轮式装载机驱动桥构造及原理简介

合集下载

装载机结构原理简介

装载机结构原理简介

装载机的结构原理装载机的结构原理-制动系统目前国产ZL50型机主导产品的制动系统多数为带紧急制动的制动系统,柳工第二代产品ZL50C的制动系统为这种系统的典型代表。

图13为柳工ZL50C型机制系统结构示意图。

该系统具有行车制动、停车制动及国际流的紧急制动系统。

停车制动与紧急制动共用,因紧急制动具有4种功能:(1)停车制动;(2)起步时保护制动作用。

气压未达到允许起步气压时,停车制动起作用,且挂下不挡;(3)行车时气路发生故障起安全保护制动作用。

当制动系统气路出了故障。

降到允许行车气压时,紧急制动会自动刹车,同时变速器会自动挂空挡;(4)紧钯制动。

当行车制动出了故障时可选用该系统实施紧急制动,而代替行车制动起作用。

这也是紧急制动名称的由来。

因此,具有紧急制动系统的柳工ZL50C型机制动安全可靠性是最好。

成工目前的ZL50B型机、徐装的ZL50E型机都采用了这样的制动系统。

稍有不同的是成工与徐装的在空气罐与紧急和停车制动阀之间加有快放阀。

柳工以前的ZL50型机制动系统中也有快放阀,实践证明无必要,柳工将该阀取消了。

还有一点不同的是成工的行车制动是双踏板,柳工及徐装的均为单踏板。

另外徐装的紧急和停车制动控制阀为电磁阀,柳工与成工的均为气阀。

如图14所示,目前还有部位产品的制动系统为双管路行车制动。

该系统与图13所示的系统相比,其行车制动部分从空气罐开始多了一路,结构元件组成基本上差不多。

该系统没有紧急制动部分,但有手柄带软轴直接操纵停车制动器的停车制动。

这种制动系统比普通的不带紧急制动的单管路制动系统制动可靠性、安全性要高,但比带紧急制动的制动系统差一些。

因此,今后带紧急制动的制动系统应用会更加广泛。

目前,山工的ZL500D型机、常林的ZLM50E型机都是用的这种系统。

山工的双管路制动阀为双腔并联式,常林的为双腔串联式。

另外,山工的在图中的序号10不是批三通接头。

而是采用的双回路保险阀,这样的双管路体现得更充分。

ZL30装载机驱动桥培训教程

ZL30装载机驱动桥培训教程

七、装配与调整
(一)主动螺旋锥齿轮总成
1、用铜棒通过套筒把圆锥滚子轴承的外圈装入轴承座中,必须下到底, 不歪斜。 2、用上述方法将圆柱滚子轴承和靠近小螺旋锥齿轮的一个圆锥滚子轴 承的内圈,隔离架连滚子装到主动小螺旋锥齿轮的轴颈上,套上 大隔套,调整垫片。 3、装上轴承座及外面的圆锥滚子轴承。 调整:为保证主从动螺旋锥齿轮有足够的支承刚度,2个轴承27311E 的装配必须按以下要求调整: (1)主动螺旋锥齿轮在无啮合、未装油封和油封座的情况下,采用逐 渐减薄的方法调整调整垫片,然后给锁紧螺母加上200~300N.m 的锁紧力矩。 (2)用拉力计钩住轴承座的装配孔里,向切线方向拉动拉力计,使轴 承座开始转动时,拉力计的读数为12.5~18.75N 。若不在此范围 内,可更换垫片或轴承隔套进行调整。 4、套入输入法兰,拧紧槽型螺母,槽型螺母的拧紧力矩为343~ 490N.m,最后在输入法兰和槽型螺母上标上装配标记。 5、装上挡圈。 6、总成装配完毕,再次检查两圆锥滚子轴承的预紧度,用拉力计钩住 轴承座的螺孔,拉动使之旋转,其旋转力矩应为1.0~1.5N.m。
五、维护和保养
பைடு நூலகம்





1、 新驱动桥在装车前,需加注润滑油。推荐用油:采用GB13895-1992齿轮油L-CLE85W/90(-12℃以上四季 通用)和L-CLE80W/90(-26℃以上四季通用)。加油时应分别从桥壳中部的桥包油位孔处和两侧轮边油口注入, 桥包处加注油量约为8kg,每侧轮边加注油量约为4kg。 2、 每50小时技术保养: (1) 新桥在随主机工作50小时后,应更换新润滑油。换油时,应将桥内清洗干净再加新油。 (2) 检查主减速器、轮边减速器有无过早发热现象,如果发热则检查油位是否符合要求。 (3) 检查各紧固件的松动情况,发现松动,重新紧固。 (4) 检查工作过程中有无不正常的声响,如发现应停机排除。 (5) 检查各油封处是否漏油,如有渗漏,更换新油封。 3、 每月技术保养: (1) 检查制动盘的磨损情况,有无存在破坏性的磨损。 (2) 检查制动片的磨损情况,当摩擦衬片上的凹槽磨掉已不符合要求时,应立即更换。 (3) 检查桥壳油位是否符合要求,如油位降低应及时补足。 4、 每半年技术保养:桥内润滑油每工作半年更换一次新润滑油。 5、 每年技术保养:工作一年应进行剖体检查。 (1) 检查主减速器螺旋锥齿轮副的间隙、啮合和磨损情况。 (2) 检查差速器齿轮的磨损情况和锥齿轮垫的磨损情况。 (3) 检查轮边齿轮的磨损情况。 (4) 检查轮边行星轮滚针、轴承的磨损情况。

轮式装载机驱动桥的部件设计(1)

轮式装载机驱动桥的部件设计(1)

轮式装载机归运土运输机械类,普遍用来矿山、修筑、铁道、海港、水电和公路等建筑工事的一种工程机器;轮式装载机是当代机器化工程运输中不可或缺的车辆之一,该设备的优点是效率高、作业速度快、机动性强、操作简便等优点,能够加速工程建设的进度,削弱工作的强度,提升施工质量,减低低施工的成本都施展着十分重要的作用;因此,最近几年来,无论是境内或者海外,装载机质量得到了迅速地提升,已为施工车辆的核心产物;随着重型工业发展的需求,海外已经不停出现创新大输出、载重大的轮式装载机发展趋向。

轮式装载机的传动系统是将发动机的动能和转速传递给装载机的的驱动轴和驱动轮。

发动机输出的牵引力经过车辆的离合器、变速器、传动轴等部件输出给装载机的车轴,再通过车辆的驱动桥来带动正常行驶。

因此,一般情况下轮式装载机传动系统的好坏往往决定了它的性能。

实验证明当输入到驱动轴车轮上的牵引力能够克服装载机外部阻力的时候,轮式装载机才能正常地启动、驾驶和作业,通过查询资料可知,就算装载机以均匀地低速行驶在平直的路面上时,也要克服大约相当于装载机自身总重量百分之一点五的滚动阻力。

当我们假设将驱动车轮与自身的发动机直接相连接时,此时装载机的速度将达到每小时数百公里,但是这么高的速度既不实际也很不安全,所以这是不可能真正实现的,反之若果装载机受到的牵引力无法克服外部作用于其上的阻力时候,装载机根本无法正常启动。

所以我们为了解决上述问题,须使装载机车辆具备增加扭矩并降低其运行的速度功能,即将车辆的驱动轮得到的转速减低为发动机转速的好多分之一,而相应地装载机车轮将得到的扭矩会增加到发动机扭矩的若干倍。

这就是驱动桥所需要来实现的作用。

由以上所述我们知道装载机驱动桥既要有一定的传动比,又要能够承受车轮和车身所传递的各种作用力,同时因为车桥位于两个轮胎之间,离地间隙有一定的限制,所以为了保证装载机能够适应恶劣的工作环境,具有较好得地面通过性能,车桥的结构不能过大。

轮式装载机驱动桥构造及原理简介

轮式装载机驱动桥构造及原理简介

3.主传动和差速器
图5 ZL50主传动分解图
1-输入法兰;2-油封; 3-密封盖;4-调整垫片; 5-主动螺旋伞齿轮;6-轴承套; 7-27311轴承;8-92607轴承; 9-托架;10-锥齿轮垫片; 11-锥齿轮;12-调整螺母; 13-7515轴承;14-差速器左壳; 15-半轴齿轮;16-半轴齿轮垫片; 17-轴承座;18-锁紧片; 19-十字轴;20-大螺旋伞齿轮; 21-差速器右壳;22-半轴; 23-止推螺栓;24-垫片
图15 半轴齿轮垫片(固定式与非固定式)
通过以上改进,大大降低了主传动部件、半轴及太阳轮所承受扭矩, 轮边部件采用浮动型式后,当轮毂轴承间隙变大时内齿圈轮齿及行星 轮齿的磨损量减少,延长了内齿圈使用寿命,使驱动桥的可靠性显著 提高;并且重新设计的轮边机构方便了用户拆卸、维修。改进后的 XG953驱动桥在使用性能、维修等方面与国内同行业的厂家比较处于 领先水平,目前已投入市场三年多,三包故障率比以前下降了不少。
图12 XG953驱动桥轮边外形图
1.老式驱动桥中行架和轮壳通过10个M22轮辋螺栓相联接,然后与轮 辋联接,对于维修人员来讲,最大的问题就是当轮边部件,如行星轮发 生故障需要维修时,必须将轮胎拆卸,这对于户外操作来说是极其不方 便的。 新的方案是改变轮壳和行架零件结构,通过32个高强度的M12螺栓将两 者连接,不涉及轮辋螺栓,使得行星机构在不拆卸轮胎的情况下可以拆 卸维修,并且轮壳转动间隙容易调整,大大减轻了用户劳动强度。
(2)差速器的构造和原理
差速器由四个行星锥齿轮、十字轴、两个半轴齿轮、差速器左壳及右壳等主要 零件组成。左、右两个直齿圆锥半轴齿轮装于半轴齿轮垫片后,分别装入左右 差速器壳的相应座孔之中。四个行星锥齿轮浮套于十字轴轴颈上,并装上球面 垫片,然后将十字轴的四个轴颈嵌在差速器壳两半端面上相应的凹槽所形成的 孔内,差速器壳的剖分面通过十字轴各轴颈的中心线,用螺栓将左、右差速器 壳紧固在一起,整个差速器再用两个圆锥滚子轴承支承在主传动器托架的座孔 中。动力自主传动大螺旋伞齿轮依次经差速器壳、十字轴、行星锥齿轮、半轴 齿轮、半轴和太阳轮、轮边减速器传给车轮。当两边车轮以相同的转速转动时, 行星锥齿轮只绕半轴轴线做公转运动。若两边车轮阻力不同,则行星锥齿轮除 作上述公转运动的同时,还可绕自身轴线做自转运动。当行星锥齿轮自转时, 两半轴齿轮就可以以不同的转速转动。差速器此时就可以起到差速作用。

5吨装载机传动系统工作原理

5吨装载机传动系统工作原理

5吨装载机传动系统工作原理总述:常规5吨轮式装载机传动系统由液力变矩器、变速箱、前后传动轴以及前后驱动桥等零部件组成。

装载机工作时,动力由柴油机的飞轮传给液力变矩器,再经液力变矩器将动力传给变速箱,并通过变速箱上的前后输出法兰,将变速箱输出的动力经前后传动轴分别传给前后驱动桥,以驱动车轮前进。

传动轴传来的动力经驱动桥的主动锥齿轮传给螺旋伞齿轮,再经过差速器、半轴齿轮及半轴传给轮边减速器的太阳轮。

轮边减速器采用齿圈固连在驱动桥壳上的行星减速方式。

从半轴齿轮传至太阳轮的动力经过行星减速机构减速后传给行星架,因为行星架是和车轮的轮毂连结在一起的,所以能将动力传给驱动轮。

驱动轮在传来的力矩作用下,除克服本身的滚动阻力外,还对地面产生推力。

此时,由于地面受到驱动轮的推力作用,便对驱动轮产生一个反作用力,就在这个反作用力的作用下推动装载机行走。

1.液力变矩器通常5吨装载机液力变矩器采用单级、两相、四元件的结构型式。

液力变矩器的一、二级涡轮输出的动力分别通过与它们啮合的一级输入齿轮和二级输入齿轮将转矩传给变速箱的超越离合器,并由超越离合器中的中间输入轴传给变速箱内的太阳轮。

当倒档离合器结合时,右行星排不工作,左行星排工作。

此时,倒档行星架被固定,太阳轮为输入,齿圈为输出。

当Ⅰ档离合器结合时,左行星排不工作,右行星排工作。

此时,I 档齿圈被固定,太阳轮为输人,行星架为输出。

Ⅱ档离合器结合时,超越离合器的中间输入轴的动力直接经太阳轮传给Ⅱ档离合器输人轴,由于Ⅱ档离合器的结合,Ⅱ档离合器输入轴的动力便传给Ⅰ档受压盘。

在变矩器上设有分动齿轮,柴油机输出的动力直接经分动齿轮传给变速箱上的齿轮油泵。

2.倒档当变速操纵阀的阀杆置于倒档位置时,压力油从变速操纵阀进入变速箱箱体上的倒档进油孔,流人倒档油缸(在变速箱体上),推动倒档活塞右移,使倒挡的主动摩擦片与固定在箱体上的从动摩擦片压合。

由于主动摩擦片套在行星架上,与行星架连接,而从动片与固定在箱体上的隔离架连接,因此,行星架被固定,从太阳轮传来的动力经行星轮从倒档内齿圈输出。

驱动桥的工作原理

驱动桥的工作原理

驱动桥的工作原理驱动桥处于动力传动系的末端,其基本功能有如下三个方面:1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。

2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速差,使汽车在不同路况下行驶。

3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。

驱动桥的组成:驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。

通常称为双级减速器。

双级减速器有两组减速齿轮,实现两次减速增扭。

A、在主减速器内完成双级减速为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。

二级齿轮副是斜齿圆柱齿轮。

主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。

第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。

因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动B、轮边减速:将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。

优点:a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大);b、半轴、差速器等尺寸减小,车辆通过性能提高。

缺点:a、结构庞大,本钱增加。

b、载质量大、平顺性小(故只用于重型车)。

差速器差速器用以毗连左右半轴,可以使两侧车轮以不同角速度旋转同时传递扭矩。

保证车轮的正常转动。

目前国产轿车及别的类汽车基本都采用了对称式锥齿轮普通差速器。

对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。

第六章 轮式工程机械驱动桥

第六章  轮式工程机械驱动桥
'
从上面的公式可以得到如下结论 1、当左右半轴转速不等时,角速度就不等,行星齿轮除 以角速度公转外,并以角速度’绕自身轴线自转,实现 差速作用; 杨忠炯制作
2、快速半轴增加的转速 (或角速度)等于慢速半轴 减少的转速(或角速度), 快慢半轴转速(或角速度) 之和为差速器壳转速(或角 速度)的两倍,这一点是由 轮式机械差速成器的具体结 构决定的,因为左右半轴齿 轮齿数相等; 3、当=0, 1=- 2,相当于架修驱动桥时,刹住传动 轴,扳动车轮的情况,这时差速器由行星轮系变成了定轴 轮系; 4、当2=0, 1=2 ,相当于机械左轮陷入泥泞中,左 轮附着系数太小,就以两倍于差速器壳的转速旋转,右半 杨忠炯制作 轴不转,差速器成为速比为2的行星齿轮传动。
杨忠炯制作
轮式工程机 械驱动桥的 组成(五大部 分):
主传动、差速器、半轴、轮边减速器、后桥壳。
杨忠炯制作
第一节
差速器
一、差速器原理 轮式工程机械动力由传动轴、主传动并经差速器传给左 右半轴,再由左右半轴传给轮边减速器进而传给轮胎。 轮胎式机械左右 两侧的驱动轮不 能由一根整轴驱 动。 因为轮式机械在 运行过程中,左右两 侧的驱动轮经常需要 以不同的角速度旋转。 差速器视频
为了提高工程机械的越野性能,克服普通差速器这 一不足,限滑差速器,带差速锁的差速器就属于前一种。
杨忠炯制作
现代的轮式自行式铲运 机的差速器,前桥多采用 带气控差速成锁的普通差 速器(如图6-2所示),后 桥多采用牙嵌自锁式差速 器,亦称牙嵌式自由轮差 速器。当一侧车轮打滑, 后者可自动将扭矩全部传 到另一侧车轮,无需操纵, 国外常称之为不打滑型 (NoSPIN型)。 这种牙嵌离合器式差速锁结构简单、制造容易。但 要在打滑停车后或即将过泥泞路时,停车接合。行驶到 杨忠炯制作 良好地面时及时分离,并且不宜接合过早与分离过晚。

轮式装载机驱动桥

轮式装载机驱动桥

工程机械课程设计指导书轮式装载机驱动桥设计长沙学院1.绪论1.1装载机概述装载机(Loader)是一种往车辆或其他设备装载散状物料的自行式装卸机械。

装载机也可进行轻度的铲掘工作,通过换装相应的工作装置,还可进行推土、起重、装卸木料及钢管等作业。

广泛应用于建筑、铁路、公路、水电、港口、矿山、农田基本建设及国防等工程中。

它具有作业速度快、效率高、操作轻便等优点,故其对加快工程建设速度、减轻劳动强度、提高工程质量、降低工程成本有着重要的作用。

装载机种类很多,根据发动机功率可分为小型(功率小于 74千瓦)、中型(功率在74〜147千瓦间)、大型(功率在147〜515千瓦间)和特大型(功率大于 515千瓦)装载机4种。

根据行走系结构可分为轮胎式和履带式两种。

其中轮胎式装载机按其车架结构型式和转向方式又可分为铰接车架折腰转向、整体车架偏转车轮和差速转向装载机3种。

根据卸载方式可分为前卸式(前端式)装载机和回转式装载机两种。

根据作业过程的特点可分为间歇作业式(如单斗装载机)和连续动作式(如螺旋式、圆盘式、转筒式等)装载机。

装载机装载物料时,其技术经济指标在很大程度上取决于作业方式。

常见的作业方式有I形作业法、V形作业法和L形作业法等⑴。

1.1.1轮式装载机的总体构造轮胎式装载机是由动力装置、车架、行走装置、传动系统、转向系统、制动系统、液压系统和工作装置等组成。

轮胎式装载机的动力是柴油发动机,大多采用液力变矩器动力、换挡变速箱的液力机械传动形式(小型转载机有的采用液压传动或机械传动),液压操纵、铰接式车体转向、双桥驱动、宽基低压轮胎,工作装置多采用反转连杆机构等。

1.1.2传动系统装载机的传动有机械传动与液力机械传动两种方式。

机械传动结构简单,但传动系统扭振和冲击载荷较大,影响使用寿命。

液力机械传动,能吸收冲击载荷,提高使用寿命,自动适应外界阻力的变化,改善装载机的使用性能。

因此,大中型轮胎式装载机多采用液力机械传动。

驱动桥

驱动桥

驱动桥主要功能是将传动轴传来的转矩传给驱动轮,使变速箱输出的转速降低、转矩增大,并使两边车轮具有差速功能。

此外,驱动桥桥壳还起到承重和传力的作用。

一、驱动桥的结构驱动桥主要由桥壳、主传动器(包括差速器)、半轴、轮边减速器等组成。

其结构如图1所示:驱动桥安装在车架上,承受车架传来的载荷并将其传递到车轮上。

驱动桥的桥壳又是主传动器、半轴、轮边减速器等的安装支承体。

二、主传动器的构造主传动器的功用是将变速箱传来传动再一次降低转速、增大转矩,并将输入轴的旋转轴线改变900后,经差速器、半轴传给轮边减速器。

主传动器的结构如图2所示:主传动器主要由差速器和一对由螺旋锥齿轮组成的主减速器构成。

主动螺旋锥齿轮和从动螺旋锥齿轮之间,必须有正确的相对位置才能使两齿轮啮合后传动的冲击噪声较轻,而且使轮齿沿其长度方向磨损较均匀。

为此,在结构上一方面要使主动和从动螺旋锥齿轮有足够的支承刚度,使其在传动过程中不至于发生较大变形而影响正常啮合;另一方面,应有必要的啮合调整装置图二、主传动器为了保证主动螺旋锥齿轮有足够的支承刚度,将主动螺旋锥齿轮与轴制成一体,其前端支承在互相贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。

环状的从动锥齿轮用螺栓固定在差速器右壳的凸缘上。

而差速器壳则用两个圆锥滚子轴承支承在托架两端的座孔中。

为了保证从动锥齿轮有足够的支承刚度,在从动螺旋锥齿轮的背面,装有止推螺栓以限制从动螺旋锥齿轮的变形量,防止从动螺旋锥齿轮因过度变形而影响正常工作。

在装配和调试过程中应当注意:从动螺旋锥齿轮的背面和止推螺栓末端的间隙一般应调整至0.25~0.40毫米之间。

为了调整圆锥滚子轴承的预紧度,在轴承内座圈之间的隔套的一端装有调整垫片。

如果发现过紧则增加垫片的总厚度;反之,则减少垫片的总厚度。

圆锥滚子轴承的预紧转矩值可通过测量主动锥齿轮的旋转转矩获得。

一般地其旋转转矩为1.5~2.6N.m。

学习任务5驱动桥的结构与维修

学习任务5驱动桥的结构与维修
基本功用是进一步降低转速、增大转矩,保证工程机械具有足 够的牵引力。
主传动器一般有两种结构型式:一种是单级减速主传动器, 由一对经常啮合的圆锥齿轮组成;一种是双级减速主传动器, 由两对经常啮合的齿轮组成,一对为锥齿轮,另一对为圆柱齿 轮。另外,还有采用圆弧渐开线锥齿轮的主传动器。现主要讲 述单级减速主传动器。
5)终传动 功用是,将主传动器传来的动力在传给驱动
轮(链轮)之前进一步减速增矩,以满足工程机 械行驶和各种作业的需要。终传动装置有平 行轴式圆柱齿轮传动和行星齿轮传动两种型 式。轮式工程机械如装载机、铲运机等,普 遍采用行星齿轮终传动装置。 下图所示为国产ZL50装载机采用行星齿轮式 终传动装置(轮边减速器)。主要由太阳轮、 行星齿轮、行星轮架、固定齿圈、齿圈支撑、 卡环、行星轮轴等组成。 动力传递路线:动力由太阳轮输入,由于齿 圈固定迫使行星架与太阳轮同向旋转输出动 力。
学习任务5 驱动桥结构与拆装
终传动组成
太阳轮
齿圈
齿圈支承
行星 齿轮
行星架
学习任务5 驱动桥结构与拆装
终传动工作原理
行星架输出
轮边减速器动画
齿圈 固定
ZL50装载机主传动器主动锥齿轮的轴承紧度调整
ZL50装载机主传动器主从动齿轮啮合印痕的调整
知识准备
根据工程机械行驶系统的不同结构, 驱动桥可分为轮式驱动桥和履带式驱动桥 两种类型
轮式驱动桥的组成及工作原理
1.轮式驱动桥的组成 轮式机械驱动桥结构,如图5-1所示。由主传动器、差速器、 半轴、终传动(轮边减速装置)、桥壳等主要零部件所组成。 轮边减速装置有普通圆柱齿轮传动和行星齿轮传动两种类型。
差速器的工作过程
学习任务5 驱动桥结构与拆装

驱动桥结构原理概述PPT(共 49张)

驱动桥结构原理概述PPT(共 49张)


13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。

14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。

15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
驱动桥摆动后桥结构
驱动桥的功用
⑴改变动力传递方向。通过主传动器或中央传动的锥 齿轮。
⑵减速增扭。通过主传动器和轮边减速器实现。 ⑶动力分配。通过差速器解决左、右驱动轮差速问题;
通过差速器和半轴将动力分传给左右驱动轮。 ⑷行走支承。除传动作用外,驱动桥还是承重装置和
行走支承装置。
轮式驱动桥
主传动器的类型:
⑴、按参加传动的齿轮副数目分为:单级式和双级 式。双级主传动减速的第一级为圆锥齿轮传动,第 二级为圆柱齿轮传动。
主传动器的类型:
⑵、按齿轮齿型分为:直齿锥齿轮、螺旋锥齿轮式、双曲面齿
轮式、零度圆弧锥齿轮、延伸外摆线锥齿轮等五种。 履带式驱动桥的中央传动一般采用直齿锥齿轮, 轮式驱动桥中主传动器采用螺旋锥齿轮和双曲面锥齿轮较多。
驱动桥中为什么要设计差速器?
1、车辆在行走过程中, 由于转弯时、路面不同、 轮胎气压不同、轮胎滚动 半径不同,使左右轮胎在 地面滚动的距离不一样, 左右轮胎的转速应该是对 应滚动而相应不同的转速;
2、差速器的主要目的就 是让左右轮胎产生不同的 转速而实现差速功能,满 足车辆行走的稳定和减小 轮胎的磨损;
a-直齿锥齿轮 b-零度圆弧锥齿轮 c-螺旋锥齿轮 d-延伸外摆线锥齿轮 e-双曲线齿轮

轮式装载机工作原理简明分析

轮式装载机工作原理简明分析

轮式装载机工作原理简明分析轮式装载机整机主要有动力系统、传动系统、工作装置、工作液压系统、转向液压系统、车架、操作系统、制动系统、电气系统、驾驶室、覆盖件、空调系统等构成。

下面对前五个系统工作原理进行详细的介绍。

一、动力系统装载机的动力系统由动力源柴油机以及保证柴油机正常运转的附属系统组成,主要包括柴油机、燃油箱、油门操纵总成、冷却系统、燃油管路等。

柴油机通过双变驱动传动系统完成正常的行走功能;通过驱动工作液压系统带动工作装置完成铲运、提升、翻斗等工作动作;通过驱动转向液压系统,偏转车架,完成转向动作。

二、传动系统传动系统由变矩器、变速箱、传动轴、前、后驱动桥和车轮等组成。

通过传动系统自动调节输出的扭矩和转速,装载机就可以根据道路状况和阻力大小自动变更速度和牵力,以适应不断变化的各种工况。

挂档后,从起步到该档的最大速度之间可以自动无级变速,起步平稳,加速性能好。

遇有坡度或突然的道路障碍,无须换档而能够自动减速增大牵引力并以任意小的速度行驶,越过障碍。

外阻力减小后,又能很快地自动增速以提高作业率。

当铲削物料时,能以较大的速度切入料堆并随着阻力增大而自动减速提高轮边牵引力以保证切入。

转向先导泵先导泵工作泵图1 传动系统简图发动机输出的动力经过液力变矩器传递给变速箱,经过变速箱的变速将特定转速通过传动轴驱动前后桥和车轮转动达到以一定速度行走的功能。

三、工作装置装载机的工作装置由铲斗、动臂、摇臂、拉杆四大部件组成。

动臂为单板结构,后端支承于前车架上,前端连着铲斗,中部与动臂油缸连接。

当动臂油缸伸缩时,使动臂绕其后端销轴转动,实现铲斗提升或下降。

摇臂为单摇臂机构,中部与动臂连接,当转斗油缸伸缩时,使摇臂绕其中间支承点转动,并通过拉杆使铲斗上转或下翻。

四、工作液压系统工作装置液压系统的基本组成及工作原理见图2及图3。

图2 工作装置液压系统的基本组成图3 工作装置液压系统原理图装载机工作液压系统主要由工作泵、分配阀(分配阀由安全阀、转斗滑阀、转斗大腔双作用安全阀、转斗小腔安全阀、动臂滑阀等集成)、转斗油缸、动臂油缸、油箱等组成。

轮式装载机工作原理

轮式装载机工作原理

轮式装载机工作原理轮式装载机是一种多功能的土方工程机械,主要用于土方工程、道路施工以及装卸物料等工作。

它采用轮式驱动,具备强大的动力,操作简便,灵活性高。

1. 发动机:轮式装载机配备有内燃机,通常采用柴油发动机。

发动机产生的动力通过传动系统传输到驱动轮上,驱动装载机前进、后退和转向。

2. 传动系统:传动系统由液力变矩器、离合器、变速器和传动轴组成。

液力变矩器通过流体动力传递发动机的动力,使装载机能够平稳启动和变速。

离合器用于连接和分离发动机和变速器之间的动力传输。

变速器根据工作条件和需求选择合适的前进挡位。

传动轴将动力传输到前后驱动轴。

3. 驱动装置:轮式装载机采用四轮驱动或前后轮驱动,其中前轮驱动方式较为常见。

驱动轴通过差速器将动力分配到左右两个驱动轮,实现装载机的前进和后退。

4. 操纵系统:装载机的操纵系统包括方向盘、操纵杆和脚踏板等部件。

方向盘用于控制装载机的转向,操纵杆用于操作装载斗的升降、倾斜等功能,脚踏板用于控制加速、刹车等。

5. 装载斗:装载机的装载斗安装在前端,用于装卸和搬运物料。

装载斗可以升降和倾斜,便于装载和卸载不同类型的物料。

6. 液压系统:液压系统驱动装载斗的升降和倾斜。

通过液压泵将液压油压力传输到油缸,实现装载斗的运动。

7. 制动系统:装载机配备有制动系统,用于控制装载机的车速和停止。

制动器通过踏板控制,将液压油传输到制动器,实现制动操作。

轮式装载机通过发动机的动力驱动传动系统和驱动装置,控制操纵系统实现前进、后退、转向等功能。

液压系统驱动装载斗进行升降和倾斜,实现装载和卸载作业。

制动系统用于控制装载机的车速和停止。

通过各个系统的协调工作,轮式装载机能够高效、准确地完成各种工程任务。

轮式装载机驱动桥构造及原理简介

轮式装载机驱动桥构造及原理简介

图11 XG953驱动桥总成外形图和装配图 图12 XG953驱动桥轮边外形图 图13 XG953驱动桥轮边减速器机构 图14 内齿轮和内齿圈 图15 半轴齿轮垫片(固定式与非固定式) 图16 拉具拆圆锥滚子轴承 图17 旋转力矩的测量 图18 螺旋伞齿轮安装接触区及间隙的调整 图19 主传动啮合间隙的测量 图20 XG953驱动桥轮边减速机构
(2)差速器的构造和原理
差速器由四个行星锥齿轮、十字轴、两个半轴齿轮、差速器左壳及右壳等主要 零件组成。左、右两个直齿圆锥半轴齿轮装于半轴齿轮垫片后,分别装入左右 差速器壳的相应座孔之中。四个行星锥齿轮浮套于十字轴轴颈上,并装上球面 垫片,然后将十字轴的四个轴颈嵌在差速器壳两半端面上相应的凹槽所形成的 孔内,差速器壳的剖分面通过十字轴各轴颈的中心线,用螺栓将左、右差速器 壳紧固在一起,整个差速器再用两个圆锥滚子轴承支承在主传动器托架的座孔 中。动力自主传动大螺旋伞齿轮依次经差速器壳、十字轴、行星锥齿轮、半轴 齿轮、半轴和太阳轮、轮边减速器传给车轮。当两边车轮以相同的转速转动时, 行星锥齿轮只绕半轴轴线做公转运动。若两边车轮阻力不同,则行星锥齿轮除 作上述公转运动的同时,还可绕自身轴线做自转运动。当行星锥齿轮自转时, 两半轴齿轮就可以以不同的转速转动。差速器此时就可以起到差速作用。
图14 内齿轮和内齿圈
3.XG951装载机驱动桥内齿轮采用整体式,轮毂轴承间隙的不当将导致 内齿轮受力过大,齿面磨损加剧。而XG953驱动桥是将内齿轮一分为二,由 内齿圈和齿圈支架采用浮动型式组成,当轮毂轴承间隙变大时内齿圈中心 相对支承轴中心可以浮动,从构造上保证了内齿圈与行星轮之间受力的均 匀分布,也就减少了内齿圈轮齿的磨损量,延长了齿轮件的使用寿命。同 时内齿圈热处理工艺采用中频感应淬火,将热处理后齿部变形量控制在很 小的范围内,齿面硬度高,耐磨。

轮式装载机工作原理简明分析

轮式装载机工作原理简明分析

轮式装载机工作原理简明分析轮式装载机整机主要有动力系统、传动系统、工作装置、工作液压系统、转向液压系统、车架、操作系统、制动系统、电气系统、驾驶室、覆盖件、空调系统等构成。

下面对前五个系统工作原理进行详细的介绍。

一、动力系统装载机的动力系统由动力源柴油机以及保证柴油机正常运转的附属系统组成,主要包括柴油机、燃油箱、油门操纵总成、冷却系统、燃油管路等。

柴油机通过双变驱动传动系统完成正常的行走功能;通过驱动工作液压系统带动工作装置完成铲运、提升、翻斗等工作动作;通过驱动转向液压系统,偏转车架,完成转向动作。

二、传动系统传动系统由变矩器、变速箱、传动轴、前、后驱动桥和车轮等组成。

通过传动系统自动调节输出的扭矩和转速,装载机就可以根据道路状况和阻力大小自动变更速度和牵力,以适应不断变化的各种工况。

挂档后,从起步到该档的最大速度之间可以自动无级变速,起步平稳,加速性能好。

遇有坡度或突然的道路障碍,无须换档而能够自动减速增大牵引力并以任意小的速度行驶,越过障碍。

外阻力减小后,又能很快地自动增速以提高作业率。

当铲削物料时,能以较大的速度切入料堆并随着阻力增大而自动减速提高轮边牵引力以保证切入。

转向先导泵先导泵工作泵图1 传动系统简图发动机输出的动力经过液力变矩器传递给变速箱,经过变速箱的变速将特定转速通过传动轴驱动前后桥和车轮转动达到以一定速度行走的功能。

三、工作装置装载机的工作装置由铲斗、动臂、摇臂、拉杆四大部件组成。

动臂为单板结构,后端支承于前车架上,前端连着铲斗,中部与动臂油缸连接。

当动臂油缸伸缩时,使动臂绕其后端销轴转动,实现铲斗提升或下降。

摇臂为单摇臂机构,中部与动臂连接,当转斗油缸伸缩时,使摇臂绕其中间支承点转动,并通过拉杆使铲斗上转或下翻。

四、工作液压系统工作装置液压系统的基本组成及工作原理见图2及图3。

图2 工作装置液压系统的基本组成图3 工作装置液压系统原理图装载机工作液压系统主要由工作泵、分配阀(分配阀由安全阀、转斗滑阀、转斗大腔双作用安全阀、转斗小腔安全阀、动臂滑阀等集成)、转斗油缸、动臂油缸、油箱等组成。

轮胎式工程机械驱动桥

轮胎式工程机械驱动桥

离合器
推压盘
差速器壳体
大锥齿轮
牙嵌式差速器
3.牙嵌式差速器: ⑴ 工作原理 ①直线行驶时;弹簧7、10使从动环6、11端面平齿与十自轴17传力齿啮合,分离环8、9内侧梯形齿与中心轮15梯形齿啮合,花键毂5、12内外花键分别与左右半轴、从动环6、11啮合。 动力传递路线:小锥齿轮轴1——大锥齿轮4——十字轴17传力齿——从动环6、11端面平齿——花键毂5、12——左右半轴。(等速差矩) ②转弯时:由于外侧5(左侧)车轮阻力小,转速快,分离环8梯形齿沿中心轮15梯形齿滑动,推动从动轮6左移,克服弹簧7压力,从动轮6与十字轴17传力齿分离,切断外侧(左侧)动力;同时分
制动器总成
轮毂
桥壳
轮胎
行星架
行星轮
太阳轮
半轴
轮辋
小螺旋 锥齿轮
大螺旋 锥齿轮
差速器壳体
齿痕对中 调整垫片
小锥齿轮轴 承间隙调整
止推螺栓
跨置式支承
锥齿啮合副 间隙调整螺栓
十字轴
半轴齿轮
行星轮
拧进或拧出左右调整螺母13,调整从动伞齿轮22轴承间隙,使轴承间隙为0.05~0.1mm; ②主传动啮合齿痕是否对中靠垫片4调整; ③对称等量调整螺母13,使主传动轮齿啮合间隙为0.2~0.35mm; ④ 调整止推螺柱8使大锥齿轮背部间隙为0.25~0.4mm。试转是否灵活无卡滞。 轮边减速器——传动系中最后一级减速增扭机构。 铲土运输机械多采用行星齿轮减速。 特点: ①尺寸小、减速比大; ②可方便地布置在轮毂内;
要求:①在传动比足够时,径向尺寸量小——提高离地间隙,提高通过性能。②结构紧凑,工作平稳,噪声小。
螺旋锥齿轮,准双曲面齿轮,直齿锥齿轮,加 双曲线抗磨齿轮油。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)差速器的构造和原理
差速器由四个行星锥齿轮、十字轴、两个半轴齿轮、差速器左壳及右壳等主要 零件组成。左、右两个直齿圆锥半轴齿轮装于半轴齿轮垫片后,分别装入左右 差速器壳的相应座孔之中。四个行星锥齿轮浮套于十字轴轴颈上,并装上球面 垫片,然后将十字轴的四个轴颈嵌在差速器壳两半端面上相应的凹槽所形成的 孔内,差速器壳的剖分面通过十字轴各轴颈的中心线,用螺栓将左、右差速器 壳紧固在一起,整个差速器再用两个圆锥滚子轴承支承在主传动器托架的座孔 中。动力自主传动大螺旋伞齿轮依次经差速器壳、十字轴、行星锥齿轮、半轴 齿轮、半轴和太阳轮、轮边减速器传给车轮。当两边车轮以相同的转速转动时, 行星锥齿轮只绕半轴轴线做公转运动。若两边车轮阻力不同,则行星锥齿轮除 作上述公转运动的同时,还可绕自身轴线做自转运动。当行星锥齿轮自转时, 两半轴齿轮就可以以不同的转速转动。差速器此时就可以起到差速作用。
装载机驱动桥分前桥和后桥,一般来讲,其区别在于主传动 中的螺旋伞齿轮副的螺旋方向不同。前桥的主动螺旋伞齿轮为 左旋,后桥的主动螺旋伞齿轮为右旋,其余结构相同。 (XG962前后桥差异大,后桥为摆动桥。)驱动桥的结构如图4 所示。主要有桥壳、主传动(包括差速器)、半轴、轮边减速 器和轮胎轮辋总成等组成。
图13 XG953驱动桥轮边减速器机构
2.老式驱动桥中轮边行星机构采用三个行星轮,而改进后的行星机构采用四 个行星轮,新方案使太阳轮扭矩不是由三点而是由四点承担,降低单个齿所受 载荷。采用四个行星轮和三个行星轮还有一点需要注意,也就是齿的啮合问题, 由于三点决定一个圆,现在采用四个行星轮后,如果行星轮架上安装行星轮的 四个孔加工位置精度不够,将导致传动干涉反而增加轮齿的载荷,所以我们采 用加工中心来加工行星轮架四孔,以保证加工精度及制造工艺水平,大大增加 了产品的技术含量。
XG962驱动桥
五.XG953驱动桥在维修过程中的一些注意事项。
1.驱动桥的常见故障与诊断 驱动桥常见的故障有主传动差速器异响、主传动轴承损坏、主被动螺旋 伞齿轮损坏;漏油;过热;轮壳轴承损坏、轮边行星减速齿轮损坏;严 重时会发生驱动桥壳焊缝裂开或桥壳断裂等。 (1)主传动差速器异响 主、被动螺旋伞齿轮啮合间隙失常与啮合面不稳定是产生异响的主要原 因。齿轮啮合间隙是指主、被动螺旋伞齿轮、锥齿轮、半轴齿轮、半轴 齿轮键槽与半轴花键齿的间隙。由于磨损或齿轮轮齿损坏,以及轴承松 动等原因,破坏了它们之间正常啮合面与正常啮合间隙,在运转中就会 产生碰撞、摩擦而发生响声。 (2)漏油
图9 轮边减速器机构
图10 轮边行星传动原理图
图1ห้องสมุดไป่ตู้ 主传动啮合间隙的测量
图20 XG953驱动桥轮边减速机构
主要内容:
一.轮式装载机的动力是如何从发动机传递到驱动桥 和车轮的? 二.轮式装载机驱动桥的构造和工作原理。 三.配套于XG953装载机上的驱动桥与普通XG951驱 动桥有哪些不同和优点。 四.简要阐述配套于XG962装载机上的前后驱动桥特 点,后桥为摆动桥。 五.XG953驱动桥在维修过程中的一些注意事项。
4.轮边减速器
轮边减速器为行星齿 轮机构,内齿圈经花 键固定在桥壳两端的 轮边支承轴上,它是 固定不动的。行星轮 架和轮辋由轮辋螺栓 固定在一起,因此轮 辋和行星轮架一起转 动,其动力是通过半 轴、太阳轮传到行星 轮架上的。
图9 轮边减速器机构
图10 轮边行星传动原理图 半轴通过花键带动与之联成一体的太阳轮以n太转速顺时针转动,与 太阳轮相啮合的行星轮则以相反方向转动,由于内齿轮固定不动, 因此行星轮架以转速n架与太阳轮相同的方向转动,n架小于n太,因 而得到减速。
图12 XG953驱动桥轮边外形图
1.老式驱动桥中行架和轮壳通过10个M22轮辋螺栓相联接,然后与轮 辋联接,对于维修人员来讲,最大的问题就是当轮边部件,如行星轮发 生故障需要维修时,必须将轮胎拆卸,这对于户外操作来说是极其不方 便的。 新的方案是改变轮壳和行架零件结构,通过32个高强度的M12螺栓将两 者连接,不涉及轮辋螺栓,使得行星机构在不拆卸轮胎的情况下可以拆 卸维修,并且轮壳转动间隙容易调整,大大减轻了用户劳动强度。
图14 内齿轮和内齿圈
3.XG951装载机驱动桥内齿轮采用整体式,轮毂轴承间隙的不当将导致 内齿轮受力过大,齿面磨损加剧。而XG953驱动桥是将内齿轮一分为二,由 内齿圈和齿圈支架采用浮动型式组成,当轮毂轴承间隙变大时内齿圈中心 相对支承轴中心可以浮动,从构造上保证了内齿圈与行星轮之间受力的均 匀分布,也就减少了内齿圈轮齿的磨损量,延长了齿轮件的使用寿命。同 时内齿圈热处理工艺采用中频感应淬火,将热处理后齿部变形量控制在很 小的范围内,齿面硬度高,耐磨。
为什么装载机的后桥安装要采用副车架或摆动桥,为何不能象 前桥一样刚性联接在车架上呢?
这是因为,如果前后桥都刚性联接在车架上,那么装载机 行驶过程中就有四个点要与地面同时接触,遇到不平整地面 的时候,由于三个点(车轮)可以确定一个平面,第四个轮 子很可能悬空,起不到支撑整机的作用,同时另外三个车轮 由于承受载荷偏大,必然导致各零件容易损坏。所以就通过 副车架或摆动桥将后桥与车架处于非刚性联接状态,行驶过 程中可以摆动,这样后驱动桥两个车轮就可以同时与地面接 触,不论地面是否平整。 由于 XG962 装载机的自重和额定铲斗容量比XG953 大很多, 所以驱动桥的各齿轮件和壳体件的尺寸均相应加大,轴承型 号也加大,各螺栓规格和锁紧力矩也有所加大,以满足在高 强度高负荷的工作条件。
图3 装载机功率传递路线图
装载机是通过一系列的传动机构,将发动机的转速降低,扭矩增大, 也就是牵引力增大。由于发动机总功率N分为两部分,一部分提供 给工作装置(N1),另一部分提供给底盘产生牵引力(N2),假设 发动机的牵引功率N2在传递过程中不发生损耗,则装载机在非联合 工况,即行驶状态下传递到每个轮胎的功率则为N2/4,各占1/4。 (为什么手扶拖拉机在爬坡时候总是选择慢档?)
漏油的主要原因:A.油封磨损,装配不当或损坏;
二.轮式装载机驱动桥的构造和工作原理。
图4 驱动桥总成(分解图)
图4 驱动桥总成
1.驱动桥的功用 (1)通过主传动中相互垂直安装的主动螺旋伞齿轮和与之啮 合的被动螺旋伞齿轮改变传递力矩的方向(使传递扭矩的轴 线互成90°方向),并通过桥上的主传动、差速器、半轴及 轮边减速传动机构将变速箱输出轴的转速降低,扭矩增大, 产生牵引力。 (2)差速器能使转装载机在转弯行驶时左右驱动轮有合理的 转速差,使车轮既不产生滑移也不产生滑转,而是在地上保 持纯滚动。 (3)驱动桥的桥壳还起承重和传力的作用。 2.驱动桥组成
3.主传动和差速器
图5 ZL50主传动分解图
1-输入法兰;2-油封; 3-密封盖;4-调整垫片; 5-主动螺旋伞齿轮;6-轴承套; 7-27311轴承;8-92607轴承; 9-托架;10-锥齿轮垫片; 11-锥齿轮;12-调整螺母; 13-7515轴承;14-差速器左壳; 15-半轴齿轮;16-半轴齿轮垫片; 17-轴承座;18-锁紧片; 19-十字轴;20-大螺旋伞齿轮; 21-差速器右壳;22-半轴; 23-止推螺栓;24-垫片
XG951驱动桥主要损坏形式:
主传动轴承损坏、螺旋伞齿轮损坏、差速器十字轴断裂和半 轴断裂、轮边行星减速机构损坏 三.配套于XG953装载机上的驱动桥与普通XG951驱动桥有哪些 不同和优点。
XG953驱动桥
图11 XG953驱动桥总成装配图
从驱动桥的传动比着手,在总速比不变的前提下减小主减速比,增大轮边 减速比,这样一来主减速比由原来的 5.286调整为4.625,在发动机性能参 数不变的前提下,主传动零件的转速相对变快,但扭矩减小,主被动螺旋 伞齿轮、半轴、太阳轮等零件承受的力矩降低,提高了使用寿命。
图6 ZL50主传动剖视图
(1)主传动和差速器的功用 主传动是一级螺旋伞齿轮减速器,传递由传动轴传来的扭矩 和运动。 差速器可使左右半轴和左右驱动轮任何时候都有一个合理的 转速差,同时向两半轴传递转矩,再由半轴将转矩传给驱动轮。 它能使同一驱动桥两端的轮胎以不同的转速在地面上滚动,而车 轮不会因两端的速度差而产生“滑磨”,即能起差速作用。但它 无法使同一驱动桥两端的轮胎按不同的扭矩传力,即差速器能差 速不能“差力”。 如装载机行驶在泥泞路面时,若一侧轮胎掉入泥坑,则由于 轮胎与泥泞的附着力小,该轮胎在泥泞中打滑,这时作用在该车 轮上的牵引力将大大减小;另一侧轮胎虽然与路面可以有很大的 附着力,但由于差速器扭矩在驱动桥两端的分配是均等的,所以 较大附着力的轮胎与陷入泥泞的轮胎扭矩相等,而不可能更大, 故未陷入泥泞的轮胎原地不动,陷入泥泞的轮胎以两倍于差速器 壳的转速打滑。
4 .驱动桥的另一个关键部位就是主传动。根据整桥速比调整的需要,我们 将主传动部分主动螺旋伞齿轮增加一个齿,使主传动速比由 5.286 减小为 4.625,这样虽然差速器等转速略有提高,但其承受扭矩减少12.5%,同时差 速器壳体、半轴齿轮、锥齿轮尺寸加大,十字轴直径由Ø28加大为Ø32,各 零件所受应力明显降低,强度得到很大提高,大大提高了可靠性和使用寿命。 同时主传动的轴承尺寸规格也加大,提高了使用寿命。差速器输出到半轴的 扭矩也降低,提高了轮边各齿轮件的使用寿命。 5.根据用户的反馈,我们还对主传动中的半轴齿轮垫片形式做了改变, 老式的半轴齿轮垫片采用无固定形式,在半轴齿轮高速旋转的时候经常会发 生严重的磨损,逐步将垫片磨损,以至于严重的时候磨成环状,这样就会影 响半轴齿轮和锥齿轮的啮合齿侧间隙,进而影响其使用寿命。
图15 半轴齿轮垫片(固定式与非固定式)
通过以上改进,大大降低了主传动部件、半轴及太阳轮所承受扭矩, 轮边部件采用浮动型式后,当轮毂轴承间隙变大时内齿圈轮齿及行星 轮齿的磨损量减少,延长了内齿圈使用寿命,使驱动桥的可靠性显著 提高;并且重新设计的轮边机构方便了用户拆卸、维修。改进后的 XG953驱动桥在使用性能、维修等方面与国内同行业的厂家比较处于 领先水平,目前已投入市场三年多,三包故障率比以前下降了不少。 四.简述配套于XG962装载机上的前后驱动桥特点,后桥为摆动桥。 XG962装载机驱动桥前、后桥有较大的区别,前桥结构同XG953驱 动桥,但安装采用长螺栓;后桥安装不采用副车架,而是采用摆动 桥。后桥除了桥壳、主传动(包括差速器)、半轴、轮边减速器外, 增加了摆动架;摆动架的作用与副车架相似,摆动架与驱动桥的托 架和桥壳相联接,确保驱动桥可以围绕摆动架中心线摆动,所以称 为摆动桥。
相关文档
最新文档