变压器及磁性材料基本知识简介
变压器的基础知识
变压器的基础知识一.变压器:是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。
换句话说,变压器就是实现电能在不同等级之间进行转换。
二.结构:铁心和绕组:变压器中最主要的部件,他们构成了变压器的器身。
铁心:构成了变压器的磁路,同时又是套装绕组的骨架。
铁心由铁心柱和铁轭两部分构成。
铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。
铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。
硅钢片有热轧和冷轧两种,其厚度为0.35~0.5mm,两面涂以厚0.02~0.23mm的漆膜,使片与片之间绝缘。
绕组:绕组是变压器的电路部分,它由铜或铝绝缘导线绕制而成。
一次绕组(原绕组):输入电能二次绕组(副绕组):输出电能他们通常套装在同一个心柱上,一次和二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压和电流。
其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。
从高、低压绕组的相对位置来看,变压器的绕组又可分为同心式、交迭式。
由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。
其他部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。
三.额定值额定值是制造厂对变压器在指定工作条件下运行时所规定的一些量值。
额定值通常标注在变压器的铭牌上。
变压器的额定值主要有:1.额定容量S N额定容量是指额定运行时的视在功率。
以 VA 、kVA 或MVA 表示。
由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。
2.额定电压U 1N 和U 2N正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。
二次侧的额定电压U 2N 是指变压器一次侧加额定电压时二次侧的空载电压。
变压器、电感器之原材料介绍22533
胶带材料介绍
材质
特性
聚酯薄膜胶带 Mylar tape
有极佳的抗化学品、抗 化剂和防潮能力,并可 抵受切割及磨损 各种颜色
挡墙胶带 Margin tape
PVC胶带
抗拉力、具较 好韧性
KAPTON薄膜 胶带
有极佳的耐高温 特性 棕黄色
特点
颜色
淡黄色、白色
各种颜色
绝缘电阻
击穿电压 相对电痕指数 温度等级
鐵芯的材質: a. 錳鋅系列:以導磁率來區分 PC30/PC40(Ui2500以下)材質用於高频電源變壓器 SB5S(Ui3500以下)材質用於驅動變壓器 SM70/SM100(Ui7000以上)材質用於電源濾波器 b. 鎳鋅系列:以重疊電流飽和特性來區分 比如﹕Y2M C5A等 耐較大重疊電流適用於阻流线圈﹐ 重疊電流飽和曲線變化大適用於线性线圈 c. IRON POWER系列:一般適用於環形電感阻流线圈。 比如﹕T106-52等
线材生產流程介绍:
二.线材介绍(1)
品种
型号
QA、UEW
温度 等级
130℃ 155℃ 180℃
特点
直焊性,焊锡前无需先脱漆 膜。耐拉伸、耐弯折。
用途
电子变压器、电感线圈、 继电器、微电机及其他 电子仪表绕组
聚氨基甲酸酯漆包 线
尼龙复合聚氨基甲 酸酯漆包线
QA、UEW
130℃ 155℃ 180℃
130℃ 155℃ 180℃ 130℃ 155℃ 180℃
温度 等级
180℃ 130℃ 155℃ 180℃ 130℃ 155℃ 180℃
特点
具备180℃级聚酯漆包线特 性,还具备直焊性。 具有醇溶特性,在乙醇浸泡 下自粘层溶化,乙醇挥发后 即固化,使线圈成型。
变压器电感器用原材料介绍
压器
滤波器
器、滤波 压器 器、电感
器
器
19
胶带材料介绍:
胶带
MYLAR TAPE MARGIN TAPE PVC TAPE 佳富龙 TAPE
20
胶带材料介绍:
二 . 胶带特性比较
特性
材质
特点
颜色 绝缘电阻 击穿电压 相对电痕指数 温度等级
聚酯薄膜胶带 Mylar tape 有极佳的抗化学品、抗 化剂和防潮能力,并可 抵受切割及磨损
22
线材介绍:
二 . 线材特性比较
品种
型号
聚氨基甲酸酯漆包 QA、UEW 线
尼龙复合聚氨基甲 QA、UEW 酸酯漆包线
聚酯漆包线
QZ、PEW
尼龙复合聚酯漆包 QZ、PEW 线
温度 等级 130℃ 155℃ 180℃ 130℃ 155℃ 180℃
130℃ 155℃ 180℃
130℃ 155℃ 180℃
具有热溶特性,在电热或热 适用于绕制各类线圈。 风下自粘层溶化使线圈成型。
130℃ 155℃ 180℃
为UEW线加人造纤维丝 包制而成,可降低层间分 布电容,提高绝缘性,以 及降低集肤效应等。
适用于天线线圈,及其他 高频大电流线圈、高频变 压器等。
24
线材介绍:
二 . 线材特性比较
品种
型号
绞线
LITZ
1.铁氧体磁芯 B)镍锌系 ➢ 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO ➢ 电阻率很高(107 ohm-cm) ➢ 工作频率高 ➢ 铁心损耗较锰锌系高 ➢ 居里温度高 ➢ 型式:DR,R,环形等。 ➢ 用途:常模滤波器、储能电感等
6
磁性材料介绍:
2.合金类磁芯 A)硅(矽)钢片 ➢ 极高的磁导率(μi约60000) ➢ 很高的饱和磁通密度(0.6T~1.9T) ➢ 电阻率非常低(取决于硅含量),故适用频率不高 ➢ 成本低廉 ➢ 型式:片状或带状以及经加工后的O型、R型等
变压器基本知识介绍
2.1 一层密绕:布线只占一层,紧密的线与线间没有空隙,整 齐不可交叉堆积(如图6.1)
高频变压器制作方法
2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20% 以内算合格(如图6.2)
2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以 上
低频类变压器制作方法介绍
三、 配线
低频有针脚式和引脚式两种,其配线方法也不 相同(详情参见作业指导书)
低频类变压器制作方法介绍
四、 焊 锡
1. 操作步骤 1.1 将Pin 脚沾适量助焊剂。 1.2 焊锡:将脚插入锡槽,深度如下图所示。 1.3 焊锡后不得有漏焊、虚焊现象且焊锡光亮 2. 注意事项 2.1 焊锡时部间约为2-3秒,如果线包接有保险丝,不可焊得太久 2.2 焊温(作业指导书要求) 2.3 锡温需每隔两个小时测试并记录
变压器材料介绍
三、胶带(Tape)
2.高压测试:在测试条件AC4.0KV,50Hz 1mA 1min 下,将3圈胶 带均匀缠绕在导电圆棒上,使胶带与圆棒紧密接触,高压表 笔一支接圆棒,另一支接触胶带表面,胶带不击穿。
变压器材料介绍
四、漆包线(WIRE)
1.漆包线是一条铜线(或导体)经由处理将凡立水被覆在铜线 表面,由于凡立水有绝缘功能,此时铜线经由缠绕变成线圈, 即可用于电磁感应的各种应用 2.我们常用的漆包线:直焊性聚氨酯漆包线(QA)、聚酯漆包 线(QZ)、聚胺基甲酸脂漆(UEW)、聚脂瓷漆包线(PEW)等 3.漆包线耐热等级分为:A级(105°C)、E级(120°C)、B 级(130°C)、F级(155°C)、H级(180°C) 4.漆包线常识:2UEW 耐温120°C,可以直接焊锡;而PEW 耐 温155°C,180°C,焊锡时须脱漆皮
关于变压器的基础知识
13、变压器调压有哪几种?变压器分接头为何多在高压侧? 变压器调压方式有有载调压和无载调压两种:有载调压是指变压器在运行中可 以调节其分接头位置,从而改变变压器变比,以实现调压目的。有载调压变压 器中又有线端调压和中性点调压二种方式,即变压器分接头在高压绕组线端侧 或在高压绕组中性点侧之区别。 分接头在中性点侧可降低变压器抽头的绝缘水平,有明显的优越性,但要求变 压器运行时其中性点必须直接接地。无载调压是指变压器在停电、检修情况下 进行调节变压器分接头位置,从而改变变压器变比,以实现调压目的。 变压器分接头一般都从高压侧抽头,其主要是考虑: (1)变压器高压绕组一般在外侧,抽头引出连接方便; (2)高压侧电流小些,引出线和分头开关的载流部分导体截面小些,接触不良 的影响好解决。原理上,抽头在哪一侧都可以,要进行经济技术比较,如 500kV大型降压变压器抽头是从220kV侧抽出的,而500kV侧是固定的。
14、什么是变压器的过励磁?变压器的过励磁是怎样产生的? 当变压器在电压升高或频率下降时都将造成工作磁通密度增加,变压器的铁芯 饱和称为变压器过励磁。 电力系统因事故解列后,部分系统的甩负荷过电压、铁磁谐振过电压、变压器 分接头连接调整不当、长线路末端带空载变压器或其他误操作、发电机频率未 到额定值过早增加励磁电流、发电机自励磁等情况都可能产生较高的电压引起 变压器过励磁。
3、变压器在运行中有哪些损失?怎样减少损失? 变压器运行中的损失包括两部分: (1)是由铁芯引起的,当线圈通电后,由于磁力线是交变的,引起铁芯中涡流 和磁滞损耗,这种损耗统称铁损。 (2)是线圈自身的电阻引起的,当变压器初级线圈和次级线圈有电流通过时, 就要产生电能损失,这种损失叫铜损。铁损与铜损的和就是变压器损失,这些 损失与变压器容量、电压和设备利用率有关。 因此,在选用变压器时,应尽量使设备容量和实际使用量一致,以提高设备利 用率,注意不要使变压器轻载运行。
变压器的相关资料
变压器的相关资料简介变压器是一种基础的电气设备,用于改变交流电的电压。
它通过电磁感应的原理,将输入端的电压转换为输出端所需要的电压。
变压器通常由两个或多个线圈组成,其中一个线圈称为主线圈,另一个或其他线圈称为副线圈。
本文将介绍变压器的基本原理、结构和应用领域等相关资料。
基本原理变压器的工作基于电磁感应原理。
当主线圈中有交流电通过时,产生的磁场通过磁感应作用于副线圈上,从而引起副线圈中的电流变化。
根据法拉第电磁感应定律,线圈中的电压与磁通量的变化率成正比。
因此,当主线圈的输入电压变化时,副线圈中的输出电压也会相应变化。
根据变压器的结构,输出电压可以比输入电压高或低,这取决于主副线圈的匝数比例。
结构和工作原理变压器通常由铁心和线圈组成。
铁心由软磁材料制成,以增加磁场的传导能力。
线圈则包绕在铁心上,主线圈和副线圈之间通过磁场相互耦合。
当主线圈中有交流电通过时,产生的磁场通过铁心传导到副线圈中,从而激发副线圈中的电流。
变压器可以分为单相变压器和三相变压器。
单相变压器只有一个主线圈和一个副线圈,用于单相电力传输。
三相变压器由三个主线圈和三个副线圈组成,用于三相电力传输。
变压器的效率通常非常高,达到99%以上。
这是由于变压器没有移动部件,基本上没有能量损耗。
应用领域变压器在各个领域都有广泛的应用。
以下是一些常见的应用领域:电力系统变压器在电力系统中起到重要作用。
它们被用于从发电厂将电能输送到不同的地区,以及在配电站和变电站中将电压升高或降低,以适应不同的需求。
在电力系统中,大型变压器通常用于输电线路,而小型变压器用于从电网供电的设备。
电子设备变压器在各种电子设备中都有应用。
例如,手机充电器中的变压器将交流电压转换为适合手机充电的直流电压。
变压器还被用于供电适配器、计算机设备、电视机和音响系统等。
工业领域在工业领域,变压器被用于供应电动机和其他设备所需的电能。
这些变压器通常具有较高的功率和电压级别。
电气测试和实验室应用在电气测试和实验室应用中,变压器被用于生成需要的电压和电流,并提供所需的电源。
磁性材料基础知识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
四、磁性材料性能分析
4.1 磁化曲线
磁滞性:磁性材
料中磁感应强度B的变
化总是滞后于外磁场 变化的性质&
磁性材料在交变 磁场中反复磁化;其BH关系曲线是一条回形 闭合曲线;称为磁滞回 线&
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
40πI sri2n
2πR
dl
0
0R2I
( 2 x2 R2)3/2
讨论:各种形状电流的磁场
(1)
I
R
B0
o
x 圆环
B0
0I
2R
I1
Bdl L
o
Ii
i
I2
Ink
Ii
3.3 安培环路定理
2. 验证:
1设闭合回路 l 为圆形回路;载流
长直导线位于其中心
B 0I
l
Bdl
2π R
0I dl
2π R
0 I dl 2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 已知 n N I
(2 )
I
半圆
R o
(教材Bp018)40RI
变压器磁芯的种类及应用
变压器磁芯的种类及应用磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
变压器结构简介与工作原理
变压器结构简介与工作原理一、变压器结构简介变压器是一种用来改变交流电压的电气设备,它由磁性材料和绕组组成。
常见的变压器结构主要包括铁芯、一次绕组、二次绕组和绝缘材料。
1. 铁芯:铁芯是变压器的主要结构部分,通常由硅钢片叠压而成。
它的作用是提供一个低磁阻的磁路,使磁场能够有效地传递。
2. 一次绕组:一次绕组是变压器中与输入电源相连的绕组,也称为原边绕组。
它通常由导电材料(如铜线)绕制而成,用于接收输入电源的电能。
3. 二次绕组:二次绕组是变压器中与负载设备相连的绕组,也称为副边绕组。
它的作用是将输入电能转换为适合负载设备使用的电能。
4. 绝缘材料:绝缘材料用于隔离和保护变压器的各个部分,防止电流泄漏和短路等故障发生。
常见的绝缘材料包括绝缘纸、绝缘漆和绝缘胶带等。
二、变压器工作原理变压器的工作原理基于电磁感应定律,即当变化的电流通过绕组时,会在铁芯中产生磁场,从而诱导出相应的电压。
1. 基本原理:变压器的基本原理是利用交流电的变化来产生磁场,进而诱导出电压。
当输入电源的交流电流通过一次绕组时,会在铁芯中产生磁场。
这个磁场会穿过二次绕组,从而在二次绕组中诱导出电压。
2. 变压器方程式:变压器的工作可以通过变压器方程式来描述。
根据变压器方程式,输入电压与输出电压之间的关系可以表示为:V1/N1 = V2/N2,其中V1和V2分别表示输入电压和输出电压,N1和N2分别表示一次绕组和二次绕组的匝数。
3. 变压器的步骤:变压器的工作包括以下几个步骤:a. 输入电源通过一次绕组,产生磁场;b. 磁场穿过铁芯,诱导出二次绕组中的电压;c. 输出电压通过二次绕组传递给负载设备。
4. 变压器的应用:由于变压器可以改变电压的大小,因此广泛应用于电力系统、工业生产和家庭用电等领域。
它可以将高电压输送到远距离,并在终端降低电压以供各种设备使用。
总结:变压器是一种用来改变交流电压的电气设备,由铁芯、一次绕组、二次绕组和绝缘材料等部分组成。
变压器磁芯的种类及应用【最全资料】
变压器磁芯的种类及应用【最全资料】1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms 保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B 值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
变压器及磁性材料基本知识简介
个电阻r1 、 r2。当初次级电流流过r1 、 r2时,要产生铜阻压降ΔU1 、
ΔU2: ΔU1 = I1 r1 -----(1-16) ΔU2 = I2 r2 -----(1-17) 使初级电压降低,E1 = U1 — ΔU1 ;亦使次级负载电压降低, U2= E2 — ΔU2 。导致初次级匝数比不再等于电压比,而等于感应电势之
2
晶石电子
2. 理想变压器的工作的物理过程
理想变压器的工作可以分为三个物理过程:电动生磁,磁动生电,磁动势 平衡。 理想变压器的工作可分为两种状态:空载状态,负载状态。 (1)第一个物理过程——电动生磁(空载状态): 当变压器初级接通交流电源时,在交流电压U1 的作用下,初级回路产生 交变的磁化电流IΦ ,该电流流过初级W1 ,形成磁化磁动势W1 IΦ ,它对铁芯激 磁,于是在铁芯中产生交变磁通Φ0 。这一过程称为电动生磁,就是电流流动 而产生磁通的过程,如图1-1所示。 我们把Φ0称为主磁通。其磁密 Φ0 O 为B 0= Φ0/ SC。 (当电压为正弦波时, O w1 IΦ 磁通亦为正弦波)
U
1
O
w2
O
图1-1
3
晶石电子
(2)第二个物理过程——磁动生电(空载状态) 如图1-2所示,按照电磁感应定律,当线圈中的磁通发生变化,会在线圈两端产生感 应电动势E,感应电动势的大小与线圈的匝数成正比,与磁通的变化率成正比 (E=wdΦ/dt)。 我们知道在第一过程中铁芯里产生了交变磁通Φ0,Φ0交链初级线圈 w1 ,在w1的的两端产生自感电动势E1 。 Φ0又交链次级线圈w2,,在w1的的两端产生互感 电动势E2 。当磁通为正弦波时,由电磁感应公式E=wdΦ/dt可以推导出E1 、 E2 的大小 为: Φ0 E1 =4.44 w1 Φ0 f ------(1-1) E2 =4.44 w2 Φ0 f ------(1-2) w1 E2 = U2 式中: w1 ------初级匝数 E1 U1 w2------次级匝数 w2 Φ0 ------交变磁通(韦伯) f ------磁通变化频率(赫兹) 在理想状态下,初次级电阻为零,自感电动势E1与外电压U1之间的 图1-2 关系为:大小相等,方向相反;次级输出电压U2等于互感电动势E2 。 即: U1 = E1 =4.44 w1 Φ0 f ------(1-3) U2 = E2 =4.44 w2 Φ0 f ------(1-4) 这就是磁通变化而产生感应电动势E1 、 E2,即磁动生电过程。
变压器、电感器的磁性材料介绍与选用原则
科技与创新┃Science and Technology &Innovation·98·2019年第24期文章编号:2095-6835(2019)24-0098-03变压器、电感器的磁性材料介绍与选用原则李文海(厦门柏恩氏电子有限公司,福建厦门361000)摘要:20世纪70年代以来,中国的计算机、电子科技、智能化领域进行了强化与发展,研制出了众多具有先进水平的设备和零部件,其中以非晶态软磁合金为重要的研究代表。
分析了变压器、电感器的磁性材料特性,并说明了常用软磁磁芯的特点及应用,得出了变压器、电感器磁性材料的选用原则,望为同行提供参考。
关键词:软磁材料;磁性能;典型应用;选用原则中图分类号:TM27文献标识码:ADOI :10.15913/ki.kjycx.2019.24.0431软磁材料的主要特性1.1软磁材料的B-H 曲线软磁材料主要的组成物有铁粉、合金粉、锰锌或镍锌氧化物。
软磁材料在外力磁场(H )中会产生与之相关的磁感应强度(B ),磁感应强度(B )随着外力磁场(H )自身的变化而不断变化,产生相应的变化曲线为B -H 曲线。
值得注意的是,磁化曲线是非线性的闭合曲线,会呈现出磁饱和及磁滞两种不同的情况。
软磁材料不同,磁化曲线也不同,其Bs 值也不相同。
但软磁材料不变,其Bs 值也是不变的。
B -H 曲线如图1所示。
图1B -H 曲线1.2软磁材料的磁性能饱和磁感应强度Bs :磁化到饱和状态时的磁通密度或磁感应强度。
剩余磁感应强度Br :从饱和状态去除磁场强度后,剩余的磁感应强度(H 回到0时的B 值)。
矫顽力Hc :软磁材料自身的成分与优劣对于材料磁化的影响,主要表现为被磁化的难易程度。
磁导率μ:在磁滞回线上B 与H 一一对应的数值(B /H )。
初始磁导率μi :指磁性材料的磁导率在静态磁化曲线始端的极限值(即B /H 的极限值,在这里H 值无限趋向零),可表述为:HB0H 0i lim 1→=μμ。
磁性材料基础知识
磁性材料基础知识(入门)磁性材料:概述:磁性是物质的基本属性之一。
磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。
一切物质都具有磁性。
自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。
1.磁性材料的分类,性能特点和用途:铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物。
他们大多具有亚铁磁性。
特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。
饱和磁化强度低,不适合高磁密度场合使用。
居里温度比较低。
2 铁磁性材料:指具有铁磁性的材料。
例如铁镍钴及其合金,某些稀土元素的合金。
在居里温度以下,加外磁时材料具有较大的磁化强度。
3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。
4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。
可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等。
铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。
5软磁材料:容易磁化和退磁的材料。
锰锌铁氧体软磁材料,其工作频率在1K-10M之间。
镍锌铁氧体软磁材料,工作频率一般在1-300MHZ6.金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。
术语:1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。
在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。
2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。
3 磁通密度矫顽力,他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度,使磁感应强度B减小到0时的磁感应强度。
变压器知识点
变压器知识点变压器是一种通过电磁感应原理来改变交流电压的电气设备。
它在电力系统中起到了至关重要的作用,能够将输送电线上的高压电能降低到用户需要的低压,或者将发电机产生的低压电能提升到输电线所需的高压。
变压器的主要组成部分包括铁芯、一组绕组和外壳。
铁芯是由硅钢片组成的,它具有很高的导磁性能,可以集中磁通线圈中,提高磁链接效果。
一组绕组分为初级绕组和次级绕组,它们分别与输入电源和输出负载相连接,通过电流的变化来实现能量的传递和转换。
外壳则起到保护绕组和铁芯的作用,同时也能散热和隔离电路。
变压器的工作原理是通过电磁感应的原理实现的。
当交流电通过初级绕组时,产生的交变磁场通过铁芯传递到次级绕组上,导致次级绕组中的电流也随之变化。
根据法拉第电磁感应定律,绕组中的电流变化会产生感应电动势,从而改变输出电压。
由于变压器有一定的功率损耗,还会产生一定的热量,因此需要散热装置进行散热。
变压器主要有两种工作方式:升压和降压。
升压变压器将输送电线上的低压电能提升到输电线所需的高压,用于远距离输送电能。
降压变压器则将输送线上的高压电能降低到用户所需的低压,用于供应家庭和工业用电。
此外,变压器还能实现电压的稳定和调节,以保证电力系统正常运行。
变压器的性能指标有很多,其中最重要的是变比和效率。
变比指的是变压器的输入电压与输出电压之间的比值,它决定了变压器的电压变换能力。
效率则是指变压器输入功率和输出功率的比值,用来衡量变压器转换能量的效率。
在实际应用中,还需要考虑变压器的容量、绝缘等级和工作温度等因素。
总之,变压器是电力系统中不可或缺的设备,它能够实现电压的变换和变压,为人们的日常生活和工业生产提供稳定可靠的电力供应。
了解变压器的工作原理和性能指标对于电气工程师和电力工作者来说至关重要,可以帮助他们设计和维护安全高效的电力系统。
磁性材料基础知识
互感的大小与两线圈 匝数的乘积和互感磁通所 经磁路的磁导成正比。
3.6 磁链、电感和能量
• 磁场的能量密度 单位体积磁场储能
w 1H B 1 H 211B 2
2 2
2
• 电感储能
A1Li2 1BH dv
µm=i·A
磁偶极矩和磁矩具有相同的物理意义,存在关系:
jm=µ0µm ,µo=4π×10-7H·m-1 ,真空磁导率
2.1 磁性来源
磁化强度M
单位体积磁体内磁偶极子的磁偶极矩矢量和称为磁极化强度Jm ;
J m V jm
W Wb b·m m -22
单位体积磁体磁体内磁偶极子的磁矩矢量和称为磁化强度M
i
LNNNiN2
i i i R m R m
磁路的欧姆定律:
F N H i B l llS R m m
磁路的欧姆定律:
F N H i B l llS R m m
自感 L Ψ i N i Φ N ( F i m ) N ( N i m ) iN 2 m
N ——线圈匝数
I
Ink
i
3.3 安培环路定理
2. 验证:
(1)设闭合回路 l 为圆形回路,
载流长直导线位于其中心
B 0I
lB dl2π2Rπ0IRdl 0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
内部交流报告
物理变压器知识点归纳总结
物理变压器知识点归纳总结导言变压器是一种用来改变交流电压的电气设备,它可以将高压的电能通过电磁感应变换成低压的电能,或者将低压的电能通过电磁感应变换成高压的电能。
变压器在电力工业中起着非常重要的作用,它广泛应用于输电、配电和各种电子设备中。
了解变压器的工作原理和性能指标对于电气工程师和电力工作者来说至关重要。
本文将对变压器的相关知识点进行归纳总结,希望能够帮助读者更好地理解和应用变压器。
一、变压器的基本原理1. 电磁感应原理变压器的工作原理基于电磁感应现象,即当一个磁场发生变化时,就会在周围产生感应电流。
变压器中的主要元件是两个线圈,它们分别被称为原边线圈和副边线圈,原边线圈通常接入电源,副边线圈则接入负载。
当原边线圈中的电流发生变化时,就会在副边线圈中诱导出感应电流,从而改变副边线圈中的电压。
这就实现了电压的改变。
2. 变压器的结构变压器一般由铁芯和线圈组成。
铁芯是用来集中和导出磁场的材料,通常采用硅钢片或铁氧体材料制成。
线圈则是由绝缘导线绕制而成,用来产生主磁场和感应电流。
线圈的绕制方式决定了变压器的变压比,即原边线圈的匝数与副边线圈的匝数之比,这决定了电压的变化情况。
3. 变压器的工作原理变压器通过电磁感应原理来实现电压的变换。
当原边线圈中的电流发生变化时,就会在铁芯中产生主磁场,并诱导出副边线圈中的感应电流,从而改变副边线圈中的电压。
根据变压器的结构组成和工作原理,在实际应用中可以根据需要来设计不同类型的变压器,包括干式变压器、油浸式变压器、自耦变压器等。
二、变压器的性能指标1. 变压器的额定容量变压器的额定容量是指变压器能够持续运行的最大功率。
通常以千伏安(kVA)为单位来表示。
变压器的额定容量决定了它能够承受的负载大小,因此在选择和设计变压器时需要根据实际需求来确定额定容量。
2. 变压器的变压比变压器的变压比是指原边线圈的匝数与副边线圈的匝数之比。
通过变压比可以确定输入和输出电压之间的关系。
磁材基础知识简介
1.磁性材料简介磁性材料是指由过渡金属元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。
根据物质在外磁场中表现出的特性,物质的磁性可分为五类:顺磁性、抗磁性、铁磁性、亚铁磁性、反铁磁性。
我们把顺磁性和抗磁性物质称为弱磁性物质,把铁磁性和亚铁磁性物质称为强磁性物质。
通常所说的磁性材料是指强磁性物质。
磁性材料按磁化后去磁的难易可分为软磁材料和硬磁材料。
磁化后容易去掉磁性的物质叫软磁材料,不容易去磁的物质叫硬磁材料,也称为永磁材料。
软硬磁材料最明显的区别就是矫顽力,一般来讲软磁材料的矫顽力较小,硬磁材料的矫顽力较大。
通常软磁材料的矫顽力小于80 A/m,而永磁材料的矫顽力则大于4000 A/m。
磁性材料按使用又可分为软磁材料、永磁材料和功能磁性材料。
功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料、旋磁材料以及磁性薄膜材料等。
磁性材料的磁化过程可通过磁滞回线来表示。
图1和1’分别为软磁材料和永磁材料的磁滞回线。
其中Bs表示饱和磁感应强度,Br表示剩磁,Hc表示矫顽力。
图中可以看出,软磁材料和硬磁材料最明显的区别就在于,硬磁材料的矫顽力远大于软磁材料。
图1 磁性材料的磁滞回线1:软磁材料的磁滞回线,1’:硬磁材料的磁滞回线;Hc、Hc’:矫顽力;Bs、Bs’:饱和磁感应强度;Br、Br’:剩磁。
1.1 磁性材料各性能参数(1)饱和磁感应强度Bs:是指磁体被磁化至饱和状态时的磁感应强度,其大小取决于材料的成分,与其他外在条件无关。
它所对应的物理状态是材料内部的磁化矢量整齐排列。
(2)剩余磁感应强度Br:磁性材料经磁化至技术饱和,去掉外磁场后所保留的表面场Br, 称为剩余磁感应强度。
简称剩磁,用Br表示,单位为特斯拉(T)或高斯(Gs),换算关系为1 T=10000 Gs。
(3)矫顽力Hc:磁性材料在饱和磁化后,当外磁场退回到零时其磁感应强度B 并不退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场称为矫顽磁场,又称矫顽力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
将式(1-11)于(1-12)相除,再将式(1-8) 、(1-10)的个关系式代入可得: R1 /R2 =(W1/ W2 ) -----(1-13) 或 R2 /R1 =(W2/ W1) -----(1-14) 由式(1-13) 、(1-14)可知,初次级的阻抗等于匝数比的平方。若将(113)式移项得: R1 =(W2/ W1) R2 -----(1-15) 这就是变压器变阻的原理。 例如收音机中得输出变压器,其次级负载若为R2 =4Ω ,变压器匝数之比 为35.35,代入(1-15)式中,得到R1 = 5000Ω,就是说在初级看起来等 效于5000Ω。
5
(3)第三个物理过程 第三个物理过程——初、次级磁动势平衡过程(负载状态) 第三个物理过程 初 次级磁动势平衡过程(负载状态) 当次级接上负载电阻R2后,次级回路在E2 的作用下产生感应电流I2,(因为它流 过负载,故又称负载电流), I2流过w2 ,产生反磁势I2 w2 ,进而产生反磁通Φ2 , 该磁通与初级磁通方向相反,使初级磁通减少。此时,初级回路电流增大,即初级 产生一个新的电流I1,,,新的磁势w1I1,新的磁通Φ1 ,与w2 I2 、 Φ2抗衡,维持原磁通Φ不 变。这两个磁通Φ1与Φ2 ,两个磁动势I1w1与I2w2 ,大小相等,方向相反。 即: Φ1 = Φ2 ------(1-5) Φ0 w1I1 = w2 I2 -----(1-6) Φ2 IΦ Φ1 这一物理过程称为磁动势平衡过程,如图1-3所示。 O I2 w1 初级产生的一个新的电流I1,是随I2的产生而产生, R2 I1 Φ1 I 1 I 1 随I2的消失而消失,犹如镜面上光线的反射关系, U1 w2 故称I1为I2映射电流。工程计算上常把映射电流写成 O I2 ,式(1-6)可改写成: w1 I2 = w2 I2 -----(1-7)
青岛晶石电子有限公司
做有品之人,行有品之事
每一个立面都孕育太阳 这是“晶”的境界 孕育太阳的每一个境界 这是“品”的信念 “品”,成就了晶石的灵魂 有品的人格才能赢得尊重 有品的事业必将屹立不倒
1
变压器及磁性材料 基本知识简介
2
变压器的工作原理
一.理想变压器的工作原理 理想变压器的工作原理
1.什么是理想变压器 什么是理想变压器 符合下列条件者,称之为理想变压器: (1)初次级线圈的电阻为零,因而初次级回路无铜阻压降, 无功率损耗 (2)铁芯无损耗,变压器无温升。 (3)铁芯的磁导率很大,因而初次级之间无漏磁,即初 级产生的磁通全部穿过次级,次级产生的磁通全部穿 过初级。 (4)铁芯无磁饱和现象。 我们引进理想变压器的概念,是为了使变压器工作过程 的讨论简单明了。
15
2 、工频电源变压器等效电路
由于它的工作频率甚低,漏感与分布电容的影响常常可以忽略,得到简化等 效电路:
r1
r 2
II
I1
I1
I2
II IФ
L1
IФ
U1
IC
图 1-7
rC
R2
U2
图 1-8
图中,I2流过R2 ,将使 R2发 热;Ic流 过等效电阻 rC,将使铁芯发热。这现象为电流在作功, 所以称I2 、 IC为有功电流。I2 、 IC合成为I1 , I1为初级电流的有功分量。 I1 = I2 + IC -----(1-20) 流过初级电感L1的电流IФ ,在铁芯内产生磁通Φ 0 ,故称IФ为激磁电流(或称为磁化电流)。 它的作用是把电源能量变成磁能储存在初级线圈和铁芯内,并不做功。因为IФ是初级电流的无 功分量,在相位上与有功分量电流I1及初级电压U1成90°相位角,如图1-8所示。 I1与IФ合成初级 总电流II ,由于I1与IФ相位差90°,其关系不是代数和,而是矢量和,即: I1 =( IФ + I1 ) 1/2 -----(1-21)
3
2. 理想变压器的工作的物理过程
理想变压器的工作可以分为三个物理过程:电动生磁,磁动生电,磁动势 平衡。 理想变压器的工作可分为两种状态:空载状态,负载状态。 电动生磁(空载状态): (1)第一个物理过程——电动生磁(空载状态): 当变压器初级接通交流电源时,在交流电压U1 的作用下,初级回路产生 交变的磁化电流IΦ ,该电流流过初级W1 ,形成磁化磁动势W1 IΦ ,它对铁芯激 磁,于是在铁芯中产生交变磁通Φ0 。这一过程称为电动生磁,就是电流流动 而产生磁通的过程,如图1-1所示。 我们把Φ0称为主磁通。其磁密 Φ0 O 为B 0= Φ0/ SC。 (当电压为正弦波时, O w1 IΦ 磁通亦为正弦波)
U
1
O
w2
O
图1-1
4
(2)第二个物理过程 第二个物理过程——磁动生电(空载状态 磁动生电( 第二个物理过程 磁动生电 空载状态) 如图1-2所示,按照电磁感应定律,当线圈中的磁通发生变化,会在线圈两端产生感 应电动势E,感应电动势的大小与线圈的匝数成正比,与磁通的变化率成正比 (E=wdΦ/dt)。 我们知道在第一过程中铁芯里产生了交变磁通Φ0,Φ0交链初级线圈 w1 ,在w1的的两端产生自感电动势E1 。 Φ0又交链次级线圈w2,,在w1的的两端产生互感 电动势E2 。当磁通为正弦波时,由电磁感应公式E=wdΦ/dt可以推导出E1 、 E2 的大小 为: Φ0 E1 =4.44 w1 Φ0 f ------(1-1) E2 =4.44 w2 Φ0 f ------(1-2) w1 E2 = U2 式中: w1 ------初级匝数 E1 U1 w2------次级匝数 w2 Φ0 ------交变磁通(韦伯) f ------磁通变化频率(赫兹) 在理想状态下,初次级电阻为零,自感电动势E1与外电压U1之间的 图1-2 关系为:大小相等,方向相反;次级输出电压U2等于互感电动势E2 。 即: U1 = E1 =4.44 w1 Φ0 f ------(1-3) U2 = E2 =4.44 w2 Φ0 f ------(1-4) 这就是磁通变化而产生感应电动势E1 、 E2,即磁动生电过程。
U1
L1
rc
U2
14
图中:
R2 = (W1/ W2 )× R2 -----(反射到初级的次级负载电阻) × C2 = (W2/ W1 )× C2 -----(反射到初级的次级分布电容) × r2 = (W1/ ×W2 )× r2 ---------(反射到初级的次级铜阻) × Ls2 = (W1/ ×W2 )× Ls 2-------(反射到初级的次级漏感) × U2 = (W1/ ×W2 )× U2 -----(反射到初级的次级负载电压) × I2 = (W1/ ×W2 )× I2 -----(反射到初级的次级负载电流) × 各种用途的电子变压器,分布参数的影响各不一样。工程计算 中,对变压器的等效电路常常随着工作频率的、阻抗、技术指标 要求高低等等不同而加以简化。
Ls=
w Φs / I -----(1-19) -----(1 19) (1-
漏磁的影响,相当于在理想变压器的初次级回路中引入漏感Ls1 、 Ls2 ,初次级 电流在漏感上产生压降,使初次级感应电势E1 、 E2及负载电压降低。漏感抗是随着 工作频率增大而增大,对于工频变压器,由于工作频率低,一般可以忽略不计其影响 但对于音频变压器、高频变压器、如何减少漏感带来的影响则是一个重要课题。
9
二、变压器的实际工作状态
实际工作的变压器,初次级线圈有电阻,铁心由损耗,初次级间由漏磁, 层间、匝间有分布电容。这些参数,对变压器的工作带来各种各样的影响。
r1
Ls1
C1
Ls2 rc
r2
C2 R2
U1
图 1-5
10
1、初、次级铜阻及其影响 、
初、次级导线有电阻,相当于在理想变压器处、次级回路分别引入一 个电阻r1 、 r2。当初次级电流流过r1 、 r2时,要产生铜阻压降ΔU1 、 ΔU2: ΔU1 = I1 r1 -----(1-16) ΔU2 = I2 r2 -----(1-17) 使初级电压降低,E1 = U1 — ΔU1 ;亦使次级负载电压降低, U2= E2 — ΔU2 。导致初次级匝数比不再等于电压比,而等于感应电势之
图1-4
(b)
变压器如图1-4所示,从1-2两端往初级看,存在于初级两端的电压U1除以 初级电流I1 ,等效于一个电阻R1 ,称R1为初级输入阻抗。它的物理意义表示, 从图a初级看入,整个线框内的变压器电路等效为图b中的一个电阻R1 。
R1 =U1 / I1-- ----(1-11)
变压器次级负载电阻为R2 ,
(1)变流原理:将式(1-6)移项可得:
I1 /I2 =W2 / W1 -----(1-10)
由此可见,初次级电流与初次级匝数成反比。即匝数多的一侧电流小, 匝数少的一侧电流大,这就是变流原理。
7
(3)变阻原理: 变阻原理
1O 1O O
I1 U1
2 O O
I2 R2
O
I1 U1 R1
U2
O
2 O
(a)
16
电子变压器的基本结构及常用材料
一.电子变压器的基本结构 电子变压器的基本结构
1.铁芯(磁芯) 铁芯(磁芯) 铁芯
铁芯(磁芯)构成变压器的磁路,是变压器结构的基础。 铁芯(磁芯)的基本结构型式为:壳式、心式、环行。 壳式铁芯一般用于小功率变压器,其磁辐射较少,但外磁场对其影响较大。用铁氧体 或金属粉末压制成的罐形或盒形磁芯,也属于这种结构,但由于其本身的屏蔽作用,漏 磁及外磁场的影响均很小,在高频变压器中广泛应用 。 心式铁芯用于功率较大的变压器中,外磁场对其影响较小,用于小信号输入变压器可 减少干扰。 环行铁芯一般用于中频、高频变压器中。这种结构能充分利用铁芯材料的磁性能。它 的漏磁最小,外磁场对其影响也最小。 铁芯的加工方法,一般可分为冲片式和卷绕式(金属粉末及铁氧体磁芯则是压制或压 制烧结而成)