中浮出的夹杂物包含Al2O3夹杂,还能阻止钢液面被富碳层、渣圈和固态渣层增碳;液态渣膜(厚度大约为0.1mm)润滑坯壳,随铸坯向下运行,在正滑动时将液渣吸入结晶器与坯壳间的空隙,防止粘结,有利于防止板坯粘结漏钢;固态渣膜(厚度大约为2mm),主要是晶体质膜,调节传往结晶器的热流,使传热减少和传热均匀。固态渣膜在浇注初期时形成,与结晶器一起上下运行,其中的玻璃质膜在多炉连浇时没有变化。固态渣膜的厚度随粘度的升高而增加。开浇渣有助于形成厚度适当的固态渣膜。 2保护渣成分的确定 1)渣系的确定:由CaO-一SiO2一Al2O3渣系平衡状态图可确定结晶器保护渣的范围,在CaO—SiO2的范围内及含有少量的Al2O3大渣系具有合适的熔点及较强的吸附Al2O3的性能,所以基料的碱度选择在0.7~1.3的范围内。 对于低碳结晶器保护渣来说要选择导热性能好、析晶率低的渣系范围,由CaO/SiO2晶体析出与温度关系图可看出碱度在0.8~0.95的范围内渣系的析晶率为零,说明在该碱度范围内,熔融保护渣可实现较高的玻璃化率,该碱度范围内的熔融保护渣具有优良的导热功能和润滑功能。 对于中碳结晶器保护渣来说要选择低导热性能、析晶率高的渣系范围,由CaO/SiO2晶体析出与温度关系图可看出碱度在1.0以上范围内渣系的析晶率较高,说明在该碱度范

水工保护施工方案全解

水工保护施工方案大港石化—济南—枣庄成品油管道工程 大港石化—济南—枣庄成品油管道工程水工保护施工方案 文件编码:GZ410.01.11.60-0021-A 编制: 审核:

批准: 大港油建线路工程一标段项目部 2006年06月03日 1 水工保护施工方案大港石化—济南—枣庄成品油管道工程 1. 编制依据 1.1土建工程及相关专业图纸 1)大港石化—济南—枣庄成品油管道工程施工组织设计 2)《大港石化—济南—枣庄成品油管道工程线路施工技术要求》 3)《大港石化—济南—枣庄成品油管道工程线路构筑物通用设计浆砌石护岸》 4)GB50203-2002《砌体工程施工质量验收规范》 1.2有关验收规范和标准 1)建筑地基基础工程施工质量验收规范(GB50202-2002) 2)砌体工程施工验收规范(GB50203-2002) 2、工程概况 2.1工程概述 在我单位施工的大港石化—济南—枣庄成品油管道工程线路段内,管道穿越了多处沟渠及河流等,为了保证管道安全,根据设计的要求需对这些地方进行水工保护。

3. 施工程序及方法 3.1施工程序 本工程总的施工程序为根据工程的实际需要,看是否需要进行地基处理,然后在进行护岸的砌筑。 2 水工保护施工方案大港石化—济南—枣庄成品油管道工程 施工方法3.2本工程的浆砌石护岸施工程序相对简单,根据本工程的特点,我们认为本工程的施工重点为地基的处理、浆砌石的砌筑以及泄水孔的施工。地基与基础工程3.2.1 地基与基础工程施工要点3.2.1.2 1.基槽开挖⑴开挖形式基槽底面按设计尺寸本工程土方采用人工进行基槽开挖,堆积土方距基槽外。1m 。300 mm 周边各留出工作面,边坡放坡系数1:0.5 ⑵断面形状(见图一) 堆积土堆积土防护小堤防护小堤

转炉溅渣护炉技术

转炉溅渣护炉技术的应用方法 1.溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的Mg与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材层。转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1. 0MPa) ,将炉渣喷溅在炉衬上。渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,在转炉技术上是一个大的进步,它比干法喷补、火焰喷补、人工砌砖等方法更合理,其既能抑制炉衬砖表面的氧化脱碳,又能减轻高温渣对炉砖的侵蚀冲刷,从而保护炉衬砖,降低耐火材料蚀损速度,减少喷补材料消耗,减轻工人劳动强度,提高炉衬使用寿命,提高转炉作业率,减少操作费用,而且不需大量投资,较好地解决了炼钢生产中生产率与生产成本的矛盾。因此,转炉溅渣护炉技术与复吹炼钢技术被并列 为转炉炼钢的2项重大新技术。

2 溅渣护炉主要工艺因素2. 1 合理选择炉渣并进行终渣控制炉渣选择着重是选择合理的渣相熔点。影响炉渣熔点的物质主要有FeO、MgO和炉渣碱度。渣相熔点高可提高溅渣层在炉衬的停留时间,提高溅渣效果,减少溅渣频率,实现多炉一溅目标。由于FeO易与CaO和MnO等形成低熔点物质,并由MgO和FeO的二元系相图可以看出,提高MgO的含量可减少FeO相应产生的低熔点物质数量,有利于炉渣熔点的提高。从溅渣护炉的角度分析,希望碱度高一点,这样转炉终渣C2 S 及C 3 S之和可以达到70%~75%。这种化合物都是高熔点物质,对于提高溅渣层的耐火度有利。但是,碱度过高,冶炼过程不易控制,反而影响脱磷和脱硫效果,且造成原材料浪费,还容易造成炉底上涨。实践证明,终渣碱度控制在2. 8~3. 2为好。由于溅渣层对转炉初渣具有很强的抗侵蚀能力,而对转炉终渣的高温侵蚀的抵抗能力很差,转炉终渣对溅渣层的侵蚀机理主要表现为高温熔化,因此合理控制转炉终渣,尽可能提高终渣的熔化温度是溅渣护炉的关键环节。合理控制终渣应着重从终渣的MgO 含量和FeO含量着手。2. 1. 1 终渣MgO含量的控制在一定条件下提高终渣MgO含量,可进一步提高炉渣的熔化温度,这种高熔点炉渣在冶炼初期产生的溅渣层减轻了渣对炉衬的机械冲刷,并与渣中SiO2 、FeO反应,避免了渣对炉衬的化学侵蚀;在冶炼中期,溅渣层中的MgO与炉渣中的FeO生成高熔点物质,在下一次溅渣操作中成为溅渣层的主要组成部分;同时由于溅渣层被反复利用,减少了炼钢中造渣剂的使用,降低了生产和操作成本。因此,终渣MgO 含量应在保证出钢温度前提下超过饱和值,但含量也不宜过高,以免

天津2012年自考“连铸设备与工艺”课程考试大纲

天津市高等教育自学考试课程考试大纲 课程名称:连铸设备与工艺课程代码:3448、4244 第一部分课程性质与目标 -、课程的性质与特点 连铸设备与工艺是高等教育自学考试冶金技术(专)专业所开设的一门专业课。其中包括连铸设备、凝固原理、连铸操作和质量检验几部分内容。 连续铸钢是现代钢铁企业的重要铸钢生产方法,因此课程注重实践性、应用性。 二、课程目标与基本要求 设置本课程的目的是使考生通过学习连铸设备与设备的操作,掌握钢液凝固的基本理论及连铸岗位的操作要求,为考生从事连续铸钢工作打下理论基础。 通过本课程学习要求考生: 1、了解连铸过程中使用设备的基本参数、具体构造、工作的理论依据、工艺性能及简单操作方法; 2、掌握金属结晶的基本条件、结晶的过程及凝固(冷却)过程的力学变化影响,掌握连铸坯凝固的过程及控制; 3、熟悉连铸过程各个岗位的操作规程及注意事项; 4、掌握铸坯质量的各种质量缺陷,形成原因及预防手段; 5、了解合金钢连铸及其它连铸新技术的发展现状。 三、与本专业其他课程的关系 学习本课程的考生必须先掌握物理化学、金属学、工程材料的相关理论。同时由于本课程实践性强的特点,希望考生能利用各种实习实践机会,深入生产一线,最大限度的把理论学习与实践结合起来,提高学习质量。 第二部分考核内容与考核目标 绪论 一、学习目的与要求 通过本章学习,学生应了解铸钢的发展历史,连铸使用的主要设备,掌握连铸与模铸的区别。 二、考核知识点与考核目标 (一)铸钢概论(一般) 识记:铸钢的任务、分类、模铸、连铸的概念;铸机的主要设备、铸机分类及分类方法 理解:连铸与模铸相比的优越性 第一章连铸设备与操作 一、学习目的与要求 通过本章的学习,学生应掌握连铸使用的主要设备,结构、使用前准备、操作规程、注意事项及更换的相关操作。应达到掌握连铸设备使用方法及公用。 二、考核知识点与考核目标

锂离子电池基础知识精品资料

锂离子电池基础知识

电池基础知识培训资料 一、锂离子电池工作原理与性能简介: 1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源。 2、锂离子电池的工作原理:即充放电原理。Li-ion的正极材料是氧化钴锂,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion就象一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅两端来回奔跑。所以,Li-ion又叫摇椅式电池。 通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。 正极反应:LiCoO 2==== Li 1-x CoO 2 + xLi+ + xe 负极反应:6C + xLi+ + xe- === Li x C 6 电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC6

连铸保护渣研究

第一章连铸保护渣研究 、尸■、亠 前言 保护渣的作用与分类 保护渣与连铸工艺相适应 保护渣对铸坯质量的影响 一、前言 连铸技术以其简化生产工序、提高金属收得率、节能降耗、提高铸坯质量和改善劳动条件等优点而得到迅速发展。连铸自采用浸入式水口加保护渣浇注的工艺以后,它对稳定连铸工艺,扩大连铸品种,提高铸坯质量和产量都是一项极为有效的技术,因此,连铸保护渣技术已成为现代连铸技术的重要组成部分,如何不断提高连铸保护渣的适用性以提高铸坯表面质量满足连铸生产要求,是当前连铸技术发展的一项重要课题。 二、保护渣的作用与分类 2.1 保护渣的作用 从总体方面讲,保护渣在连铸过程中有两大功能:一是稳定连铸工艺,保证其顺行;二是提高铸坯的表面和皮下质量。保护渣在结晶器内具有五个方面的作用。 2.1.1 在结晶器内的绝热保温作用保护渣在结晶器内对钢液面的绝热保温作用,主要是靠保护渣粉渣层厚度和粉渣层的物性来实现(粉渣层厚度、容重及含碳量)。主要防止结晶器内钢液面结壳和弯月面处温度过低,造成铸坯表面和皮下夹杂。应根据钢种的需要,选择保护渣的保温性能,否则,将造成铸坯表面和皮下

大量夹杂。 2.1.2 防止结晶器内钢液的二次氧化 保护渣在结晶器内防止钢液二次氧化的作用,主要靠保护渣液渣层来实现。通常结晶器内液渣层厚度在10~12mm范围内,在液面稳定,水口插入深度合理的情况下,均能起到很好隔绝空气的作用。 2.1.3 吸收钢液中上浮夹杂物 保护渣应具有吸收钢液中上浮夹杂物的能力,特别是结晶器内弯月面处的夹杂物,应及时地被保护渣同化。否则,将会造成铸坯表面和皮下大量夹杂。目前做到使保护渣具有吸收夹杂物的能力并不难,而难在保护渣吸收大量夹杂物之后,还要保持其良好的性能,以满足连铸工艺的要求,特别是润滑性能和均匀传热性能。通常夹杂物含量高的钢种,如含铝、钛和稀土元素的钢种,这些元素的氧化物进入渣中,使保护渣的性能有较大的变化,如保护渣的碱度、熔化温度和粘度发生较大的变化。保护渣加入到这一类钢液面上,进行如下反应:3(SiO2)+4[Al]=3[Si]+2(Al 2O3) (SiO 2)+[Ti]=[Si]+(TiO 2) (SiO2)+2[Re]=[Si]+2[ReO] 解决这一类钢种时,常选用高碱性高玻璃化的专用保护渣,收到良好效果。 2.1.4 润滑作用 保护渣的润滑性能是保护渣最重要性能之一,特别在高拉速的情况下,更为重要。这里所说的润滑,是指结晶器内坯壳与结晶器壁之间渣膜的液态润滑。 要改善结晶器内的润滑状况,只有扩大渣膜的液相区和 改善液相渣膜的性能来实现。目前对保护渣润滑性能研究有二个方面,一是研究

连铸保护渣与铸坯表面质量

第一章连铸保护渣研究 前言 保护渣的作用与分类 保护渣与连铸工艺相适应 保护渣对铸坯质量的影响 一、前言 连铸技术以其简化生产工序、提高金属收得率、节能降耗、提高铸坯质量和改善劳动条件等优点而得到迅速发展。连铸自采用浸入式水口加保护渣浇注的工艺以后,它对稳定连铸工艺,扩大连铸品种,提高铸坯质量和产量都是一项极为有效的技术,因此,连铸保护渣技术已成为现代连铸技术的重要组成部分,如何不断提高连铸保护渣的适用性以提高铸坯表面质量满足连铸生产要求,是当前连铸技术发展的一项重要课题。 二、保护渣的作用与分类 2.1 保护渣的作用 从总体方面讲,保护渣在连铸过程中有两大功能:一是稳定连铸工艺,保证其顺行;二是提高铸坯的表面和皮下质量。保护渣在结晶器内具有五个方面的作用。 2.1.1 在结晶器内的绝热保温作用 保护渣在结晶器内对钢液面的绝热保温作用,主要是靠保护渣粉渣层厚度和粉渣层的物性来实现(粉渣层厚度、容重及含碳量)。主要防止结晶器内钢液面结壳和弯月面处温度过低,造成铸坯表面和皮下夹杂。应

根据钢种的需要,选择保护渣的保温性能,否则,将造成铸坯表面和皮下大量夹杂。 2.1.2 防止结晶器内钢液的二次氧化 保护渣在结晶器内防止钢液二次氧化的作用,主要靠保护渣液渣层来实现。通常结晶器内液渣层厚度在10~12mm范围内,在液面稳定,水口揑入深度合理的情冴下,均能起到很好隑绝空气的作用。 2.1.3 吸收钢液中上浮夹杂物 保护渣应具有吸收钢液中上浮夹杂物的能力,特别是结晶器内弯月面处的夹杂物,应及时地被保护渣同化。否则,将会造成铸坯表面和皮下大量夹杂。目前做到使保护渣具有吸收夹杂物的能力幵不难,而难在保护渣吸收大量夹杂物之后,还要保持其良好的性能,以满足连铸工艺的要求,特别是润滑性能和均匀传热性能。通常夹杂物含量高的钢种,如含铝、钛和稀土元素的钢种,这些元素的氧化物迚入渣中,使保护渣的性能有较大的变化,如保护渣的碱度、熔化温度和粘度发生较大的变化。保护渣加入到这一类钢液面上,迚行如下反应: 3(SiO2)+4[Al]=3[Si]+2(Al2O3) (SiO2)+[Ti]=[Si]+(TiO2) (SiO2)+2[Re]=[Si]+2[ReO] 解决这一类钢种时,常选用高碱性高玻璃化的专用保护渣,收到良好效果。 2.1.4 润滑作用 保护渣的润滑性能是保护渣最重要性能之一,特别在高拉速的情冴下,更为重要。这里所说的润滑,是指结晶器内坯壳与结晶器壁之间渣

高档连铸保护渣的主要原料

高档连铸保护渣的主要原料(基料)DCS 产品简介 1、以优质硅石(SiO2≥99%)和优质石灰石(CaCO3≥97%)为原材料,以洁净的电为能源,在高温下熔融合成SiO2+CaCO3--- CaCO3+CO2 ↑. DCS 为硅灰石(硅酸钙)系列产品。人工合成硅灰石比天然硅灰石具有稳定的化学成份,物相结构均匀。熔融隐晶质玻璃体,以电为能源,杂质极少。烧失量几乎为零,是理想的冶金连铸保护渣基料,同时也是焊条涂药等最理想的原料。 2、借助人工合成的硅灰石生产工艺,根据不同种类保护渣基料的要求,本公司经过先进配方的设计,其它少量特殊原料的选择,可以生产出多种型号保护渣基料,并根据用户要求,可以调节CaO/SiO2 的比值,重要的是,同时可加入Na2O 、BaO、 Li2O、 Al2O 3、 MnO 、CaF2(F)等原料,一次合成。满足用户对不同钢种的特殊要求。 3、连铸保护渣分为四类:粉状保护渣、颗粒保护渣、发热型保护渣、预熔型保护渣。本公司生产为预熔型保护渣,是保护渣分类中的最优级。预熔型保护渣,是将各种造渣原料硅石、石灰石,纯碱,萤石等混匀后放入预熔炉(电炉)熔化成一体,经水淬冷却后干燥磨细,并添加适当熔速调节剂(石墨或碳黑),就得到预熔性粉状保护渣,预熔保护渣还可进一步加工成中空颗粒保护渣。预熔保护渣制作工艺复杂,成本较高。但优点是提高保护渣成渣的均匀性。无粉尘飞扬,不污染环境。 4、连铸保护渣的作用是,在浇注的过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料(保护渣),它的作用有以下几个方面: (1)绝热保温防止散热; (2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量;(3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液; (4)在结晶器与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止与铜板的粘结。 (5)充填坯壳与结晶器之间的气隙,改善结晶器传热。 一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的进行。 产品简介 我厂自一九九五年起,开发以洁净的电为能源,熔融生产中高档冶金辅料,年生产能力12000吨,现在占地32000平方米,原有2000KVA电炉两台,新建4000KVA一台。一九九八年以前,产品全部出口日本、韩国、欧盟等,一九九八年以来,在出口量增长的同时,供应国内钢铁(辅料)企业,DCS系列是制造高档连铸保护渣的主要原料(基料)占85%左右,剩余为固定炭等物料。电熔合成DCS系列,经特殊工艺处理,是现有保护渣几种类型(粉状、颗粒、预熔、发热)的最高级,可进行高含量氧化钠(Na2O,30%)和高氟(F,15%)的一次合成。几年来,经国内外用户试用使用证实,本系列产品使用稳定性随时间的曲线函数几乎成一条直线,避免了中低档产品波浪状锯齿状曲线函数, 给冶金生产带来的诸多不适宜现象。以下将本公司DCS系列产品列表,共同行及冶金界同仁比较鉴定。典型产品有(用户设计指标)[可为用户生产专用定型产品] DCS系列 DCS-1 DCS-2 DCS-3 DCS-4 DCS-5 DCS-6 DCS-7 DCS-8 DCS-9

水利基础知识试题集(带答案)

水利基础知识试题集 水利知识试题之一 一、单项选择(共40 道) 1、我国将每年的( A )定为中国水周。 A、 3 月 22~28 日 B、 4 月 22~28 日 C、 5 月 22~28 日 D、 7 月 22~28 日 2、水的主要用途包括生活用水、生产用水、(B)。 A、灌溉用水 B、生态用水 C、采矿用水 D、航运用水 3、人类可利用的淡水资源主要是指某地区逐年可恢复和( A )的淡水资源。 A、更新 B、开采 C、储存 D、消耗 4、衡量一个国家、一个地区水资源丰歉程度的指标是( B )。 A、多年平均降水量 B、多年平均径流总量 C、年降水量和蒸发量之比 D、多年平均蒸发量 5、我国《水法》中所称水资源,包括( A )。 A、地表水和地下水 B、淡水和海水 C、地表水和土壤水 D、河水和地下水 6、我国水资源分布极不均匀,全国水资源的( A )%分布在长江及其以南地区。 A、81 B、51 C、91 D、71 13、跨流域调水,应当进行全面规划和科学论证,统筹兼顾调出和调入流域的用水需要,防止对( A )造成破坏。 A、生态和环境 B、交通 C、通信设施 D、农业 14、我国《建设项目水资源论证管理办法》由( A )负责解释。 A、水利部 B、流域管理机构 C、建设部门 D、省、自治区、直辖市人民政府水行政主管部门 15、下列不需要申请取水许可的情形是:( D )。 A、直接从地下取水 B、直接从河取水 C、直接从湖泊取水 D、为畜禽饮用取水 16、地下水的开采量超过( B ),造成地下水水位待续下降,或因开发利用地下水引发环境地质灾害或生态环境恶化的现象,是判定地下水超采和划定地下水超采区的依据。 A、补给量 B、可开采量 C、天然资源量 D、降水入渗补给量 17、国家保护水资源,采取有效措施,保护植被,植树种草,涵养水源,防治水土流失和( B ),改善生态环境。 A、环境污染 B、水体污染 C、大气污染 D、土壤污染 18、国家建立饮用水( C )保护区制度。 A、水质 B、水量 C、水源 D、水域 19、水污染会导致( C )。 A、资源型缺水 B、工程型缺水 C、水质型缺水 D、浪费性缺水 30、国家对水工程建设移民实行开发性移民的方针,按照( C )的原则,妥善安排移民的生产和生活,保护移民的合法权益。 A、前期补偿、补助 B、后期扶持 C、前期补偿、补助与后期扶持相结合 D、生产扶持与生活扶持相结合 1 3 31、水利部重大科技项目成果包括发明专利、( B )、工程设计。 A、技术创造 B、技术设计 C、开发规划 D、工程运行

转炉溅渣护炉技术的发展及现状

收稿日期:2006212207; 修订日期:2007205230 作者简介:李小明(19742  ),陕西洛川人,讲师.研究方向:冶金相关技术. ?今日铸造 Today ’s Foundry ? 转炉溅渣护炉技术的发展及现状 李小明,王冠甫,杨 军 (西安建筑科技大学冶金工程学院,陕西西安710055) 摘要:溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,是转炉技术一个大的进步。采用溅渣护炉不仅可减少炉衬蚀损、提高炉龄,而且可减轻工人劳动强度和操作费用,提高生产率。合理控制终渣成分、留渣量、出钢温度和枪位是取得良好的溅渣护炉效果的关键技术和必备条件。我国转炉因具有容量小、数量多、生产负荷大、半钢冶炼转炉原料条件差、热源不足、复吹转炉底吹元件寿命低等特点,使得我国溅渣护炉技术朝多元化方向发展,适宜于各种炉型和原料条件以及工艺特点的溅渣护炉技术蓬勃发展,尤其在复吹溅渣护炉技术方面,已达到先进水平。但转炉经济炉龄还不确定,氮气源还不足,调渣剂的成分还不能动态调整,溅渣时间和枪位还不能自动控制,今后应积极探索终渣动态调整以及溅渣自动控制等技术。关键词:转炉;炉龄;溅渣护炉;应用 中图分类号:TF713 文献标识码:A 文章编号:100028365(2007)0821140204 Pr o gr e s s a n d S t a t us of BO F Pr ot e c ti o n Te c h n ol o g y b y Sla g Sp la s hi n g L I Xiao 2ming ,WANG G uan 2f u ,YANG Jun (School of Metallurgical E ngineering ,Xi ’an U niversity of Architecture and T echnology ,Xi ’an 710055,China) Abs t rac t :I t is a big progre ss for the converter using the finishing slag to prevent the furnace and the nitrogen as the splashing power.Slag splashing technology can not only reduce the furnace lining ero sion ,prolong the furnace life ,but also decrease the manual intensity and the operating co st ,thus enhance s the productivity.The key technology and e ssential conditions to obtain good splashe s effect are to control the ingredients and quantitie s of finishing slag ,the tapping temperature and the gun po sition reasonably.As the dome stic converter has low capacity ,big production load ,the bad raw materials for the semi 2steel converter ,the insu fficient heat source and low life of bottom blowing component of combined blown converter ,the slag splashing technology is developing towards the multiple direction ,so that the slag splashing technology can be suitable for various converter ,raw materials and operational characteristics.The combined blown converter has reached the advance standards.H owever the economical furnace life of converter is indefinite ,the nitrogen source for slag splashing is also insu fficient ,the ingredient of slag modifier cannot be adjusted dynamically ,the splashing time and the gun po sition cannot be controlled automatically ,so the finishing slag dynamic adjusting and automatic control technologie s should be developed in the future. Ke y w ords :BOF ;Company life ;Slag splashing ;Application 炉龄是转炉炼钢的一项综合技术经济指标。高温、高氧化性的炉渣对炉衬的机械冲刷和化学侵蚀是造成炉衬蚀损的主要原因。为了提高炉龄,炼钢工作者相继对炉衬砖材质、砌筑方法、补炉技术、溅渣技术等进行了研究和开发。1983年普莱克斯公司获得了溅渣专利[1,2],但直到20世纪90年代以后,溅渣护炉技术才随着耐火材料质量的改进而蓬勃发展起来。 本文从溅渣护炉的基本原理出发,讨论影响溅渣 护炉效果的几个主要因素,并结合我国转炉的特点,分析我国在小型转炉、半钢冶炼转炉以及复吹转炉溅渣护炉方面取得的技术进步,同时分析我国溅渣护炉存在的问题及今后的发展方向。1 溅渣护炉原理及优势 溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的MgO 与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材

基础知识:钢厂连铸工技能800问

基础知识:钢厂连铸工技能800问 1、( )次冷却是指坯壳出结晶器后受到的冷却。 A.一 B.二 C.三 D.四答案:(B) 2、( )对提高铸坯质量的作用有:细化结晶组织,消除中心偏析,防止皮下气泡、皮下夹杂以达到改善铸坯内部和表面质量的目的。 A.电磁搅拌 B.电磁制动 C.电磁冶金 D.以上都不是答案:(A) 3、( )会影响出苗时间的长短。 A.冶金长度 B.钢水温度 C.液相深度 D.拉坯速度答案:(B) 4、( )年我国粗钢产量突破亿吨,跃居世界第一位。 A.1993 B.1996 C.2000 D.2002 答案:(B) 5、( )是炼钢生产工艺水平和效益的重要标志,反应了企业连铸生产状况。 A.金属收得率 B.连铸比 C.连铸坯成材率 D.铸坯产量答案:(B) 6、( )是我国西北地区最大的碳钢和不锈钢生产基地。 A.包钢 B.新疆八一钢铁厂 C.酒钢 D.陕钢答案:(C) 7、( )是指坯壳出结晶器后受到的冷却。 A.二次冷却 B.一次冷却 C.三次冷却答案:(A) 8、( )主要在结晶器内形成和产生。 A.铸坯内部缺陷 B.铸坯表面缺陷 C.鼓肚和菱变 D.偏析和裂纹答案:(B) 9、《安全生产法》规定,生产经营单位必须为从业人员提供符合标准的( ),并监督、教育从业人员按照规则佩带、使用。 A.劳动防护用品 B.口罩 C.手套 D.劳保鞋答案:(A) 10、《安全生产法》规定,生产经营单位应当在具有较大危险因素的生产经营场所和有关设施、设备上,设置明显的( )。 A.安全宣传标语 B.安全宣教挂图 C.安全警示标志 D.安全宣教模型答案:(C) 11、《安全生产法》规定的安全生产管理方针是( )。 A.安全第一,预防为主 B.安全为了生产,生产必须安全 C.安全生产人人有责 D.安全生产,常抓不懈答案:(A) 12、《突发事件应对法》规定,按照突发事件发生的紧急程度、发展势态和可能造成的危害程度,事故预警分为四级预警,其中最高级别为( )预警。 A.红色 B.黄色 C.蓝色 D.白色答案:(A) 13、《中华人民共和国安全生产法》自( )起施行。 A.37500 B.37530 C.37438 D.37561 答案:(D) 14、12065L喷嘴表示( )型喷嘴。 A.圆锥型 B.扁平型 C.康卡斯答案:(A) 15、1600℃下,下列氧化物最稳定的是( )。 A.SiO2 B.P2O5 C.MnO D.FeO 答案:(A) 16、1856年,( )人发明了酸性空气底吹转炉炼钢法。 A.法国 B.德国 C.英国 D.瑞典答案:(C) 17、CaC2与镁粉着火时,应采用( )等灭火。 A.泡沫灭火器 B.水 C.石棉毡 D.棉布答案:(C) 18、CaF2在保护渣中的作用主要是( )。 A.调节碱度 B.降低熔点 C.调节熔化速度 D.都不是答案:(B) 19、IF钢中[C]=( )。

锂电池保护板基础知识

锂电池保护板的基础知识普及 第一章保护板的构成和主要作用一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短 路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护 板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和 PT协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下 时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路 的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器 件NTC、ID存储器等。其中控制IC,在一切正常的情况下控制MOS 开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规 定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC是Negative temperature coefficient的缩写,意即负温度 系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及 时反应、控制内部中断而停止充放电。ID 存储器常为单线接口存 储器,ID是Identification 的缩写即身份识别的意思,存储电池 种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms 内(不同控制IC与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图:

连铸保护渣的成分

连铸保护渣的成分是 2012-02-05 16:35匿名|分类:工程技术科学|浏览3564次 分享到: 2012-02-11 00:40网友采纳 满意记得给分啊,还有更多资料! 1.基础材料 设计保护渣的基本组分: 主要化学成分是SiO2, CaO, Al2O3。 它们在保护渣中占的比例是50 -80%。 2. 熔剂材料具有控制保护渣的粘度和熔化行为的能力。 主要组元是Na2O, Li2O, K2O, F 等。 –如)Na2CO3,CaF2,Li2CO3等。 3. 碳质材料(骨架材料)具有控制保护渣熔速的能力碳的类型(炭黑,焦炭,石墨等)不同的钢种选用不同的保护渣,成分的变化主要考虑以下保护渣物理化学特性: 2.1 碱度 一般定义为组分中(R=CaO%/SiO2%)的比值。它是反映保护渣吸收钢液中夹杂物能力的重要指标,同时也反映了保护渣润滑性能的优劣。通常碱度大,吸收夹杂物的能力也大,但它的析晶温度变大,导致传热和润滑性能恶化。 2.2 粘度 它是衡量保护渣润滑性能的重要指标。目前通常采用旋转法测定或根据经验公式计算。现在大多测其在1300℃条件下的值,常用保护渣的粘度(1300℃)为0 .05~0.15Pa.s。它受化学成分和温度的控制,生产中主要靠助熔剂来调节。要想得到高质量铸坯且不发生粘结漏钢,必须要选择合适粘度的保护渣。保护渣粘度过低,液渣大量流入缝隙,造成渣膜不均匀,局部凝固变缓,导致凝固坯壳变形,引起纵裂和拉漏事故;粘度过大,会使铸坯表面粗糙。 2.3 熔化温度 它包括烧结起始温度、软化温度或叫变形温度、半球点温度和流动温度。实际应用中是将渣料制成锥形3×3 mm的标准试样,在显微镜中测定。当以一定的升温速度使试样加热到由圆柱形变为半球形时的温度,称为熔化温度。连铸生产中通常将保护渣的熔化温度控制在1200℃以下。它主要受保护渣的成分、碱度以及Al2O3含量等因素的影响,熔化温度过高,润滑作用差并且不均匀。 2.4 结晶温度(析晶温度) 它是影响凝固坯壳导热的重要参数。对裂纹敏感性特强的包晶类钢种应使用结晶温度高的保护渣。它主要受化学成分的影响,尤其是碱度。通常可以在测保护渣粘度时进行,当保护渣在降温过程中,从粘度-温度曲线上发现熔渣有结晶现象。在这一点,熔渣变得不流动,且此刻测粘度已不可能,就将这一点的温度定义为结晶温度。 2.5 熔化速度

相关文档
最新文档