高数下课后题答案

合集下载

郑州大学高等数学下课后习题答案解析

郑州大学高等数学下课后习题答案解析

习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆1323222=+z x ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}2023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()yx y x y x +-++→11lim220,0,; (6)()()2220,0,lim y x yx y x +→.【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→x y y x .【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→x y y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxy xyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim .(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim 220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()42200lim y x xy y x +=→000.l i m 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '. 【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xxx ∆∆=→∆0l i m 不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =; (3)xy e z x sin =; (4)xy z arctan=; (5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x x z -=∂∂;x y x yz 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e x z x x cos sin +=∂∂; xy xe yzx cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; y x y x y xz'⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切.所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=;(3)xy z 2=; (4)yxy x y x z arctan arctan 22-=.【解】 (1)()y x x z 32cos 2+=∂∂; ()y x yz32cos 3+=∂∂; ()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz 32sin 922+-=∂∂. (2)2384xy x x z -=∂∂; 3248y y x yz+-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yxy x y x z arctan arctan 22-=.x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z yx z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1. (2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223rz r z u --=∂∂ ④ 所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂. []b bx be x T t ab .sin 222-=∂∂-bx e b tab sin 22--=. ②所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224y xx y z -=∂∂,所以 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛+=22418. (2)因为()xyx y xe xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz yu=∂∂,xy z u =∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy yu ,y xy z u z ln =∂∂,所以, ydz xy dy xzy dx y dz zudy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; y z y x y x z y u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值.(1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+ 8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明:(1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0l i m000l i m 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在. (2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求x z ∂∂,yz ∂∂; (3)设()xy y x yf x z ,222+=,求x z ∂∂,yz∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dxdz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xyxy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xyln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y+=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求x u ∂∂,yu ∂∂. 6.求下列函数的22x z ∂∂,y x z ∂∂∂2和22yz∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y x z '=∂∂,21f f x yz '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂; []()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x x z y x '+'=∂∂+;32.sin f e f y yz y x '+'-=∂∂+; [][]x y x x f e f xxz ''+''=∂∂+3122.c o s ()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++ [][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z ∂∂,y z ∂∂,yx z∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e xzz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e yzz --=∂∂⎪⎭⎫ ⎝⎛+ . ④由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11 ()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y yx f y ()221.1y x f y -=【由①式】..12y zy z y ==(2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu.【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ubu a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ②⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ (2222222)()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1. 【解】令()x y y x y x F arctanln ,22-+=()xyy x arctan ln 2122-+=,则 ()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数x z ∂∂,yz∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';yxz F y 12+-=';z xy x F z 122+-='. 所以z xy x x yz z F F x z z x 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z . 所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='. 所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axyzaxyz ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dxdz yzx xy yz dx dy所以,由全导数公式得dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F{}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切.所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x z d F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz yuM ,()5||2,1,51==∂∂xy z u M . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=∂M h4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y uM,()22||1,1,2-=-=∂∂-z z u M , 故 (){}2,4,21,1,2--=-g r a d u ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a du6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y yuM ,()02||0,1,2==∂∂z x u M . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P (二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM =.故DC DM MC MB AM AB =+=+=.即DC AB //且|AB |=|DC |,因此四边形ABCD是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c ,BC =a 表向量A D 1,A D 2,A D 3,A D4.证如图8-2,根据题意知511=BD a,5121=D D a,5132=D D a,5143=D D a,故A D 1=-(1BD AB +)=-51a -cA D 2=-(2BD AB +)=-52a -c A D 3=-(3BD AB +)=-53a -c A D 4=-(4BD AB +)=-54a -c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为a a ,故平行向量a 的单位向量为±a a =111±(6,7,-6)=⎪⎭⎫ ⎝⎛-±116,117,116,其中11)6(76222=-++=a .6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面 上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22=+-,点M 到y 轴的距离为d 2=415422=+,点M 到z 轴的距离为d 3=525)3(422==-+.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C,)2()1(3222-+-+=z y,)2()2(4222++++=z y.)1()5(22-+-=z y==222222)2()2(4)2()1(3++++=-+-+z y z y 22)1()5(-+-=z y ,即.)1()5()2()1(9,)2()2(16)2()1(922222222-+-=-+-+++++=-+-+z y z y z y z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222==-+++-==-+-+-==-+--+-=.+==故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),2412-1-222==++=)()(.其方向余弦分别为cos α=-21,cos β=-22,cos γ=21.方向角分别为3,43,32πγπβπα===.16.设向量的方向余弦分别满足(1)cos α=0;(2)cos β=1;(3)cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos α=0得知2πα=,故向量与x 轴垂直,平行于yOz 面.(2)由cos β=1得知β=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos α=cos β=0知2πβα==,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3π,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos θ=4∙cos 3π=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a -+=--=2,23,求(1)b a b a ⨯⋅及;(2)b a 2b 3a 2-⨯⋅及)(;(3)b a ,的夹角的余弦.解(1)),(),,(1-2,12-1-3⋅=⋅b a ,)()()(31-2-21-13=⨯+⨯+⨯==⨯b a 121213---kj i =(5,1,7).(2)1836)(63)2(-=⨯-=⋅-=⋅-b a b a )14,2,10()7,1,5(2)(22==⨯=⨯b a b a (3222222)1(21)2()1(33),cos(-++-+-+=⋅=b a b a b a 21236143==2.设c b a ,,为单位向量,满足.,0a c c b b a cb a ⋅+⋅+⋅=++求解已知,0,1=++===c b a c b a 故0=++⋅++)()(c b a c b a .即0222222=⋅+⋅+⋅+++a c c b b a c b a .因此23-21222=++-=⋅+⋅+⋅)(c b a a c c b b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M ⨯与3221,M M M M 同时垂直,故所求向量可取为M M M M a =)(由3221M M M M ⨯=220142--k j i=(6,-4,-4),17268)4()4(6222==-+-+=⨯知).172,172,173()4,4,6(1721--±=--±=a 4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ∙21M M =(0,0,-980)∙(-2,3,-6)=5880(J).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1θ的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2θ的力F 2作用着(图8-6),问1θ,2θ,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin 222111=-θθx F x F ,即222111sin sin θθx F x F =.6.求向量),(4,3-4=a在向量)(1,2,2=b 上的投影.解236122)1,2,2()4,3,4(Pr 222==++⋅-=⋅=b b a a j b .7.设)4,1,2(),2,5,3(=-=b a,问μλ与有怎样的关系,能使b a μλ+与z 轴垂直?解b a μλ+=λ(3,5,-2)+μ(2,1,4)=(μλμλμλ42,5,23+-++).要b a μλ+与z 轴垂直,即要(b a μλ+)⊥(0,0,1),即(b a μλ+)∙(0,0,1)=0,亦即(μλμλμλ42,5,23+-++)∙(0,0,1)=0,故(μλ42+-)=0,因此μλ2=时能使b a μλ+与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2π,只要证明0=⋅BCAC 即可.由BC AC ⋅=)()(OC BO OC AO +⋅+=BO OC OC AO BO AO ⋅+⋅+⋅=0=+⋅-⋅+OC AO OC AO .故BC AC⊥,∠ACB为直角.9.已知向量j i c k j i b k j i a 23,32-=+-=+-=和,计算:(1)b c a c b a )()(⋅-⋅(2))()(c b b a +⨯+(3)cb a ⋅⨯)(解(1)8)3,1,1()1,3,2(=-⋅-=⋅ba ,8)0,2,1()1,3,2(=-⋅-=⋅c a ,b c a c b a )()(⋅-⋅)24,8,0()3,1,1(8)0,2,1(8--=---=k i 248--=.(2)b a +=(2,-3,1)+(1,-1,3)=(3,-4,4),c b +=(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a +⨯+332443--=kj i k j --=--=)1,1,0(.(3)c b a ⋅⨯)(.2021311132=---=10.已知k j OBk i OA 3,3+=+=,求△OAB 的面积.解由向量积的几何意义知S △OAB⨯)1,3,3(310301--==⨯kj i OB OA,⨯191)3()3(22=+-+-=S △OAB219=11.已知),,(),,,(),,,(z y x z y x z y x c c c c b b b b a a a a ===,试利用行列式的性质证明:ba c a cbc b a ⋅⨯=⋅⨯=⋅⨯)()()(证因为,)(z yxz y xz y xc c c b b b a a a cb a =⋅⨯zyxz y x z y x a a a c c c b b b a c b =⋅⨯)(=⋅⨯b a c )(zyxz yxz y xb b b a a ac c c ,而由行列式的性质知z yxz y x z y x c c c b b b a a a z yx z y x z y x a a a c c c b b b ==zyxz y x z y x b b b a a a c c c ,故b ac a c b c b a ⋅⨯=⋅⨯=⋅⨯)()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ++≥++++,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量=a (321,,a a a ),=b (321,,b b b ).由),cos(b a b a ba =⋅b a ≤,从而232221232221332211b b b a a a b a b a b a ++++≤++,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a ==时,上述等式成立.1.求过点(3,0,-1)且与平面012573=-+-z y x 平行的平面方程.解所求平面与已知平面012573=-+-z y x 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573=++-D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573=-+-z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)-=OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692=+-+D z y x .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692=--+z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111=+---+----+--z y x ,得023=--z y x ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(==i z y x M i i i i 为平面上已知点.由,0)(31211=⨯⋅M M M M MM 即,0131313121212111=---------z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522=++-z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,θθθ.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(cos cos 2221=⋅+-+⋅-=⋅==k n k n γθ,3213)0,0,1()1,2,2(cos cos 2=⋅⋅-=⋅==i n i n αθ3213)0,1,0()1,2,2(cos cos 3-=⋅⋅-=⋅==j n j n βθ.6.一平面过点(1,0,-1)且平行于向量)1,1,2(=a 和)0,1,1(-=b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112-=-=⨯=kj i b a n .故所求平面为0)1(3)0(1)1(1=+--⋅+-⋅z y x ,即043=--+z y x .7.求三平面322,02,13=++-=--=++z y x z y x z y x 的交点.解联立三平面方程.322,02,13=++-=--=++z y x z y x z y x 解此方程组得.3,1,1=-==z y x故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0=+D By .将点(2,-5,3)代入,得05=+-D B ,即B D 5=.因此所求平面方程为05=+B By ,即05=+y .(2)所求平面过z 轴,故设所求平面为0=+By Ax .将点(-3,1,-2)代入,得03=+-B A ,即A B 3=.因此所求平面方程为03=+Ay Ax ,即03=+y x .(3)所求平面平行于x 轴,故设所求平面方程为0=++D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2=+-D C 及07=++D C B .D B D C 29,2-==.因此,所求平面方程为0229=++-D z DDy ,即029=--z y .9.求点(1,2,1)到平面01022=-++zy x 的距离.解利用点),,(00o o z y x M 到平面0=+++D Cz By Ax 的距离公式222000C B A DCz By Ax d +++++=.1332211012221222=-=++-⋅+⋅+=1.求过点(4,-1,3)且平行于直线51123-==-z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(=s ,直线方程即为531124-=+=-z y x .2.求过两点)1,2,3(1-M 和)2,0,1(2-M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21-=-----==M M s ,因此所求直线方程为112243-=+=--z y x .3.用对称式方程及参数方程表示直线.42,1=++=+-z y x z y x 解根据题意可知已知直线的方向向量112111-=kj i s ).3,1,2(-=取x=0,代入直线方程得.4,1=+=+-z y z y 解得.25,23==z y 这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320-=-=--z y x 参数方程为.325,23,2t z t y t x +=+=-=注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742=+-+=-+-z y x z y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421-=--==kj i s n 故所求平面方程为.0)3(11)0(14)2(16=++-+--z y x 即.065111416=---z y x 5.求直线0123,09335=-+-=-+-z y x z y x 与直线01883,02322=-++=+-+z y x z y x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351-=--=k j i s ),10,5,10(1831222-=-=kj i s 因此,两直线的夹角的余弦212121),(cos cos s s s s s s ⋅== .010)5(10)1(4310154103222222=+-+-++⨯-⨯-⨯=6.证明直线72,72=++-=-+z y x z y x 与直线02,8363=--=-+z y x z y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121---=---==--=kj i s k j i s 由123s s -=知两直线互相平行.7.求过点(0,2,4)且与两平面12=+zx 和23=-z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(31020121-=-=⨯=kj i n n s 故所求直线方程为.143220-=-=-z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b z y a z x=-=+将点(0,2,4)代入上式,得.10,8-==b a 故所求直线为.103,82-=-=+z y z x 8.求过点(3,1,-2)且通过直线12354z y x =+=-的平面方程.解利用平面束方程,过直线12354z y x =+=-的平面束方程为,0)23(2354=-+=+=-z y y x λ将点(3,1,-2)代入上式得.2011=λ因此所求平面方程为,0)23(20112354=-+=+=-z y y x即.0592298=---z y x 9.求直线0,03=--=++z y x z y x 与平面01=+--z y x 的夹角.解已知直线的方向向量),2,4,2(111311-=--=k j is 平面的法向量).1,1,1(--=n 设直线与平面的夹角为,ϕ则,0)1()1(1)2(42)1()2()1(412),cos(sin 222222=-+-+-++-⋅-+-⋅+⋅=⋅==n s n s s n ϕ即.0=ϕ10.试确定下列各组中的直线和平面间的关系;(1)37423z y x =-+=-+和3224=--z y x ;(2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和.3=++z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,ϕ且ns n s s n ⋅==),cos(sin ϕ.(1)),2,2,4(),3,7,2(--=--=ns,0)2()2(43)7()2()2(3)2()7(4)2(sin 222222=-+-+⋅+-+--⋅+-⋅-+⋅-=ϕ则.0=ϕ故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(-=-=n s 由于n s =或,17)2(37)2(377)2()2(33sin 222222=+-+⋅+-+⋅+-⋅-+⋅=ϕ知2πϕ=,故直线与平面垂直.(3)),1,1,1(),4,1,3(=-=n s 由于0=⋅n s 或,0111)4(131)4(1113sin 222222=++⋅-++⋅-+⋅+⋅=ϕ知,0=ϕ将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012=-+-=+-+z y x z y x 和0,02=+-=+-z y x z y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121--=--=--=--=kj i s k j is取),1,1,1(11032121--=----=⨯=k j i s s n 则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1=-⋅--⋅+-⋅-z y x 即.0=+-z y x 12.求点(-1,2,0)在平面012=+-+z y x 上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012=+-+z y x 垂直的直线为,102211--=-=+z y x 将它化为参数方程,,22,1t z t y t x -=+=+-=代入平面方程得,01)()22(21=+--+++-t t t 整理得32-=t .从而所求点(-1,2,0)在平面012=+-+z y x 上的投影为(32,32,35-).13.求点P (3,-1,2)到直线042,01=-+-=+-+z y x z y x 的距离.解直线的方向向量).3,3,0(112111--=--=kj i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x -=--==(1)又,过点P (3,-1,2),以)3,3,0(--=s 为法向量的平面方程为,0)2(3)1(3=--+-z y 即.01=-+z y (2)将式(1)代入式(2)得21-=t ,于是直线与平面的交点为(23,21,1-),故所求距离为.223)232()211()13(222=-++-+-=d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L的距离d =.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s ⨯表示以M M 0,s 为邻边的平行四边形的面积.而表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是d =15.求直线0923,042=---=+-z y x z y x 在平面14=+-z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线0923,042=---=+-z y x z y x 的平面束方程为,0)923(42=---++-z y x z y x λ经整理得.09)21()4()32(=--+--++λλλλz y x 由,01)21()1()4(4)32(=⋅-+-⋅--+⋅+λλλ得1113-=λ.代入平面束方程,得.0117373117=--+z y x 因此所求投影直线的方程为.14,0117373117=+-=--+z y x z y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0=-++=====z y x y x z y x(2).4,2,1,0,0yz y x z x =====解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x =-+-+-,将已知点的坐标代入上式,得,2222R c b a =++(1),)4(2222R c b a =++-(2),)3()1(2222R c b a =+-+-(3)2222)4(R c b a =+++,(4)联立(1)(2)得,2=a 联立(1)(4)得,2-=c 将2=a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222=++-+-z y x 其中球心坐标为),2,1,2(-半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x =++-+-球面经过原点,故,14)20()30()10(2222=++-+-=R 从而所求球面方程为.14)2()3()1(222=++-+-z y x 3.方程0242222=++-++z y x z y x 表示什么曲面?解将已知方程整理成,)6()1()2()1(2222=++++-z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222=-+-+--+-+-z y x z y x 化简整理得.)2932()34()1()32(2222=+++++z y x 它表示以(34,1,32---)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y +±代替抛物线方程x z 52=中的z ,得222)(z y +±x 5=,即x z y 522=+.注xOz 面上的曲线0),(=z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22=+±z y x F .6.将xOz 坐标面上的圆922=+z x 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x +±代替圆方程922=+z x 中的x ,得,9)(2222=++±z y x 即.9222=++z y x7.将xOy 坐标面上的双曲线369422=-y x分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy +±代替双曲线方程369422=-y x中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222=+±-z y x 即.36)(94222=+-z y x 以22zx +±代替双曲线方程369422=-y x中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222=-+±y z x 即.369)(4222=-+y z x 8.画出下列各方程所表示的曲面:(1);)2()2(222a y a x =+-(2);19422=+-y x (3);14922=+z x (4);02=-z y (5)22x z-=.解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2=x (2);1+=x y (3);422=+y x(4).122=-y x解(1)2=x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1+=x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422=+y x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为0,422==+z y x 的圆柱面.(4)122=-y x在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为,122==-z y x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222=++z y x (2);14222=+-z y x (3);1222=--z y x (4).)(222y x a z+=-解(1)1994222=++z y x 表示xOy 面上的椭圆19422=+y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422=+z x 绕x 轴旋转一周而生成的旋转曲面.(2)14222=+-z y x 表示xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422=+-z y 绕y 轴旋转一周而生成的旋转曲面.(3)1222=--z y x表示xOy 面上的双曲线122=-y x 绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122=-z x 绕x 轴旋转一周而生成的旋转曲面.(4)222)(y x a z+=-表示xOz 面上的直线a x z +=或a x z +-=绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a y z+=或a y z +-=绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222=++z y x(2);44222=--z y x(3).94322y x z +=解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022=+=-=-==y x y x y x z z(在第一卦限内);(2)222222,,0,0,0R z y R y x z y x =+=+===(在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1==y x (2);0,422=---=yxyx z(3).,222222a z x a y x =+=+解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15-=+=x y x y (2).3,19422==+y y x 解(1)32,15-=+=x y x y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422==+y y x 在平面解析几何中表示椭圆19422=+y x 与其切线3=y 的交点,即切点.在空间解析几何中表示椭圆柱面19422=+y x 与其切平面3=y 的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222=-+=++y z x z y x 的柱面方程.解在,162222222=-+=++y z x z y x 中消去x ,得,16322=-z y 即为母线平行于x 轴且通过已知曲线的柱面方程.在,162222222=-+=++y z x z y x 中消去y ,得,162322=+z x 即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影的方程.解在1,9222=+=++z x z y x 中消去z ,得,9)1(222=-++x y x 即,82222=+-y x x它表示母线平行于z轴的柱面,故0,82222==+-z y x x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x y z y x ==++(2).0,4)1()1(222==+++-z z y x解(1)将x y=代入,9222=++z y x 得,9222=+z x 取,cos 23t x =则,sin 3t z =从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23===(t ≤0˂π2)(2)将z=0代入,4)1()1(222=+++-z y x 得,3)1(22=+-y x 取,cos 31t x =-则,sin 3t y =从而可得该曲线的参数方程0,sin 3,cos 31==+=z t y t x (t ≤0˂π2)6.求螺旋线θθθb z a y a x ===,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由θθsin ,cos a y a x==得,222a y x =+故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222==+z a y x 由θθb z a y ==,sin 得bza y sin =,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为0,sin ==x bza y 由θθb z a x ==,cos 得,cos b za x =故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos ==y bza x 7.求上半球2220y x a z --≤≤与圆柱体a ax y x (22≤+>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax y x ≤+22,而由axy x y x a z =+--=22222,得.2ax a z -=故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax a z-=2所围成的区域.8.求旋转抛物面)40(22≤≤+=z y x z在三坐标面上的投影解联立422=+=z y x z ,得422=+y x.故旋转抛物面在xOy面上的投影为.0,422=≤+z y x 如图8-17.联立0,22=+=x y x z 得,2y z=故旋转抛物面在yOz 面上的投影为2y z=及4=z 所围成的区域.同理,联立0,22=+=y y x z 得,2x z =故旋转抛物面在xOz 面上的投影为2x z=及4=z 所围成的区域.。

高数下课后题答案

高数下课后题答案

点的坐标为 (x, 0, z) 。
在 x 轴上的点的坐标为 (x, 0, 0) ;在 y 轴上的点的坐标为 (0, y, 0) ;在 z 轴上的点的坐标为
(0, 0, z) 。
A 在 xOy 面上, B 在 yOz 面上, C 在 x 轴上, D 在 y 轴上。
7.求点 (a,b,c) 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
习题 7.1
1.设 u = 3a + 5b − c , v = 4a − b − 3c ,ω = 2a − c ,试用 a,b,c 表示向量 2u − v + 3ω .
解 2u − v + 3ω = 2(3a + 5b − c) − (4a − b − 3c) + 3(2a − c) = 8a +11b − 2c
i jk
⎯⎯→
⎯⎯→
n = M1M2× M 2M3 = 2 4 −1 = 6i − 4 j − 4k
0 −2 2
| n |= 36 +16 +16 = 2 17
e = ± 1 (6i − 4 j − 4k ) = ± 1 (3i − 2 j − 2k ) 为所求向量。
2 17
17
3.设 a,b,c 为单位向量,且满足 a + b + c = 0 ,求 a ⋅ b + b ⋅ c + c ⋅ a 。
解 (1) 点 (a,b,c) 关于 xOy 面的对称点为 (a,b, −c) ;关于 yOz 面的对称点为 (−a,b, c) ;关
于 zOx 面的对称点为 (a, −b, c) 。
(2) 点 (a,b,c) 关于 x 轴的对称点为 (a, −b, −c) ;关于 y 轴的对称点为 (−a,b, −c) ;关于

高数二版习题答案下

高数二版习题答案下

下册各章习题答案 第七章第八章习题8.11. (1) 1; (2) 0; (3) 41-; (4) e ; (5) 2; (6) 0. 2.)(2122y x xy +≤习题8.2 1. (1)323y y x x z -=∂∂,233xy x y z -=∂∂; (2) )ln(21xy x x z =∂∂,)ln(21xy y y z =∂∂;(3)y x y x y x z csc sec 1=∂∂,y x y x yx y z csc sec 12-=∂∂; (4)1-=∂∂z y z x y x u ,z y zx y u z y z ln 1-=∂∂,y x x y zu z y z ln ln =∂∂; (5)z z y x y x z x u 21)(1)(-+-=∂∂-,zz y x y x z y u 21)(1)(-+--=∂∂-,zz y x y x y x z u 2)(1)ln()(-+--=∂∂;(6))]2sin()[cos(xy xy y xu-=∂∂,)]2sin()[cos(xy xy x y u -=∂∂, .3. 4π=α.4. (1)2222812y x x z -=∂∂,2222812x y yz -=∂∂,xy y x z 162-=∂∂∂; (2)22222)(2y x xy x z +=∂∂,22222)(2y x xy y z +-=∂∂,222222)(y x x y y x z +-=∂∂∂;(3)y y x z x 222l n =∂∂,222)1(--=∂∂x y x x yz ,)ln 1(12y x y y x z x +=∂∂∂-; (4)[]22222sin cos 22x x x y x z +-=∂∂,2322cos 2x yy z =∂∂,222sin 2x x y y x z =∂∂∂.5.223231,0y y x z y x z -=∂∂∂=∂∂∂.6. ⎪⎩⎪⎨⎧+≠++=∂∂000)(222222323=当当y x y x y x y x f ;⎪⎩⎪⎨⎧+≠++=∂∂000)(222222323=当当y x y x y x x y f .习题8。

高等数学(下)课后习题答案

高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。

高等数学下课后习题及答案

高等数学下课后习题及答案

高等数学下课后习题及答案
《高等数学下课后习题及答案》
在学习高等数学的过程中,课堂上的知识点讲解只是一个方面,更重要的是通过课后习题的练习来加深对知识的理解和掌握。

下面我们将介绍一些高等数学下课后习题及答案,希望能够帮助大家更好地学习和掌握这门学科。

1. 求下列函数的极限:
(a) lim(x→0) (sinx/x)
(b) lim(x→∞) (1+1/x)^x
答案:
(a) lim(x→0) (sinx/x) = 1
(b) lim(x→∞) (1+1/x)^x = e
2. 求函数f(x) = x^3 - 3x^2 + 2x的极值点。

答案:
f'(x) = 3x^2 - 6x + 2
令f'(x) = 0,解得x=1或x=2
再求f''(x),得f''(1) = 6,f''(2) = 6
所以x=1或x=2时,f(x)取极小值。

3. 求曲线y = x^3 - 3x^2 + 2x的渐近线方程。

答案:
当x→±∞时,y→±∞
所以y = x^3 - 3x^2 + 2x没有水平渐近线
当x→±∞时,y = x^3 - 3x^2 + 2x与y = x^3相似
所以y = x^3是y = x^3 - 3x^2 + 2x的斜渐近线。

以上就是一些高等数学下课后习题及答案的介绍,希望能够对大家的学习有所帮助。

在学习过程中,多做习题,多总结规律,相信大家一定能够掌握好这门学科。

高等数学同济第六版下册课后习题答案

高等数学同济第六版下册课后习题答案

习题8-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D , a c 5444--=-=→→→BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, -2, 3); B (2, 3, -4); C (2, -3, -4); D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上. 8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ). 9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5,1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为7)96()11()410(||222=-+--+-=→AB ,7)93()14()42(||222=-+-+-=→AC ,27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ;21)2()1(||22221=++-=→M M ;21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题8-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M . →→k j i k j i n 446 220 142 3221--=--=⨯=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e --±=--±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0, 所以λ=2μ. 当λ=2μ时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =.因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=. 因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA , 所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅,于是 ||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题8-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=-++=R ,球面方程为(x -1)2+(y -3)2+(z +2)2=14,即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2-9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+-;(2)19422=+-y x ;(3)14922=+z x ;(4)y2-z=0;(5)z=2-x2.9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x=2;解在平面解析几何中,x=2表示平行于y轴的一条直线;在空间解析几何中,x=2表示一张平行于yOz面的平面.(2)y=x+1;解在平面解析几何中,y=x+1表示一条斜率是1,在y轴上的截距也是1的直线;在空间解析几何中,y=x+1表示一张平行于z轴的平面.(3)x2+y2=4;解在平面解析几何中,x2+y2=4表示中心在原点,半径是4的圆;在空间解析几何中, x2+y2=4表示母线平行于z轴,准线为x2+y2=4的圆柱面.(4)x2-y2=1.解在平面解析几何中,x2-y2=1表示双曲线;在空间解析几何中,x2-y2=1表示母线平行于z轴的双曲面.10.说明下列旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的.(2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的. (3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的. (4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出下列方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题8-41. 画出下列曲线在第一卦限内的图形: (1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317 ,34(--, 并且行于z 轴. (2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线.3. 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧==++x y z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x .令t x cos 23=, 则z =3sin t .故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为 ⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a x cos =, 即axb z arccos =,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a xb z .由第三个方程得b z =θ代入第二个方程得b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a y b z x arcsin 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题8-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为k j i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组 ⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3). 8. 分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0, 将B =3A 代入所设方程得 Ax +3Ay =0, 所以所求的平面的方程为 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c ,于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题8-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程.解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x .2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程. 解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1),所求的直线方程为112243-=+=--x y x .3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=. 在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ; 参数方程为x =3-2t , y =t , z =-2+3t .4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0,即 16x -14y -11z -65=0.5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 两直线的方向向量分别为k j i k j i s -+=--=431233351, k j i k j i s 105101831222+-=-=. 两直线之间的夹角的余弦为||||) ,cos(2121^21s s s s s s ⋅⨯=010)5(10)1(4310)1()5(4103222222=+-+-++⨯-+-⨯+⨯=. 6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 两直线的方向向量分别为k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++-=-=32310201. 所求直线的方程为14322-=-=-z y x . 8. 求过点(3, 1, -2)且通过直线12354z y x =+=-的平面方程. 解 所求平面的法线向量与直线12354z y x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521--=-=⨯=. 所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0,即 8x -9y -22z -59=0.9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角. 解 已知直线的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s -+=-+=--=--⨯=, 已知平面的法线向量为n =(1, -1, -1).因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0. 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2).因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上.(2)723z y x =-=和3x -2y +7z =8; 解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7).因为s =n , 所以所给直线与所给平面是垂直的.(3)431232--=+=-z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x 平行的平面的方程.解 已知直线的方向向量分别为k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=, k j k j i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n -+-=----=⨯=11032121, 所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0.12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+z y x . 将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得(-1+t )+2(2+2t )-(-t )+1=0, 解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y , 32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-. 13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 已知直线的方向向量为k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=. 过点P 且与已知直线垂直的平面的方程为-3(y +1)-3(z -2)=0, 即y +z -1=0.解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z . 点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23 ,21 ,1(-间的距离, 即 223)232()211()13(22=-++-+-=d . 14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→=MN s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为||||00s ⨯=⨯→→→M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为||||s ⋅=⋅→d MN d . 因此 ||||0s s ⨯=⋅→M M d , ||||0s s ⨯=→M M d . 15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过已知直线的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0,即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4y z =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题八1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________.解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23-. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________.解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b ,|a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y -7)2+(-5)2,即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为 30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明→→→0=++CF BE AD .解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+-=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=, →→→→→AB AC AC BA BC -=+=,所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ,72arccos =θ. 8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a .解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a . 11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x -3y +z =0, x -2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7⨯2+5⨯1+1⨯2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为k i k j i b a 36432231--=---=⨯, (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6),即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=--z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ).→)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1).按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1).设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(-1, y 0+1, y 0).显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y . 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s . 所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1, 所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311z y x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0.将直线21311z y x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0,解得t =16. 于是平面3x -4y +z -1=0与直线21311z y x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28),所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z y x y x . 在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x . 在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y . 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影.解 锥面与柱面交线在xOy 面上的投影为⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x , 所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===z y x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;(3)圆锥面22y x z +=及旋转抛物面z =2-x 2-y 2;(4)旋转抛物面x 2+y 2=z , 柱面y 2=x , 平面z =0及x =1.习题9-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2,边界为 {(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集,导集为 {(x , y )|1≤x 2+y 2≤4},边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集,导集为 {(x , y )| y ≥x 2},边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),()tan (2222y x f t yx xy y x t =-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥,于是有 x ≥0且x 2≥y ,故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0,故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2,故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +-→; 解 110011lim22)1,0(),(=+-=+-→y x xy y x . (2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xyxy y x 42lim )0,0(),(+-→; 解 xy xy y x 42lim )0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim)0,0(),(-=++-=→xy y x . (4)11lim )0,0(),(-+→xy xy y x ; 解 11lim )0,0(),(-+→xy xy y x )11)(11()11(lim )0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→;解 y xy y x )sin(lim)0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim 00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim 不存在.。

郑州大学高等数学下课后习题答案解析

郑州大学高等数学下课后习题答案解析

习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}20023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须与垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()y x y x y x +-++→11lim220,0,; (6)()()2220,0,lim yx yx y x +→. 【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→xy y x . 【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→xy y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxyxyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim.(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()4220lim y x xy y x +=→000.lim 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '.【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xx x ∆∆=→∆0l i m不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =;(3)xy e z x sin =; (4)xyz arctan =;(5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x xz-=∂∂;x y x y z 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e xzx x cos sin +=∂∂; xy xe y z x cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; yx y x y xz'⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切. 所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=; (3)xy z 2=; (4)yxy x y x z arctan arctan 22-=. 【解】 (1)()y x xz32cos 2+=∂∂; ()y x y z 32cos 3+=∂∂;()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz32sin 922+-=∂∂. (2)2384xy x xz-=∂∂; 3248y y x y z +-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yx y x y x z arctan arctan22-=. x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫ ⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z y x z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1.(2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223r z r z u --=∂∂ ④所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂.[]b bx be x T tab .sin 222-=∂∂-bx e b t ab sin 22--=. ② 所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224yx x y z -=∂∂,所以 dy y zdx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=22418. (2)因为()xyx y x e xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz y u =∂∂,xy zu=∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy y u ,y xy zuz ln =∂∂,所以, ydz xy dy xzy dx y dz zu dy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; yz y x y x z y u '⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z ; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值. (1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明: (1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0lim000lim 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在.(2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求xz∂∂,y z ∂∂; (3)设()xy y x yf x z ,222+=,求xz∂∂,y z ∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dx dz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xy xy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xy ln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y +=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求xu∂∂,y u ∂∂. 6.求下列函数的22xz ∂∂,y x z ∂∂∂2和22y z∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y xz'=∂∂,21f f x y z '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂;[]()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x xzy x '+'=∂∂+;32.sin f e f y y z y x '+'-=∂∂+; [][]x y x x f e f x xz ''+''=∂∂+3122.c o s()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++[][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s ()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得 ()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z∂∂,yz ∂∂,y x z ∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e x zz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e y z z --=∂∂⎪⎭⎫ ⎝⎛+ . ④ 由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y y x f y ()221.1y x f y -=【由①式】..12y z y z y == (2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu. 【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u b u a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ② ⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ....2222222 ()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须 ⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1.【解】令()x y y x y x F arctan ln ,22-+=()xyy x arctan ln 2122-+=,则()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数xz∂∂,y z ∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';y xz F y 12+-=';zxy x F z 122+-='.所以zxy x x yz z F F x z zx 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z .所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='.所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axy zaxy z ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dx dz yz x xy yz dx dy所以,由全导数公式得 dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F {}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切. 所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x zd F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz y u M ,()5||2,1,51==∂∂xy zuM . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=M4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y u M ,()22||1,1,2-=-=∂∂-z z uM, 故 (){}2,4,21,1,2--=-g r a du ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a d u6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y y u M ,()02||0,1,2==∂∂z xuM . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿l 方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P(二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫ ⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。

高等数学(经管类)下及课后习题答案

高等数学(经管类)下及课后习题答案

1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。

高等数学下册课后习题答案

高等数学下册课后习题答案

高等数学下册课后习题答案高等数学下册课后习题答案在学习高等数学下册的过程中,课后习题是非常重要的一部分。

通过解答习题,我们不仅可以巩固课堂知识,还可以提高自己的解题能力和思维能力。

然而,有时候我们会遇到一些难题,对于这些问题,我们需要有一个可以参考的答案。

下面,我将为大家提供一些高等数学下册课后习题的答案,希望对大家的学习有所帮助。

1. 题目:求函数 f(x) = x^3 - 3x^2 + 2x - 1 的极值点和极值。

解答:首先,我们需要求出函数的导数 f'(x)。

对 f(x) 进行求导,得到 f'(x) =3x^2 - 6x + 2。

然后,我们令 f'(x) = 0,解得 x = 1 或 x = 1/3。

接下来,我们需要判断这两个解是否为极值点。

为了判断,我们可以求出f''(x),即 f'(x) 的导数。

对 f'(x) 进行求导,得到 f''(x) = 6x - 6。

当 x = 1 时,f''(x) = 0,此时无法判断是否为极值点。

当 x = 1/3 时,f''(x) = -2,为负数,即 x = 1/3 为极大值点。

所以,函数 f(x) 的极大值点为 x = 1/3,极大值为 f(1/3) = -8/27。

2. 题目:证明数列 {an} 为等差数列,其中 a1 = 2,a2 = 5,a3 = 8。

解答:要证明数列 {an} 为等差数列,我们需要证明其通项公式为 an = a1 + (n - 1)d,其中 d 为公差。

首先,我们可以计算出公差 d。

根据已知条件,a2 - a1 = 5 - 2 = 3,a3 - a2 =8 - 5 = 3。

可以发现,a2 - a1 = a3 - a2,即这两个差值相等。

所以,公差 d = 3。

接下来,我们验证通项公式是否成立。

代入已知条件,an = a1 + (n - 1)d,即an = 2 + (n - 1)3 = 2 + 3n - 3 = 3n - 1。

高数下第九章的答案

高数下第九章的答案
解:直线 的方向向量 ;设过点 到直线 的垂足为 ;则有
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为

高数课后习题答案及其解析

高数课后习题答案及其解析

第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。

同济高等数学下册课后题答案详解

同济高等数学下册课后题答案详解

第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言《高等数学同济第七版下册》是同济大学数学系编写的一本面向高等数学教育的教材。

本书作为高等数学的下册,涵盖了积分学、无穷级数、多元函数微分学等重要内容。

为了帮助学生更好地理解和学习这些知识点,本文档整理了该教材下册的所有习题及其答案,以供学生参考和练习。

目录•第一章积分学•第二章无穷级数•第三章多元函数微分学第一章积分学积分学是高等数学的重要分支,它研究函数的积分与定积分等相关概念和性质。

本章的习题主要围绕定积分、不定积分和定积分的应用展开。

习题11.计算定积分 $\\int_0^1 (3x^2 - 2x + 1) dx$。

答案:$\\frac{2}{3}$2.计算不定积分 $\\int (x^3 - 2x^2 + x - 1) dx$。

答案:$\\frac{1}{4}x^4 - \\frac{2}{3}x^3 + \\frac{1}{2}x^2 - x + C$习题21.计算定积分 $\\int_1^e \\frac{dx}{x}$。

答案:12.计算不定积分 $\\int \\frac{1}{x} dx$。

答案:$\\ln|x| + C$…第二章无穷级数无穷级数是数列求和的一种常见方法,它在数学和物理等领域中有广泛的应用。

本章的习题主要涉及级数的概念、级数的性质和级数的求和等内容。

习题11.判断级数$\\sum_{n=1}^{\\infty} \\frac{1}{n^2}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=0}^{\\infty} \\frac{1}{2^n}$ 的和。

答案:该级数的和为2。

…习题21.判断级数$\\sum_{n=1}^{\\infty} \\frac{n!}{n^n}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=1}^{\\infty} (-1)^{n+1} \\frac{1}{n}$ 的和。

《高等数学》(下)习题参考答案

《高等数学》(下)习题参考答案

《高等数学》(下)习题参考答案第七章 空间解析几何与矢量代数习题一、 1.(,,),(,,),(,,)x y z x y z x y z ------; 2.k j i 573--;3.2y z +=或210x y z +-=; 4.圆, 圆柱面; 5.2340x y z --+=. 二、 1. 2. 3. 4. 5.B C B A C三、1.u =11232.cos cos cos 22343πππαβγαβγ=-=====;3.4-;4.32550x y z +-+=;5.3πθ=; 6.P r j βα=;7.2OABS ∆= 2228.9x y z ++=; 222289.0x x y z ⎧-+=⎨=⎩; 10.⎪⎭⎫ ⎝⎛--8343,8356,83273; 11.0x y z -+=. 第八章 多元函数微分学习题一 一、 1、yyx +-112; 2、},0,0|),{(2y x y x y x ≥≥≥; 3、1,2; 4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-. 二、1. 2. 3. 4. 5.D D B B A三、 111ln ln ln z z z z y y z y z uuuy x x y z x x y x y xyz--∂∂∂===∂∂∂、 2、)ln (1z x y z y x x u x z y +=∂∂-,)ln (1z x y z y x yux z y +=∂∂-,)ln (1y z x z y x z u x z y +=∂∂-2222222222222222223z xy z xy x x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+、()()()4、xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-5、dy dx 3231+习题二 一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、2242232f y x f y x ''+'; 3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x y x -+; 5、x y z z z -ln ln ,yyz xy z ln 2-二、1、C ;2、A ;3、C ;4、B ;5、C 三、 1、321f yz f y f x u '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy z u '=∂∂ 3、212f x f y x z '+'=∂∂,22122211124)(2f xy f y x f xy f yx z''-''-+''+'=∂∂∂ 6、)()(1)](1)[(v g u f v g u f x z ''+'+'=∂∂,)()(1)](1)[(v g u f v g u f y z ''+'+'-=∂∂ 7、2222111133332sin cos 2cos x y x y x y zf x f x e f x f e e f x+++∂''''''''=-⋅+⋅+⋅+⋅+∂; 332232313122sin cos sin cos f e f y e f e f x e y x f y x zy x y x y x y x ''+''⋅-'+''⋅+''-=∂∂∂++++ 8、2222222222222222222221213394133u u u u u u u x x u u u u u u u y y u u u u x y ζηζζηηζηζζηηζζηη∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=--=++∂∂∂∂∂∂∂∂∂∂∂∂=---∂∂∂∂∂∂ 习题三 一、12121281610148x y z x y z ---==-+-=-2、042=-+y x ,2112zy x =-=-3.1+4.326i j k --5.(3,2)大 36二、1. 2. 3. 4. 5.B D A C C 三、(1,2)2zl∂=∂、13(,1)2-、极小值2e-2433p p 、22222222221212121251122022020x y zx y z x y z z x y x y z F x y z x y z z x y x y z F x x F y y F z x λλλλλλλλ=++=+++==+++--+++-=-+=⎧⎪=-+=⎨⎪=++=⎩2、设椭圆上点为(x,y,z),则原点到椭圆上这点的距离平方为d ,其中,,满足和令(,,)()()==11求解方程,最长距离为d d 6、在点)1,1(-处有极小值:-2;极大值:6.第九章 重积分 习题一一、1.()2aba b + 2、⎰⎰e ey dx y x f dy ),(10;3、)1(214--e ;4、1210cos sin (cos ,sin )d f d πθθθρθρθρρ+⎰⎰;5、⎰⎰-+--2211111),(x x dy y x f dx二、1. 2. 3. 4. 5.C A B D C三、1.[36,100]ππ; 62.55; 3.49; 4.e e 2183-; 5.2643π;6.38; 7.π6; 8.)0(32f 'π. 习题二 一、1、⎰⎰⎰+----111112222),,(y x x xdz z y x f dy dx ; 2、π32; 3、θϕϕd drd r dv sin 2=;4、⎰⎰⎰adr r f r d d 0224020)(sin ππϕϕθ; 5、dxdy y z x z dS 221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 二、1. B ;2.B ;3.D ;4.C ;5.B三、1.)852(ln 21-; 2.481; 3.467a π; 4.6π; 5.)22(162-π; 3232001()6.()2[()],lim (0)33t t F t F t r h h f r dr h hf t πππ+→=+=+⎰; 27.2()a a π-.第十章 习题一 一、填空题 1、23202(2sin 2cos 2)sin 2ta t t t t dt π--+⎰; 2、2; 3、34/3;4、⎰; 5、π2二、选择题1、(B);2、(A);3、(C );4、(A );5、(A );6、(C )三、计算题1、242-⎪⎭⎫ ⎝⎛+a e a π; 2、9四(略)五1、π2-;2、1/2 六、⎰++Lds xxQP 2412七、⎰Γ++++ds yx yRxQ P 2294132习题二一、选择题 1、(B ); 2、(D ); 3、(B ); 4、(D ); 5、(C ) 二、8 三、1、42R π-;2、241π;3、281a m π四、3cos 42cos 9+ 五、y x y x u 2),(=六、283a π七、八(略) 习题三一、填空题1、π8;2、321; 3、π8-; 4、dS R Q P ⎰⎰∑++53223; 5、22a π 二、选择题1、(D );2、(B );3、(C );4、(C ) 三、计算题 1、427-; 2、π221+ 四、 1、π23; 2、81五、552a π六、π32第十一章 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、× 二、填空题1、0;2、1>p 且.const p =;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C ) 四(略) 五、1、发散;2、收敛 六、1、发散;2、收敛 七、1、发散;2、收敛八、当b a >时,收敛;当b a <时,发散;当b a =时,可能收敛,也可能发散. 九、1、收敛;2、收敛 十(略) 习题二一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、⎪⎭⎫⎢⎣⎡-21,21; 2、)5,1[-; 3、)1,1[-,)1ln(x --; 4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n; 5、26,)4(3121011-<<-+⎪⎭⎫ ⎝⎛-∑∞=++x x n nn n三、选择题1、(D );2、(B );3、(B );4、(C );5、(C ) 四、1、)3,3[-;2、)3,1[;3、]1,1[- 五、 1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,arctan 21)]1ln()1[ln(41)(-∈+--+=x x x x x s六、2(1)(),(1,1](1)n nn f x x x x n n ∞=-=+∈--∑七、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n八、)1,1(,)1ln(arctan 21222-∈+-++x x x x xx 第十二章 习题一 一、判断题1、×;2、√;3、√;4、×;5、× 二、填空题1、2)(ln 21)(x x f =;2、x cxe y -=;3、x y 2=;4、x x x y 91ln 31-=;5、yP x Q ∂∂=∂∂ 三、1、C y x =⋅tan tan ;2、C e e y x =-⋅+)1()1( 四、22sec )1(=⋅+y e x 五、s cm /3.269 六、1、Cx y x =-332;2、223x y y -= 七、)ln 41(x x y -= 八、 1、)(sin C x ey x+=-; 2、322Cy y x +=; 3、)cos 1(1x y --=ππ 九、⎪⎪⎭⎫ ⎝⎛-+=-t m ke k m k t k k v 2122121 十、xx x f 3132)(+=十一、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(B ); 6、(A ); 7、(D ) 二、填空题1、3221)3(C x C x C e x y x +++-=;2、22121C x x e C y x +--=; 3、)1ln(1+-=ax ay三、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、x C x C e C e C y x x sin cos 4321+++=-;4、4x x y e e -=- 四、⎪⎭⎫ ⎝⎛-+=+-++-tk k tk k k eek k v x 1221222424122014五、)sin (cos 21)(x e x x x ++=ϕ 六、u u f ln )(= 七、1)(21)(++=-x xe e x s。

高等数学(下)答案

高等数学(下)答案

高等数学(下)答案1、如果平面a和平面β有公共点A,则这两个平面就相交()[单选题] *A、经过点A的一个平面B、经过点A的一个平面(正确答案)C、点AD、无法确定2、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)3、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] *A.4B.5C.-6D.-8(正确答案)4、5. 下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()[单选题] *A.有两个不相等实数根(正确答案)B.有且只有一个实数根C.有两个相等实数根D.没有实数根5、21.已知集合A={x|-2m},B={x|m+1≤x≤2m-1}≠?,若A∩B=B,则实数m的取值范围为___. [单选题] *A 2≤x≤3(正确答案)B 2<x≤3C 2≤x<3D 2<x<36、下列说法有几种是正确的()(1)空间三点确定一个平面(2)一条直线和直线外一点确定一个平面(3)两条直线确定一个平面(4)两条平行直线确定一个平面[单选题] *A、1B、2(正确答案)C、3D、47、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)8、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x9、-120°用弧度制表示为()[单选题] *-2π/3(正确答案)2π/3-π/3-2π/510、300°是第()象限角?[单选题] *第一象限第二象限第三象限第四象限(正确答案)11、15.已知命题p:“?x∈R,ex-x-1≤0”,则?p为()[单选题] * A.?x∈R,ex-x-1≥0B.?x∈R,ex-x-1>0C.?x∈R,ex-x-1>0(正确答案)D.?x∈R,ex-x-1≥012、下面哪个式子的计算结果是9﹣x2() [单选题] *A. (3﹣x)(3+x)(正确答案)B. (x﹣3)(x+3)C. (3﹣x)2D. (3+x)213、要使多项式不含的一次项,则与的关系是()[单选题] *A. 相等(正确答案)B. 互为相反数C. 互为倒数D. 乘积为114、25.从五边形的一个顶点出发,可以画出m条对角线,它们将五边形分成n个三角形.则m、n的值分别为()[单选题] *A.1,2B.2,3(正确答案)C.3,4D.4,415、45.下列运算正确的是()[单选题] *A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16(正确答案)D.(2ab﹣n)(2ab+n)=4ab2﹣n216、24、在▲ABC中中, ∠A=∠C=55°, 形内一点使∠PAC=∠PCA, 则∠ABP为()[单选题] *A. 30°B. 35°(正确答案)C. 40°D. 45°17、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35518、21.在﹣5,﹣2,0,这四个数中最小的数是()[单选题] * A.﹣5(正确答案)B.﹣2C.0D.19、若m·23=2?,则m等于[单选题] *A. 2B. 4C. 6D. 8(正确答案)20、19.下列函数在(0,+?? )上为增函数的是(). [单选题] *A.?(x)=-xB.?(x)=-1/X(正确答案)C.?(x)=-x2D.?(x)=1/X21、k·360°-30°(k是整数)所表示的角是第()象限角。

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答高等数学(同济第七版下)课后习题及解答一、函数与极限1. 已知函数 f(x) = x^2 + 3x - 2, 求以下极限:(1) lim(x→2) f(x)(2) lim(x→-1) f(x)解答:(1) 当x → 2 时,f(x) = x^2 + 3x - 2 = 2^2 + 3(2) - 2 = 12所以,lim(x→2) f(x) = 12(2) 当x → -1 时,f(x) = (-1)^2 + 3(-1) - 2 = -2所以,lim(x→-1) f(x) = -22. 求以下极限:(1) lim(x→0) (sin3x)/(sin4x)(2) lim(x→∞) (x^2 - 2x)/(x - 1)解答:(1) 利用极限的性质,lim(x→0) (sin3x)/(sin4x)= lim(x→0) (3x)/(4x) = 3/4(2) 利用极限的性质,lim(x→∞) (x^2 - 2x)/(x - 1)= lim(x→∞) x(x - 2)/(x - 1) = ∞二、导数与微分1. 求以下函数的导数:(1) y = x^3 + 2x^2 - 3x + 1(2) y = sin(2x) + cos(3x)(3) y = e^x/(1 + e^x)解答:(1) y' = 3x^2 + 4x - 3(2) y' = 2cos(2x) - 3sin(3x)(3) 利用商链规则和指数函数的导数性质,y' = e^x/(1 + e^x) - e^x*e^x/(1 + e^x)^2= e^x/(1 + e^x) - (e^x)^2/(1 + e^x)^2= e^x(1 - e^x)/(1 + e^x)^22. 求以下函数的微分:(1) y = 3x^2 + 4x - 2(2) y = sin(3x) + cos(2x)(3) y = ln(x) + e^x解答:(1) dy = (6x + 4)dx(2) dy = 3cos(3x)dx - 2sin(2x)dx(3) 利用对数函数和指数函数的微分性质,dy = (1/x)dx + e^xdx三、定积分与不定积分1. 求以下定积分:(1) ∫[0,1] (x^2 + 2x)dx(2) ∫[π/4,π/2] sinx dx解答:(1) ∫[0,1] (x^2 + 2x)dx = (1/3)x^3 + x^2 |[0,1]= (1/3)(1)^3 + (1)^2 - (1/3)(0)^3 - (0)^2= 4/3(2) 利用不定积分的基本公式,∫ sinx dx = -cosx∫[π/4,π/2] sinx dx = [-cosx] |[π/4,π/2] = -cos(π/2) - (-cos(π/4)) = -1 + √2/2 = √2/2 - 12. 求以下不定积分:(1) ∫(x^2 + 2x)dx(2) ∫sinx dx解答:(1) ∫(x^2 + 2x)dx = (1/3)x^3 + x^2 + C(2) ∫sinx dx = -cosx + C四、级数1. 判断以下级数的敛散性:(1) ∑(n=1,∞) (1/n)(2) ∑(n=1,∞) (1/2)^n解答:(1) 这是调和级数,已知调和级数∑(n=1,∞) (1/n) 发散。

高等数学第六版下册课后习题答案-同济大学

高等数学第六版下册课后习题答案-同济大学

本答案由大学生必备网 免费提供下载第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(0,0)(,)(0,0)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂==∂z y ∂==∂(4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z ∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 轴的对称点为 (−a, −b, c) 。
(3) 点 (a,b,c) 关于坐标原点的对称点为 (−a, −b, −c) 。
8.自点 P0 (x0, y0 , z0 ) 分别作各坐标面和各坐标轴的垂线,求出各垂足的坐标。 解 在 xOy 面、yOz 面和 zOx 面上, 垂足的坐标分别为 (x0 , y0 , 0) ,(0, y0 , z0 ) 和 (x0 , 0, z0 ) 。
18. 设 m = 3i + 5 j + 8k , n = 2i − 4 j − 7k , p = 5i + j − 4k ,求 a = 4m + 3n − p 在 x 轴 上的投影以及在 y 轴上的分向量.
解 因为 a = 4m + 3n − p = 4(3i + 5 j + 8k) + 3(2i − 4 j − 7k) − (5i + j − 4k)
习题 7.1
1.设 u = 3a + 5b − c , v = 4a − b − 3c ,ω = 2a − c ,试用 a,b,c 表示向量 2u − v + 3ω .
解 2u − v + 3ω = 2(3a + 5b − c) − (4a − b − 3c) + 3(2a − c) = 8a +11b − 2c
于 xOy 面的平面上, 点的坐标为 (x, y, z0 ) 。
10. 一边长为 a 的立方体放置在 xOy 面上,其底面的中心在坐标原点,底面的顶点在 x 轴和 y 轴上,求各顶点的坐标。
解 因为底面的对角线的长为 2a , 所以立方体各顶点的坐标分别为
(− 2 a, 0, 0) , ( 2 a, 0, 0) , (0, − 2 a, 0) , (0, 2 a, 0) ,
解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限。 6.在坐标面上和坐标轴上的点的坐标各有什么特征?并指出下列各点的位置:
A(3, 2,0) ; B(0,2,1) ; C(2,0,0) ; D(0, −2,0) .
解 在 xOy 面上的点的坐标为 (x, y, 0) ;在 yOz 面上的点的坐标为 (0, y, z) ;在 zOx 面上的
解 因为 a + b + c = 0 所以 (a + b + c) ⋅ (a + b + c) = 0 ,
即 a ⋅ a + b ⋅b + c ⋅ c + 2a ⋅b + 2b ⋅ c + 2c ⋅ a = 0 ,
于是 a ⋅b + b ⋅ c + c ⋅ a = − 1 (a ⋅ a + b ⋅ b + c ⋅ c) = − 1 (1+1+1) = − 3 。
得 x = 3 , b = {−48, 45, −36} .
习题 7.2
1. 设 a = 3i − j − 2k , b = i + 2 j − k .求
(1) a ⋅ b 及 a × b ;(2)(-2a) ⋅ 3b 及 a × 2b ;(3) a,b 的夹角余弦.
110
解 (1) a ⋅b = 3⋅1+ (−1) ⋅ 2 + (−2) ⋅ (−1) = 3
⎯⎯→
D2 A
=
⎯⎯→
BA −
⎯⎯→
BD2
=
−c −
2 5
a

⎯⎯→
D3 A
=
⎯⎯→
BA −
⎯⎯→
BD3
=
−c

3 5
a

106
⎯⎯→
D4 A
=
⎯⎯→
BA −
⎯⎯→
BD4
=
−c −
4 5
a

5.在空间直角坐标系中,指出下列各点在哪个卦限?
A(3, −2,5) ; B(1, 4, −4) ; C(2, −1, −3) ; D(−2, −5,7) .
W = F ⋅ S = (0, 0, −980) ⋅ (−2,3, −6) = 5880 (焦耳)。
i jk
⎯⎯→
⎯⎯→
n = M1M2× M 2M3 = 2 4 −1 = 6i − 4 j − 4k
0 −2 2
| n |= 36 +16 +16 = 2 17
e = ± 1 (6i − 4 j − 4k ) = ± 1 (3i − 2 j − 2k ) 为所求向量。
2 17
17
3.设 a,b,c 为单位向量,且满足 a + b + c = 0 ,求 a ⋅ b + b ⋅ c + c ⋅ a 。
点的坐标为 (x, 0, z) 。
在 x 轴上的点的坐标为 (x, 0, 0) ;在 y 轴上的点的坐标为 (0, y, 0) ;在 z 轴上的点的坐标为
(0, 0, z) 。
A 在 xOy 面上, B 在 yOz 面上, C 在 x 轴上, D 在 y 轴上。
7.求点 (a,b,c) 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
=

⎯⎯→
BC
=

1
(a
+
b
)

2
4. 把 ΔABC 的 BC 边五等分,设分点依次为 D1, D2, D3, D4 ,再把各分点与点 A 连接,试
以 AB = c, BC = a 表示向量 D1A, D2 A, D3 A, D4 A .

⎯⎯→
D1 A
=
⎯⎯→
BA −
⎯⎯→
BD1
=
−c

1 5
a

解 (1) 点 (a,b,c) 关于 xOy 面的对称点为 (a,b, −c) ;关于 yOz 面的对称点为 (−a,b, c) ;关
于 zOx 面的对称点为 (a, −b, c) 。
(2) 点 (a,b,c) 关于 x 轴的对称点为 (a, −b, −c) ;关于 y 轴的对称点为 (−a,b, −c) ;关于
3.已知菱形 ABCD 的对角线 AC = a , BD = b ,试用向量 a,b 表示 AB, BC, CD, DA 。

⎯⎯→
AB
=
1
⎯⎯→
( AC+
⎯⎯→
DB)
=1(aFra bibliotek−b)

⎯⎯→
CD
=

⎯⎯→
AB
=
1
(b

a) ,
2
2
2
⎯⎯→
BC
=
1
⎯⎯→
(BD+
⎯⎯→
AC)
=
1
(a
+
b)

2
2
⎯⎯→
DA
cosα
=−
1 2
,
cos β =
2 2
,
cosγ = 1 2
α = 2π , 3
β=

,
4
γ
=π。 3
15. 设向量的方向余弦分别满足(1) cosα = 0 ;(2) cos β = 1;(3) cosα = cos β = 0 .
问这些向量与坐标轴或坐标面的关系如何?
解 (1)当 cosα = 0 时, 向量垂直于 x 轴, 或者说是平行于 yOz 面.
ij k a × b = 3 −1 −2 = 5i + j + 7k
1 2 −1
(2)(-2a) ⋅3b = −6a ⋅b = −6⋅ 3 = −18
a × 2b = 2(a × b) = 2(5i + j + 7k ) = 10i + 2j +14k
^
(3) cos(a, b)
=
| a⋅b
|
=
3
=3。

Pr
ju
r
=|
r
| ⋅cos π 3
=
4⋅
1 2
=
2.
17. 设 a = i + j + k , b = 2i − 3 j + 5k ,求出向量的模,并分别用单位向量表达向量 a,b .
解 | a |= 12 +12 +12 = 3 ,| b |= 22 + (−3)2 + 52 = 38
于是 a = 3a0 , b = 38b0 .
2. 证明:对角线互相平分的四边形必是平行四边形.
→ →→
→ →→
证 AB =OB−OA ; DC =OC−OD ,




而 OC =−OA , OD =−OB ,

→→ →→

所以 DC =−OA+OB =OB−OA=− AB .
这说明四边形 ABCD 的对边 AB=CD 且 AB//CD,
从而四边形 ABCD 是平行四边形.
13. 试证明以三点 A(4,1,9), B(10, −1,6),C(2, 4,3) 为顶点的三角形是等腰直角三角形。
解 因为

| AB|= (10−4)2 +(−1−1)2 +(6−9)2 =7 ,

| AC|= (2−4)2 +(4−1)2 +(3−9)2 =7 ,

|BC|= (2−10)2 +(4+1)2 +(3−6)2 =7 2 ,

|PA|2=32 + (y −1)2 + (z − 2)2 ,
相关文档
最新文档