分离定律与自由组合定律的比较

合集下载

基因的分离定律和自由组合定律区别 有哪些不同

基因的分离定律和自由组合定律区别 有哪些不同

基因的分离定律和自由组合定律区别有哪些不同
基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况;而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况。

基因的分离定律和自由组合定律区别有哪些不同
1基因的分离定律和自由组合定律区别
1、研究性状:
基因的分离定律:1对;
基因的自由组合定律:2对或n对(n>2,下同)。

2、等位基因对数:
基因的分离定律:1对;
基因的自由组合定律:2对或n对。

3、等位基因与染色体的关系:
基因的分离定律:位于1对同源染色体上;
基因的自由组合定律:分别位于2对或2对以上同源染色体上。

4、细胞学基础(染色体的活动):
基因的分离定律:减数第一次分裂后期,同源染色体分离:
基因的自由组合定律:减数第一次分裂后期,非同源染色体自由组合;减数第一次分裂前期,同源染色体的非姐妹染色单体间交叉互换。

5、遗传本质:
基因的分离定律:等位基因分离:
基因的自由组合定律:非同源染色体上的非等位基因的重组互不干扰。

2基因的分离定律和自由组合定律的联系
1、在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体2、分离定律是最基本的遗传定律,是自由组合定律的基础。

如何验证自由组合定律和分离定律

如何验证自由组合定律和分离定律

如何验证自由组合定律和分离定律一、自由组合定律和分离定律的概念自由组合定律和分离定律是概率论中的两个重要定理。

自由组合定律指出,从n个不同元素中任取m个元素的组合数等于从n个不同元素中任取m个元素的排列数除以从m个不同元素中任取m个元素的排列数。

即C(n,m)=P(n,m)/P(m,m)。

分离定律则是指,对于任意两个事件A和B,有P(A∩B)=P(A|B)×P(B)=P(B|A)×P(A)。

二、验证自由组合定律1. 理论推导假设有n个不同元素,需要从中选出m个进行组合。

根据定义,从n 个不同元素中任取m个元素的排列数为P(n,m),即n×(n-1)×...×(n-m+1)。

而从m个不同元素中任取m个元素的排列数为P(m,m),即m×(m-1)×...×2×1。

因此,根据自由组合定律,从n个不同元素中任取m个元素的组合数为C(n,m)=P(n,m)/P(m,m)=(n×(n-1)×...×(n-m+1))/(m×(m-1)×...×2×1)。

2. 实际计算为了验证自由组合定律,可以通过实际计算来比较理论值和实际值是否相等。

例如,假设有10个不同元素,需要从中选出3个进行组合。

根据自由组合定律,从10个不同元素中任取3个元素的组合数为C(10,3)=P(10,3)/P(3,3)=(10×9×8)/(3×2×1)=120。

可以通过枚举所有可能的组合来验证这一结果。

共有C(10,3)=120种不同的组合方式。

因此,如果实际计算得到的结果也是120,则可以证明自由组合定律成立。

三、验证分离定律1. 理论推导对于任意两个事件A和B,根据条件概率公式有P(A∩B)=P(A|B)×P(B)和P(A∩B)=P(B|A)×P(A)。

自由组合和分离定律

自由组合和分离定律

自由组合和分离定律
自由组合定律:在进行组合时,元素之间的自由性质允许它们以多种不同的方式组合,从而形成不同的结构或组合体。

这种组合的灵活性使得我们可以从有限的元素集合中创建
出无限可能的组合。

自由分离定律:在进行分离或解构时,组合体或结构可根据自由性质被分解成其组成
的各个独立元素。

这种分离的自由使得我们可以将复杂的系统或组合体分解为可独立处理
的部分,以便更好地理解或重新组合它们。

在这两个定律中,自由性质扮演了关键的角色。

它们描述了组合和分离的过程中元素
之间的灵活性和独立性,并为我们提供了进行创造性思考和创新的空间。

需要注意的是,
自由并非无限制的,我们仍需遵守一定的规则和限制,以确保组合或分离的过程能够成功
达到预期的目标。

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况(重点指出了等位基因之间是互相独立的.);而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况(重点指出非同源染色体上的非等位基因是可以任意组合的)。

基因的分离定律是基因的自由组合定律的基础,基因的自由组合定律中的每对等位等位基因都要相互分离,这些非等位基因才能进行自由组合。

基因的分离定律和自由组合定律都发生在减数分裂过程中,而且发生的时间也是相同的。

1、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。

(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。

3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。

5、显性基因:控制显性性状的基因,叫做显性基因。

一般用大写字母表示,豌豆高茎基因用D表示。

6、隐性基因:控制隐性性状的基因,叫做隐性基因。

一般用小写字母表示,豌豆矮茎基因用d表示。

7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。

(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。

显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。

等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。

D∶d=1∶1;两种雌配子D∶d=1∶1。

)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。

9、表现型:是指生物个体所表现出来的性状。

10、基因型:是指与表现型有关系的基因组成。

11、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。

自由组合定律和分离定律的区别

自由组合定律和分离定律的区别

自由组合定律和分离定律的区别
自由组合定律和分离定律是数学中的两个重要概念,它们在集合论中有着广泛的应用。

虽然它们都是关于集合的运算法则,但它们的定义和应用场景却有着很大的不同。

自由组合定律是指,对于任意的集合A、B和C,有(A∪B)∪C = A∪(B∪C)。

这个定律的意思是,当我们对多个集合进行并集运算时,可以任意选择先进行哪些并集运算,最终得到的结果是相同的。

例如,对于集合A={1,2}、B={2,3}和C={3,4},我们可以先计算(A∪B)∪C,也可以先计算A∪(B∪C),最终得到的结果都是{1,2,3,4}。

分离定律则是指,对于任意的集合A和B,有A∩(A∪B) = A。

这个定律的意思是,当我们对一个集合进行交集运算时,如果其中一个集合是另一个集合的子集,那么交集的结果就是这个子集本身。

例如,对于集合A={1,2,3}和B={3,4,5},我们有A∩(A∪B)={1,2,3}∩{1,2,3,4,5}={1,2,3}。

自由组合定律和分离定律的区别在于它们的应用场景和意义不同。

自由组合定律主要用于多个集合的并集运算,它告诉我们在进行并集运算时可以任意选择先进行哪些运算,最终得到的结果是相同的。

而分离定律则主要用于集合的交集运算,它告诉我们当一个集合是另一个集合的子集时,交集的结果就是这个子集本身。

自由组合定律和分离定律是数学中的两个重要概念,它们在集合论
中有着广泛的应用。

虽然它们都是关于集合的运算法则,但它们的定义和应用场景却有着很大的不同。

了解它们的区别和应用,有助于我们更好地理解和应用集合论中的相关知识。

基因的分离定律和基因的自由组合定律

基因的分离定律和基因的自由组合定律

基因的分离定律和基因的自由组合定律的区别和联系
基因的分离定律基因的自由组合定律
区别
研究性状1对2对或n对(n>2,下同)
等位基因对数1对2对或n对
等位基因与染色
体的关系
位于1对同源染色体上分别位于2对或2对以上同源染色体上
细胞学基础
(染色体的活动)
减数第一次分裂后期,同
源染色体分离
减数第一次分裂后期,非同源染色体自由组合;减数第
一次分裂前期,同源染色体的非姐妹染色单体间交叉互

遗传本质等位基因分离非同源染色体上的非等位基因的重组互不干扰
F1
基因对数12或n
配子类型
及其比例
222或2n
1:1数量相等
配子组合数442或4n
F2
基因型种数332或3n
表现型种数222或2n
表现型比例3:19:3:3:1[(3:1)2]或(3:1)n
F1




基因型种数222或2n
表现型种数222或2n
表现型比例1:11:1:1:1或(1:1)n
联系①在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。

②分离定律是最基本的遗传定律,是自由组合定律的基础。

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律引言基因是生物遗传信息的基本单位,它决定了个体的遗传特征。

基因的分离定律和自由组合定律是遗传学的基本原理,对于理解基因的传递和变异具有重要意义。

本文将详细探讨基因的分离定律和自由组合定律的概念、实验证据以及在实际应用中的意义。

I. 基因的分离定律基因的分离定律是指在杂交过程中,父本的两个基因分离并独立地传给子代的定律。

这一定律由格里高利·孟德尔在19世纪提出,并通过豌豆杂交实验得到了验证。

A. 孟德尔的豌豆实验孟德尔通过对豌豆的杂交实验,发现了基因的分离定律。

他选取了具有明显差异的性状进行杂交,例如花色、种子形状等。

通过连续进行多代的杂交实验,孟德尔观察到了一些规律性的现象。

B. 孟德尔定律的内容孟德尔总结出了三个基本定律: 1. 第一定律:也称为单因素遗传定律或分离定律。

即在杂交过程中,两个互相对立的基因副本(等位基因)分别来自于父本的两个基因组合,并独立地传给子代。

这就保证了基因的纯合性和杂合性的维持。

2. 第二定律:也称为双因素遗传定律或自由组合定律。

即两个不同的性状在杂交过程中独立地传递给子代。

这说明基因在遗传过程中是相互独立的。

3. 第三定律:也称为自由组合定律的互换定律。

即在同一染色体上的基因通过互换(交叉互换)来进行重组,从而形成新的基因组合。

C. 孟德尔定律的意义孟德尔的豌豆实验揭示了基因的分离和自由组合的规律,为后续的遗传学研究奠定了基础。

这些定律对于理解基因的传递、变异以及遗传规律具有重要意义。

此外,孟德尔的定律还为遗传育种提供了理论依据,对农业和生物学领域产生了深远的影响。

II. 自由组合定律自由组合定律是指在杂交过程中,不同染色体上的基因在配子形成过程中独立地组合的定律。

这一定律由托马斯·亨特·摩尔根等科学家在20世纪初通过果蝇实验得到了验证。

A. 摩尔根的果蝇实验摩尔根通过对果蝇的杂交实验,发现了基因的自由组合定律。

孟德尔的分离定律和自由组合定律

孟德尔的分离定律和自由组合定律

孟德尔的分离定律和自由组合定律全文共四篇示例,供读者参考第一篇示例:孟德尔的分离定律和自由组合定律是遗传学的基石,揭示了遗传因素在后代中如何传递和表现的规律。

这两个定律的发现使得孟德尔成为遗传学之父,并为后来的基因学奠定了基础。

在本文中,我们将深入探讨这两个定律的原理和意义。

孟德尔的分离定律是指在杂交实验中,亲本的遗传因素在子代中以特定的比例进行分离,并且保持独立的传递。

这个定律是通过孟德尔对豌豆植物的杂交实验中发现的。

他发现,在某些特定的性状上,比如颜色和形状,纯合子亲本的基因会在子代中以3:1的比例分离。

这就意味着,一个亲本植物携带的两种基因会在子代中被分开,而且每个子代仅携带其中的一种。

这一发现揭示了遗传因素在后代中是如何被传递和表现的,并为后来的基因概念奠定了基础。

分离定律的意义在于它揭示了遗传因素如何在后代中传递和表现,以及遗传信息是如何被维持和变异的。

这一定律的发现对于后来的遗传学研究起到了巨大的影响,帮助科学家们理解了遗传学中一些重要的概念,比如基因的概念和表现型与基因型之间的关系。

通过这一定律,我们可以更好地了解生物体中的遗传信息如何被传递和演化,以及遗传变异是如何产生的。

另一个重要的定律是孟德尔的自由组合定律。

这个定律是指在杂交实验中,不同性状的遗传因素在子代中以自由组合的方式出现,而且各种性状之间是独立的。

也就是说,一个亲本植物携带的不同性状的基因会在子代中以各种可能的组合方式出现,而且它们之间是相互独立的。

这一发现帮助科学家们理解了遗传因素在后代中的组合规律,以及不同基因之间的互相作用。

自由组合定律的意义在于它揭示了遗传因素之间的独立性和多样性,帮助科学家们更好地理解了遗传因素在后代中的表现和传递。

通过这一定律,我们可以更深入地了解遗传因素之间的相互作用和影响,以及它们在生物体中是如何产生多样性和适应性的。

第二篇示例:孟德尔的分离定律和自由组合定律是遗传学的两个重要定律,是植物遗传学的创始人孟德尔通过对豌豆杂交实验的研究发现的。

分离定律和自由组合定律的区别和联系

分离定律和自由组合定律的区别和联系

分离定律和自由组合定律的区别和联系哎呀,这可是个大问题啊!今天咱们就来聊聊分离定律和自由组合定律的区别和联系。

这两个定律可是遗传学里的重要理论,搞懂了它们,就能更好地理解生物的遗传规律。

我们来看看什么是分离定律。

分离定律是指在一对相对性状的遗传过程中,子代个体中出现了与亲代不同的表现型。

简单来说,就是父母都是Aa,生出来的孩子有50%可能是AA,50%可能是aa。

这个规律是孟德尔在研究豌豆杂交实验时发现的。

你看,孟德尔就像是一个神奇的魔法师,通过观察豌豆的生长过程,发现了遗传的奥秘。

接下来,我们再来说说自由组合定律。

自由组合定律是指在一对相对性状的遗传过程中,子代个体中出现了与亲代不同的表现型,且这些表现型之间互不影响。

也就是说,如果父母都是Aa,那么他们的孩子可能是AA、Aa或者aa,而且这些表现型之间没有优先级关系。

这个规律同样是孟德尔在研究豌豆杂交实验时发现的。

你看,孟德尔又像是一个大魔术师,用豌豆展示了遗传的多样性。

现在我们知道了分离定律和自由组合定律的基本概念,那么它们之间有什么联系呢?其实,这两个定律是相辅相成的。

分离定律告诉我们,每个基因都有自己的表现型,而自由组合定律告诉我们,这些基因之间是可以相互独立的。

换句话说,自由组合定律是在分离定律的基础上进一步扩展了遗传规律。

那么,这两个定律有什么应用价值呢?其实,它们在生物学、医学等领域都有着广泛的应用。

比如,在基因工程中,我们可以通过改变基因的序列来制造出新的生物品种;在癌症研究中,我们可以通过分析基因突变来预测疾病的发生风险。

所以说,了解这两个定律对于我们认识生物世界、改善人类生活都有很大的帮助。

我们再来总结一下今天学到的知识。

分离定律和自由组合定律是遗传学里的两个重要理论,它们分别描述了基因在遗传过程中的表现形式和相互关系。

虽然这两个定律看似复杂,但只要我们用一种通俗易懂的方式去理解它们,就会发现它们其实是非常有趣的。

希望通过今天的学习,大家对遗传学有了更深入的了解,也更加热爱生命科学这个神奇的领域。

分离定律和自由组合定律具有相同的细胞学基础

分离定律和自由组合定律具有相同的细胞学基础

【深度探讨】分离定律和自由组合定律具有相同的细胞学基础一、引言在遗传学中,分离定律和自由组合定律是两个基本概念,它们为我们解释遗传现象提供了重要的理论支持。

然而,有趣的是,这两个定律具有相同的细胞学基础,这一观点在遗传学的研究中引起了热烈的讨论。

本文将从细胞学的角度出发,深入探讨分离定律和自由组合定律的内在联系,以及它们在遗传学中的重要意义。

二、分离定律和自由组合定律的细胞学基础在介绍分离定律和自由组合定律的细胞学基础之前,我们首先需要了解两个重要的概念:减数分裂和染色体。

1. 减数分裂减数分裂是有丝分裂的特殊形式,它只发生在生殖细胞(例如精子和卵子)中。

在减数分裂过程中,染色体按照一定的规律进行分离和组合,最终形成成熟的生殖细胞。

这一过程是遗传信息传递的重要环节,也是分离定律和自由组合定律得以解释的基础。

2. 染色体染色体是细胞核中的一种结构,它携带着遗传信息并参与遗传物质的传递和组合。

在生殖细胞的形成过程中,染色体会发生特殊的排列和分离现象,这为分离定律和自由组合定律的产生提供了解释。

综合以上两点,我们可以清晰地看到,分离定律和自由组合定律的细胞学基础都是减数分裂和染色体的特殊结构和功能。

在减数分裂过程中,染色体按照一定的规律进行分离和组合,从而形成成熟的生殖细胞,这一过程正是分离定律和自由组合定律得以解释的基础。

三、分离定律和自由组合定律的联系基于上述细胞学基础,我们可以进一步探讨分离定律和自由组合定律之间的联系。

分离定律是指在杂合子的第一代后代中,纯合子分离的规律。

自由组合定律则是指两对基因的联合不影响其他两对基因的分离组合规律。

虽然它们描述的是不同的遗传现象,但是它们的细胞学基础相同,都是基于减数分裂和染色体的特殊结构和功能。

具体来说,分离定律描述了在生殖细胞的形成过程中,染色体上的两个基因会分离并随机组合成为生殖细胞的一部分。

而自由组合定律则是描述了染色体上的两对不同基因,它们之间的组合是独立的,不会相互影响。

上海高中生物基因的分离定律和基因的自由组合定律的区别和联系

上海高中生物基因的分离定律和基因的自由组合定律的区别和联系

学习必备欢迎下载
上海高中生物——基因的分离定律和基因的自由组合定律的区别和联系
基因的分离定律基因的自由组合定律
区别
研究性状1对2对或n对(n>2,下同)
等位基因对数1对2对或n对等位基因与染色体的关系位于1对同源染色体上分别位于2对或2对以上同
源染色体上
细胞学基础
(染色体的活动)
减数第一次分裂后期,同源
染色体分离
减数第一次分裂后期,非同
源染色体自由组合;减数第
一次分裂前期,同源染色体
的非姐妹染色单体间交叉
互换
遗传本质等位基因分离非同源染色体上的非等位
基因的重组互不干扰
F
1
基因对数12或n
配子类型
及其比例
222或2n
1:1数量相等配子组合数442或4n
F
2
基因型种数332或3n
表现型种数222或2n
表现型比例3:19:3:3:1[(3:1)2]或(3:1)
n
F
1




基因型种数222或2n
表现型种数222或2n
表现型比例1:11:1:1:1或(1:1)n
联系①在形成配子时,两个基因定律同时其作用。

在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。

②分离定律是最基本的遗传定律,是自由组合定律的基础。

自由组合定律和分离定律的区别

自由组合定律和分离定律的区别

自由组合定律和分离定律的区别自由组合定律和分离定律是概率论中常用的两个定律,它们在概率计算和统计推断中起着重要的作用。

虽然这两个定律都涉及到事件的组合,但它们之间还是存在一定的区别。

本文将从几个方面分析自由组合定律和分离定律的区别。

一、定义自由组合定律是指在一组元素中任意选取若干个元素,不考虑其顺序,共有多少种组合方式的规律。

具体来说,设有n个不同的元素,从中任意选取m个元素的组合数为:C(n, m) = n! / (m! * (n-m)!)其中,n!表示n的阶乘,即n*(n-1)*...*2*1,m!表示m的阶乘,即m*(m-1)*...*2*1,(n-m)!表示n-m的阶乘,即(n-m)*(n-m-1)*...*2*1。

分离定律是指将一个事件分解成两个互相独立的事件,然后计算这两个事件的概率相乘得到原事件的概率。

具体来说,设A和B是两个互相独立的事件,那么A和B的交集的概率为:P(A ∩ B) = P(A) * P(B)二、适用条件自由组合定律适用于从一组元素中任意选取若干个元素的情况,不考虑其顺序。

例如,在一批商品中任意选取3件商品的组合数,或者在一组人员中任意选取5个人的组合数等等。

分离定律适用于将一个事件分解成两个互相独立的事件的情况。

例如,从一批产品中抽取两个产品,分别检测它们的合格率,然后计算两个产品都合格的概率等等。

三、计算方法自由组合定律的计算方法比较简单,只需要根据公式计算组合数即可。

例如,在一组人员中任意选取5个人的组合数为:C(n, 5) = n! / (5! * (n-5)!)分离定律的计算方法需要先将事件分解成两个互相独立的事件,然后计算它们的概率相乘。

例如,在一批产品中抽取两个产品,分别检测它们的合格率,设A表示第一个产品合格,B表示第二个产品合格,则两个产品都合格的概率为:P(A ∩ B) = P(A) * P(B)四、应用范围自由组合定律和分离定律都有着广泛的应用范围。

分离定律和自由组合定律的区别

分离定律和自由组合定律的区别

分离定律和自由组合定律的区别在数学及其抽象概念中,分离定律和自由组合定律二者都是极为重要的定律,在研究系统的特性和构成上发挥着重要作用,而两者间还有一定区别。

首先要深入理解两者的区别,就需要从定义出发。

分离定律的定义是:若在一个非空集合中任取两个不同的元素,则能从该集合中抽取出一个子集,使得抽取出的子集中既不包含这两个元素的任何联合的模式,也不包含这两个元素的任何相似的模式。

自由组合定律的定义则是:任何数学系统中,一个集合里的所有元素,任意组合都能产生新元素。

因此,最大的不同是,自由组合定律认为可以任意组合,而分离定律则认定有些元素之间不能组合形成新元素。

这句话就可以概括两者的核心区别:自由组合法定义的是可以形成新元素,而分离定律则定义不可以形成新元素。

换言之,自由组合定律是一种把集合中的元素连接起来,分离定律则是把集合中的元素相互分离开来。

其次,两个定律还有一定的应用差别。

自由组合定律可以被广泛应用于抽象代数中,尤其是在群论(group theory)和环论(ring theory)中,它能够用来描述特定的群或环的特性,产生新的实体;而分离定律则应用较少,多用于严格的概念证明过程,当中的变量之间的依赖关系,可以把它们分离出来,以达到相应的目的。

此外,分离定律和自由组合定律还有一些本质区别。

分离定律是一种离散性,也就是在一个集合中元素是相互分离的,但自由组合定律却是一种连续性,也就是元素不只能分离,还可以通过组合形成新元素,形成新的实体。

最后,分离定律和自由组合定律在数学抽象概念上可以被抽象为一种完全分离或自由组合的模型,可以帮助我们更好的理解不同的数学系统,从而理解其内部的结构和物理机制。

从上述内容来看,分离定律和自由组合定律之间存在一定的区别,由于它们在研究系统构成和特性中有不同的作用,因此这类差异十分重要,应当被重视,否则就会造成混淆。

综上所述,不管在抽象的理论上或是应用性的概念上,分离定律和自由组合定律二者之间的差异都是值得我们重视的,二者存在着不可替代的关系,如何更好的应用它们两种,也是数学研究中未来要研究的一个方向。

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系

基因分离定律和自由组合定律的区别与联系基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况(重点指出了等位基因之间是互相独立的.);而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况(重点指出非同源染色体上的非等位基因是可以任意组合的)。

基因的分离定律是基因的自由组合定律的基础,基因的自由组合定律中的每对等位等位基因都要相互分离,这些非等位基因才能进行自由组合。

基因的分离定律和自由组合定律都发生在减数分裂过程中,而且发生的时间也是相同的。

1基因的分离规律知识点1、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。

(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。

3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。

5、显性基因:控制显性性状的基因,叫做显性基因。

一般用大写字母表示,豌豆高茎基因用D表示。

6、隐性基因:控制隐性性状的基因,叫做隐性基因。

一般用小写字母表示,豌豆矮茎基因用d表示。

7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。

(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。

显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。

等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。

D∶d=1∶1;两种雌配子D∶d=1∶1。

)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。

9、。

孟德尔两大定律的比较和应用

孟德尔两大定律的比较和应用

生8种配子,AaBbCC产生 4 种配子。
②再求两亲本配子间的结合方式。由于两性配子间结合是随
机的,因而AaBbCc与AaBbCC配子间有8×4=32种结合方式。
突破点1
突破点2
(3)基因型类型及概率的问题
问题举例 计算方法
可分解为三个分离定律问题:
AaBbCc 与 AaBBCc Aa×Aa→后代有3种基因型(1AA∶2Aa∶1aa)
突破点1 突破点2
1 并指 2 1 1 两病都患[ × ] 4 2 3 1 只患并指[ × ] 4 2
1 3 1 1 1 率= × + × = 。(5)后代中患病的概率为:1-全正常(非 2 4 2 4 2 1 3 5 并指且非白化病 ) = 1 - × = 或只患并指+只患白化病+ 2 4 8 3 1 1 5 两病都患= + + = 。 8 8 8 8
答案
3 (1) 8
1 (2) 8
1 (3) 16
1 (4) 2
5 (5) 8
突破点1
突破点2
当两种遗传病之间具有 “ 自由组合 ” 关系时,各种患病情况的 概率如表:
序号
1 2
类 型
患甲病的概率m 患乙病的概率n 只患甲病的概率 只患乙病的概率 同患两种病的概率 只患一种病的概率 患病概率
计算公式
突破点1 突破点2
4.一个正常的女人与一个并指 (Bb)的男人结婚,他们生了一个
白化病且手指正常的孩子。求再生一个孩子: (1)只患并指的概率是________。
(2)只患白化病的概率是________。
(3)既患白化病又患并指的男孩的概率是________。
(4)只患一种病的概率是________。 (5)患病的概率是________。

分离定律和自由组合定律的区别和联系

分离定律和自由组合定律的区别和联系

分离定律和自由组合定律的区别和联系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!分离定律和自由组合定律是代数运算中两个重要的定律,在实际数学问题解决过程中应用广泛。

分离定律和自由组合定律的比较

分离定律和自由组合定律的比较
基因型
2种,1:1
表现型
2种,1:1
联系
分离定律和自由组合定律的比较
分离定律
自由组合定律


研究性状
一对相对性状
两对或两对以上相对性状
等位基因对数
一对
两对或两对以上
F1配子类型及比例
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
F2
基因型
3种,1:2:1
9种,(1: 2:1)2或3n种,(1: 2:1)n
1
2或n
配子类型
及其比例
2
22或2n
1:1
1:1:1:1或(1:1)n
配子组合数
4
42或4n
F2
基因型种数
3
32或3n
表现型种数
2
22或2n
表现型比例
3:1
9:3:3:1[(3:1)2]或(3:1)n
F1测交子代
基因型种数
2
22或2n
表现型种数
2
22或2n
表现型比例
1:1
1:1:1:1或(1:1)n
联系
①在形成配子时,两个基因定律同时其作用。(在减数分裂时,同源染色体上等位基因都要分离;等位基因分离的同时,非同源染色体上的非等位基因自由组合。)
②分离定律是最基本的遗传定律,是自由组合定律的基础。
表现型
2种,3:1
4种,9:3:3:1或2n种,(3:1)n
F1测交后代
基因型
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
表现型
2种,1:1
4种,1:1:1:1或2n种,(1:1)n
联系
①在形成配子时,两个基因定律同时其作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4种;1∶1∶1∶1
遗传实质 联系
F1形成配子时,成对的遗传 因子发生分离,分别进入不
F1形成配子时,决定同一性状 的遗传因子彼此分离,决定不
同的配子,随配子遗传给后 同性状的遗传因子自由组合

在减数分裂形成配子时,两个定律同时发生分离定律是基础
ห้องสมุดไป่ตู้
分离定律与自由组合定律的比较
研究对象 等位基因 F1配子类型及比值 F2基因型及比值 F2的表现型及比值 F1测交后代基因型、 表现型种类及比值
分离定律 一对相对性状
一对 2种;比值相同 3种;1∶2∶1 2种;显∶隐=3∶1
2种;1∶1
自由组合定律 两对及两对以上相对性状
两对及两对以上 4种;比值相同 9种;9∶3∶3∶1 4种;9∶3∶3∶1
相关文档
最新文档