2020年台州市玉环县中考数学模拟试题有答案
2020年浙江省台州市中考数学模拟考试试卷附解析
2020年浙江省台州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .5B .5C .12D .2 2.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) A .内含B .相交C .相切D .外离 3. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( )A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x 4.已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( )A .3B .4C .5D .65.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查. 下列说法中,正确的是( )A .总体是该校八年级学生B .总体是该校八年级学生的身高C .样本是该校八年级(1)班学生D .个体是该校八年级的每个学生6.下列说法不正确的是( )A .在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B .在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C .在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D .在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数7.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道 8. ...依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )A .B .C .D . 9.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备的水管的长为( )A .17.5mB .35mC .335mD .70m 二、填空题 10.如图,在下列各图形中选择合适的图形填入相应的空格内(填号码):(1)主视图: ;左视图: ;俯视图: ;(2)主视图: ;左视图: ;俯视图: ;(3)主视图: ;左视图: ;俯视图: ;解答题11.若点11(,)P x y 、22(,)Q x y 在双曲线k y x=(k>0 且为常数)上,若120x x <<,则 y 1、y 2 的大小关系为y 1 y 2(填“>”或“<”).12.如图,正方形ABCD 的边长为4,MN ∥BC 分别交AB ,CD 于点M ,N ,在MN 上任取两点P ,Q ,那么图中阴影部分的面积是 .13.如图,已知∠1=∠2,BC=EF ,那么需要补充一个直接条件如 等(写出一个即可),才能使△ABC ≌△DEF .14.若方程mx 2+3x-4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .15.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限.16.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P 的坐标为(4,3.2),则这个点在图②中的对应点P 1的坐标为 (图中的方格是边长为1的小正方形).17.当x=_______时,分式x x x 2的值为 0. 18.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .三、解答题19.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.20.如图,在直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是43,求(1)y 的值;(2)角α的正弦值.21.如图,有一圆心角为120 o 、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,求圆锥的高.22.已知关于x的一元二次方程x2-m x-2=0.……①(1) 若x=-1是方程①的一个根,求m的值和方程①的另一根;(2) 对于任意实数m,判断方程①的根的情况,并说明理由.23.已知 c 为实数,并且方程230+-=一个根,求方x x c-+=一个根的相反数是方程230x x c程230x x c+-=的根和 c的值.24.已知0a<,试比较3a与2a的大小(用两种不同方法进行比较).25.如图所示,已知 EB∥DC,∠C=∠E.试说明:∠A=∠ADE.26.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?27.解下列方程组:(1)⎩⎨⎧=+-=11232y x x y (2) ⎩⎨⎧=--=+894132t s t s28.根据下图提供的信息,求出每只网球拍和每只乒乓球拍的单价.29.根据条件列方程:(1)某数的5倍比这个数大3(2)某数的相反数比这个数大6(3)爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?30.下面计算错在哪里,怎样改正?4211(1)()()(1)5353+-+---+ 4211115353=-+- 4121(1)(1)5533=+-- 22()3=--22 =+= 2233【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.B5.B6.C7.B8.D9.D二、填空题10.(1)④④④;(2)⑥⑥④;(3)⑤⑤①11.>12.813.AC=DF 或∠B=∠E 等14.3≠m 15.三16.(4,2.2)17.118.22(2)4(1)n n n +-=+三、解答题19.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=(1)421. 24 22. 图①解:(1) x =-1是方程①的一个根,所以1+m -2=0, 解得m =1.方程为x 2-x -2=0, 解得, x 1=-1, x 2=2.所以方程的另一根为x =2.(2) ac b 42-=m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程①有两个不相等的实数根.23.10x =,23x =-,0c =24.方法一:∵3>2,∴a<0,∴3a<2a ;方法二:∵3a-2a=a<0,∴3a<2a25.可由AC ∥DE 说明26.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.27.(1)⎩⎨⎧==13y x ,(2) ⎪⎩⎪⎨⎧-==3221t s 28.每只网球拍单价为 80 元,每只乒乓球拍的单价为 40 元29.略30.错在第二步,正确结果为 0。
台州市2020年中考数学模拟试题及答案
5.如图是按1: 10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A. 200 cm2 B . 600 cm2C. 100 71cm2D. 200 71cm26.如图,已知AB是。
的直径,CD是弦,且CDLAB BC= 3, AO4,则sin / AB面值是()A. 4B. -y34- 3 4C.5D.石7.如图,ABC四平行四边形,BC= 2AB / BAD勺平分线AE交对角线21(1)单位:cmDBD于点F,若^ BEF的面积为台州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列运算正确的是()A. a3+a3=2a6 B , a6+a 3=a3 C , a3?a2= a6 D . (- 2a2)3= - 8a62.。
的半径为4,圆心O到直线l的距离为3,则直线l与。
的位置关系是()A.相交 B .相切C .相离D .无法确定3.已知x+y=—4, xy=2,贝U x2+y2的值()A.10B.11C.12D.134.人类的遗传物质是DNA人类的DNA是很大的链,最短的22号染色体也长达30000000个核昔酸,30000000用科学记数法表示为()A.3X108B.3 X107C.3 X106D.0.3 X 1081,则四边形CDFE勺面积是()8 .已知x=2是关于x 的方程x 2- ( n +4) x +4m= 0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 勺两条边长,则4 ABC 勺周长为()A. 6B. 8C. 10D. 8 或 109 .如图,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在 AB 外选一他点C,然后测出AC BC 的中点M N,并测量出MN 勺长为18m 由此 他就知道了 A 、B 间的距离.下列有关他这次探究活动的结论 中,错误的是()A. A* 36mB. MIN/ ABCC. MN CBD. CM= AC2 210 .每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了 “阶梯水价”计费方法,具体方法:每户每月用 水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的, 超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量11 .甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (所与挖掘时间x (h )之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘 30m时,用了 3h;②挖掘6h 时甲队比乙队多挖了 10m ③乙队的挖掘速度总是小于甲队; ④开挖后甲、乙两队所挖河渠长度相等时, x=4.其中一定正确的有()A. 3 B . 4C. 5D. 6VA (米)A. 1个B. 2个C. 3个D. 4个12.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()二、填空题(本题共6小题,满分18分。
2020年浙江省台州市中考数学模拟考试试卷B卷附解析
2020年浙江省台州市中考数学模拟考试试卷B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AB是⊙O的直径,点C在圆上,若∠CAB=α,则∠B等于()A.90°-αB.90°+αC.100°-αD.100°+α2.下列命题为真命题的是()A.三角形的中位线把三角形的面积分成相等的两部分B.对角线相等且相互平分的四边形是正方形C.关于某直线对称的两个三角形是全等三角形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形3.如图,在△ABC中,∠1是△ABC的一个外角,D是AC上一点,连结BD,下列判断角的大小关系错误的是()A.∠l>∠2 B.∠l>∠5 C.∠l>∠3 D.∠5>∠44.小明将若干个苹果向若干只篮子里分放,若每只篮子分4个苹果,还剩20个未分完;若每只篮子里分放 8 个苹果,则还有一只篮子没有放满,那么小明共有苹果的个数为()A .44 个 B.42 个 C.40 个 D.38 个5.如图,已知∠1 和∠2 互补,∠3 = 125°,则∠4 的度数是()A.45°B.55°C.125°D.75°6.如图所示,一块正方形铁皮的边长为 a,如果一边截去6,另一边截去 5,那么所剩铁皮的面积(阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个7.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.( )A .一定不会B .可能会C .一定会D .以上答案都不对二、填空题8.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 .y=-x 2+4x-4(答案不唯一)9.四边形ABCD 中,AC 、BD 交于点O ,且OA=OC ,OB=•OD ,•∠ABC=•80•°,•则∠ADC=_____.10.已知一个样本中,50个数据分别落在5个组内,第一,二,三,五的数据个数分别为2,8,15,5,则第四组的频数为 ,频率为 .11.将l00个数据分成8个组,如下表: 组号l 2 3 4 b 6 7 8 频数 11 14 12 13 13 x 12 10组的频数为 .12.在△ABC 中,与∠A 相邻的外角等于l35°,与∠B 相邻的外角也等于l35°,则△ABC 是 三角形.13.如图,点D 是△ABC 内部一点,DE ⊥AB 于E ,DF ⊥BC 于F ,且DE=DF ,若∠ABD=26°,则∠ABC= .14.如图,在△ABC 中,∠B=40°,∠C=20°,AD ⊥AC ,垂足为A ,交BC 于D ,若AB=4,则CD . 15.(1)75°= 直角;(2)29平角= ;(3)135°= 周角.16.今有 16. 5 t 煤,若一辆汽车最多运 4 t ,则至少需派 辆汽车才可一次将所有煤运走. 三、解答题17.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其余都相同.(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,求两个球都是白球的概率;(3)搅均后从中任意摸出一个球,要使摸出红球的概率为32,应如何添加红球?18.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f 是隐性的,控制双眼皮的基因F 是显性的,这样控制眼皮的一对基因可能是ff 、FF 或Ff ,基因ff 的人是单眼皮,基因FF 或Ff 的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff ,那么他们的子女只有ff 、FF 或Ff 三种可能,具体可用下表表示:你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是Ff ,母亲的基因是ff 呢?19.在平面直角坐标系内点A(a b--)关于原点对称,试求点A,B的+,2b-)与点B(3,3a坐标.20.如图所示,在四边形ABCD中,∠B=∠D=90°,∠A:∠C=1:2,AB=2,CD=1.求:(1)∠A,∠C的度数;(2)AD,BC的长度;(3)四边形ABCD的面积.21.已知:△ABC为等边三角形,D为AC上任意一点,连结BD.(1)在BD左边,以BD为一边作等边△BDE(尺规作图,保留作图痕迹,不写作法);(2)连结AE,求证:CD=AE22.如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.AB C23. 若10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值.24.把甲、乙两种原料按 a : b 的质量比混合(a>b),调制成一种混合饮料,要调制4 kg 这种混合饮料,需要的甲原料比乙原料多多少? (用含 a ,b 的代数式表示) 44a b a b -+25.先化简,再求值:22()a b a b a b b a ab++÷--,其中31a =+, 31b =-.26.分析如图①、②、④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.27.在沙漠中,一位旅行者带着罗盘和计程器从营地A 出发,向北偏西47°的方向走了3.2 km ,到达B 地,然后从B 地出发,向正东方向行走4.6 km ,到达C 地,问旅行者从C 地按什么方向返回营地的路程最短?最短路程是多少?(1)画出线路图;(2)你所画出的线路图与实际路线图经过了哪一种图形变换?缩小的倍数是多少?(3)量出图中线段的长度,再算出实际路程.28.解方程4316 0.205x x+--=-.29.小明阅读一本世界名著,第一天看了全书的13,第二天看了剩下部分的23,若全书共x页,现在小明还有多少页未看?29x30.计算:(1)|3|π-;(2) |9||5|--+(3) |5|7-+-(4)21 |||1| 39 -÷-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.A5.B6.D7.A二、填空题8.9.80°10.20,0.411.12.等腰直角13.52°14.815. (1)56 (2)40 (3)3816.5三、解答题17.(1)不同意小明的说法因为摸出白球的概率是23,摸出红球的概率是13,因此摸出白球和摸出红球不是等可能的.(2)P (两个球都是白球)=13.(3)设应添加x 个红球,由题意得3231=++x x ,解得x=3(经检验是原方程的解) ∴应添加6-3=3个红球. 18. 概率为43. 若父亲的基因是Ff ,母亲的基因是ff 时,子女出现双眼皮的概率为21(50%). 19.A(-3,-1),B(3,1)20.(1)∠A=60°,∠C=120°;(2)AD=4BC=2;(3)S =21.(1)略(2)只要证明:△ABE ≌△CBD (SAS )解:(1)作图略;(2)在△ABC 中,AB=AC ,AD 是△ABC 的中线,∴AD ⊥BC , 118422BD CD BC ===⨯=. 在Rt △ABD 中,AB =10,BD =4,222AD BD AB +=,AD ∴===.23.(1) 88 (2) 45624.44a b a b-+25. ab ,226.略27.(1)图略;(2)相似变换,200000倍;(3)3.4 km28.将原方程分母化为 1,得5(4)2(3)16x x +--=-,解得14x =- 29.29x 30. (1)3π- (2)4 (3)12 (4)35。
2020年浙江省台州市中考数学仿真模拟试卷解析版
2020年浙江省台州市中考数学仿真模拟试卷一、选择题(本题有10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.2018B.﹣C.D.﹣20182.(4分)在以下四个标志中,是轴对称图形的是()A.B.C.D.3.(4分)如图是由4 个相同的正方体组成的一个立体图形,它的俯视图为()A.B.C.D.4.(4分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a75.(4分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.平均数C.中位数D.众数6.(4分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°7.(4分)已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab8.(4分)以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+16B.y=x2+8x+16C.y=x2+4D.y=x2﹣49.(4分)如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC 10.(4分)把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现用等式A M=(i,j)表示正偶数M是第i组第j个数(从左往右数),如A8=(2,3),则A2018=()A.(32,25)B.(32,48)C.(45,39)D.(45,77)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y+y=.12.(5分)如图,有一个正六边形图片,每组平行的对边距离为3米,点A是正六边形的一个顶点,现点A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好落在数轴点A′上,则点A′对应的实数是.13.(5分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.14.(5分)已知直线y1=x﹣1与双曲线y2=(k>0)在第一象限内交于点P(5,4),则当0<y1<y2时,自变量x的取值范围是.15.(5分)已知﹣2是三次方程x3+bx+c=0的唯一实数根,求c的取值范围.下面是小丽的解法:解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c 可得m=﹣2,n=c.再由△=m2﹣4n<0.得出c>2.根据小丽的解法,则b的取值范围是.16.(5分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转60°至AD',连接BD'.若AB=2cm,则BD'的最小值为.三、解答题(本题有8小题,第17-20题每小题8分,第21题10分,第22、23题每小题8分,第24题14分,共80分)17.(8分)计算:|1﹣|+(π﹣2018)0﹣2sin60°18.(8分)先化简:(﹣)÷,再从0,﹣2,2,+2中选取一个适当的数代入求值.19.(8分)如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.20.(8分)为了方便宣传,让全校师生及时了解学校相关信息,学校在教学楼前面的空地上安装了一块LED电子显示屏(如图),已知电子显示屏的立柱(垂直于地面)AB高度是 2.2 米,从侧面P点测得显示屏顶端C点和底端B点的仰角分别53°和45°.求LED电子显示屏的宽度BC的长.(结果精确到0.1m,参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).21.(10分)某校开展课外活动,分音乐、体育、美术、制作四个活动项目,随机抽取部分学生对其选择参加的活动项目进行调查统计,制成了两幅不完整的统计图.请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是;(2)请补全上述条形统计图,并求出扇形图中“美术”所占的圆心角度数;(3)若该校有2000名学生,请你用此样本估计参加“艺术”类活动项目(“艺术”类活动包括“音乐”和“美术”两个项目)的学生人数约为多少人.22.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的计价规则:若车辆以平均速度v千米/时行驶了s千米,则打车费用为(ps+60q⋅)元(不足9元按9元计价).当某车以60千米/时的速度行驶8千米时,该打车方式的付费为9.6元;当以50千米/时的速度行驶10千米时,该打车方式付费为12.4元.(1)求p、q的值;(2)若该车行驶15分钟时费用为17元,求该车的平均速度.23.(12分)定义一种新运算:A*B=,例:2*3=3﹣2=1,(﹣2)*3=3﹣(﹣2)=5.(1)解不等式:2*(3x+1)>10;(2)若y=x*x2,回答下列问题:①求函数解析式,并指出x的取值范围;②讨论函数y=x*x2与y=x*(x﹣a)(a≥0)的图象的交点个数.24.(14分)如图1,在正方形ABCD中,E为AB的中点,FE⊥AB,交CD于点F,点P 在直线EF上移动,连接PC、P A,回答下列问题:(1)如图2,当点P在E的左侧,且∠P AE=60°时,连接BD,交直线PC于点M,求∠DMC的度数;(请完成下列求解过程)解:连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC的度数是,∴∠PBC=150°,∴∠PCB的度数是,∴∠DMC=∠PCB+∠DBC=.(2)如图3,在(1)的条件下,点P关于AB的对称点为点P',连结CP'并延长交BD 于点M'.求证:△MCM'是等边三角形;(3)直线BD与直线EF、直线PC分别相交于点O和点M,若正方形的边长为2,是否存在点P,使△PMO的面积为1?若存在,求出OP的长度;若不存在,请说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.2018B.﹣C.D.﹣2018【分析】直接利用倒数的定义进而分析得出答案.【解答】解:﹣2018的倒数是:﹣.故选:B.2.(4分)在以下四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:A.3.(4分)如图是由4 个相同的正方体组成的一个立体图形,它的俯视图为()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看从上边看有三列,每一列是一个小正方形,故选:D.4.(4分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a7【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.5.(4分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.平均数C.中位数D.众数【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差;【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:A.6.(4分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.7.(4分)已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab【分析】结合数轴中a,b,c的位置,判断其正负性和绝对值的大小,以此判断各选项的对错.【解答】解:由数轴上各点的位置判断:c<b<0<a,|b|<|a|<|c|,A.c+b<0,a+b>0,所以c+b<a+b,故该选项错误;B.c,b同号,所以cb>0,同理,ab<0,所以cb<ab,故该选项错误;C.﹣c>0,﹣b>0,a>0,因为|c|>|b|,所以﹣c>﹣b,不等式两边同时加a,不等号方向不变,故该选项正确;D.c<b,所以不等式两边同时乘以正数a,不等号的方向不变,故该选项错误;故选:C.8.(4分)以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+16B.y=x2+8x+16C.y=x2+4D.y=x2﹣4【分析】利用菱形的性质结合已知得出抛物线平移距离进而得出答案.【解答】解:∵以菱形ABCD的两条对角线所在的直线为坐标轴,建立平面直角坐标系,点A的坐标为(2,0),∴C点坐标为:(﹣2,0),∵抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,∴抛物线向左平移了4个单位长度,∴该抛物线的函数表达式变为:y=(x+4)2=x2+8x+16.故选:B.9.(4分)如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC【分析】△OBC是等边三角形,延长EO交AB于K,连接CK交BD于G,连接GE,由题意E、K关于BD对称,推出GE+GC=GK+GC,当K、G、C共线时,GE+GC的值最小,最小值为KC的长;【解答】解:如图,由题意∠BOE=∠BCE=90°,OB=BC=OC,∴△OBC是等边三角形,延长EO交AB于K,连接CK交BD于G,连接GE.由题意E、K关于BD对称,∴GE+GC=GK+GC,∴当K、G、C共线时,GE+GC的值最小,最小值为KC的长,设BC=a,CK=m,在Rt△BOK中,∵∠KBO=30°,OB=a,∴BK=OB÷cos30°=a,在Rt△CBK中,∵BC2+BK2=CK2,∴a2+(a)2=m2,∴3m2=7a2,∴m=a.故选:C.10.(4分)把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现用等式A M=(i,j)表示正偶数M是第i组第j个数(从左往右数),如A8=(2,3),则A2018=()A.(32,25)B.(32,48)C.(45,39)D.(45,77)【分析】先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.【解答】解:2018是第1009个数,设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,当n=31时,n2=961,当n=32时,n2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第+1=48个数,故A2018=(32,48).故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y+y=y(x2+1).【分析】直接提公因式y即可.【解答】解:原式=y(x2+1),故答案为:y(x2+1).12.(5分)如图,有一个正六边形图片,每组平行的对边距离为3米,点A是正六边形的一个顶点,现点A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好落在数轴点A′上,则点A′对应的实数是.【分析】如图作BH⊥OC于H.解直角三角形求出正六边形的边长即可解决问题;【解答】解:如图作BH⊥OC于H.∵BC=BO,BH⊥OC,∴CH=HO=,在Rt△CBH中,∵cos30°=,∴CH=,由题意OA′=6BC=6,故答案为6.13.(5分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==,故答案为:.14.(5分)已知直线y1=x﹣1与双曲线y2=(k>0)在第一象限内交于点P(5,4),则当0<y1<y2时,自变量x的取值范围是1<x<5.【分析】依据直线y1=x﹣1与x轴的交点为(1,0),点P为(5,4),可得当0<x<5时,反比例函数图象在直线的上方,依据当x>1时,0<y1,即可得到当0<y1<y2时,自变量x的取值范围是1<x<5.【解答】解:当y1=x﹣1=0时,x=1,∴直线y1=x﹣1与x轴的交点为(1,0).根据函数图象可知:当0<x<5时,反比例函数图象在直线的上方,∴当0<x<5时,y1<y2.又∵当x>1时,0<y1,∴当0<y1<y2时,自变量x的取值范围是1<x<5.故答案为:1<x<5.15.(5分)已知﹣2是三次方程x3+bx+c=0的唯一实数根,求c的取值范围.下面是小丽的解法:解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c 可得m=﹣2,n=c.再由△=m2﹣4n<0.得出c>2.根据小丽的解法,则b的取值范围是b>﹣3.【分析】根据小丽的解法,可知:b=n+2m,且n>﹣1,代入可得b的取值范围.【解答】解:因为﹣2是三次方程x3+bx+c=0的唯一实数根,所以(x+2)(x2+mx+n)=x3+bx+c,x3+mx2+nx+2x2+2mx+2n=x3+bx+c,x3+(m+2)x2+(n+2m)x+2n=x3+bx+c,则,可得m=﹣2,n=c,再由△=m2﹣4n<0,4﹣4n<0,n>1,∴n﹣4>﹣3,∵b=n+2m=n﹣4,∴b>﹣3,故答案为:b>﹣3.16.(5分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转60°至AD',连接BD'.若AB=2cm,则BD'的最小值为1.【分析】在AC上截取AE=AB=2,作EF⊥BC于F,如图,先计算出AC=2AB=4,BC =2,∠BAC=60°,则CE=2,再在Rt△CEF中计算出EF=1,FC=,接着证明△ABD′≌△ADE得到DE=BE′,然后利用勾股定理得到DE2=DF2+EF2=(BD﹣)2+1,然后根据二次函数的性质解决问题.【解答】解:在AC上截取AE=AB=2,作EF⊥BC于F,如图,∵∠ABC=90°,∠C=30°,∴AC=2AB=4,BC=AB=2,∠BAC=60°,∴CE=AC﹣AE=2,在Rt△CEF中,EF=CE=1,FC=EF=,∵线段AD绕点A顺时针旋转60°至AD',∴AD=AD′,∠DAD′=60°,∴∠BAD′=∠EAD,在△ABD′和△ADE中,∴△ABD′≌△ADE,∴DE=BE′,在Rt△DEF中,DE2=DF2+EF2=(﹣BD)2+12=(BD﹣)2+1,∴当BD=时,DE2有最小值1,∴BD'的最小值为1.三、解答题(本题有8小题,第17-20题每小题8分,第21题10分,第22、23题每小题8分,第24题14分,共80分)17.(8分)计算:|1﹣|+(π﹣2018)0﹣2sin60°【分析】原式利用零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=﹣1+1﹣2×=0.18.(8分)先化简:(﹣)÷,再从0,﹣2,2,+2中选取一个适当的数代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,再从0,﹣2,2,+2中选取一个使得原分式有意义的值代入即可解答本题.【解答】解:(﹣)÷==2(m﹣2)﹣(m+2)=2m﹣4﹣m﹣2=m﹣6,当m=时,原式=.19.(8分)如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.【分析】(1)根据圆周角定理证明即可;(2)连接CO,利用弧长公式解答即可.【解答】(1)证明:∵点O是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.20.(8分)为了方便宣传,让全校师生及时了解学校相关信息,学校在教学楼前面的空地上安装了一块LED电子显示屏(如图),已知电子显示屏的立柱(垂直于地面)AB高度是 2.2 米,从侧面P点测得显示屏顶端C点和底端B点的仰角分别53°和45°.求LED电子显示屏的宽度BC的长.(结果精确到0.1m,参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【分析】通过解直角△P AB求得P A的长度,通过解直角△P AC得到AC的长度,则CA=AB+BC,由此求得BC的长度.【解答】解:由题意得CA=P A•tan53°≈2.2×1.33=2.926≈2.93(m)∴CB=CA﹣AB=2.93﹣2.2=0.73≈0.7(m).21.(10分)某校开展课外活动,分音乐、体育、美术、制作四个活动项目,随机抽取部分学生对其选择参加的活动项目进行调查统计,制成了两幅不完整的统计图.请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是50;(2)请补全上述条形统计图,并求出扇形图中“美术”所占的圆心角度数;(3)若该校有2000名学生,请你用此样本估计参加“艺术”类活动项目(“艺术”类活动包括“音乐”和“美术”两个项目)的学生人数约为多少人.【分析】(1)根据体育的人数除以占的百分比求出调查的学生总数即可;(2)求出“音乐”与“制作”的人数,补全条形统计图即可;(3)求出音乐与美术的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:20÷40%=50;故答案为:50;(2)根据题中的数据得:条形图中“音乐”15人,“制作”5人,如图所示:则“美术”所占的角度数为360°×=72°;(3)参加“艺术”类活动项目的学生有:2000×(+)=1000(人).22.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的计价规则:若车辆以平均速度v千米/时行驶了s千米,则打车费用为(ps+60q⋅)元(不足9元按9元计价).当某车以60千米/时的速度行驶8千米时,该打车方式的付费为9.6元;当以50千米/时的速度行驶10千米时,该打车方式付费为12.4元.(1)求p、q的值;(2)若该车行驶15分钟时费用为17元,求该车的平均速度.【分析】(1)根据题意列出方程组即可求出答案.(2)根据题意列出方程即可求出答案.【解答】(1)由题意得解得;(2)由题意得解得s=14所以该车的平均速度=(km/h).23.(12分)定义一种新运算:A*B=,例:2*3=3﹣2=1,(﹣2)*3=3﹣(﹣2)=5.(1)解不等式:2*(3x+1)>10;(2)若y=x*x2,回答下列问题:①求函数解析式,并指出x的取值范围;②讨论函数y=x*x2与y=x*(x﹣a)(a≥0)的图象的交点个数.【分析】(1)根据新定义解答即可;(2)①根据新定义解答即可;②分情况讨论即可.【解答】解:(1)当2≥3x+1,即x≤时,2﹣(3x+1)>10,得x<﹣3,∴x<﹣3,当2<3x+1,即x>时,(3x+1)﹣2>10,得x>,∴x>.(2)①,②当a=0时,两图象有2个交点;当0<a<时,两图象有4个交点;当a=时,两图象有3个交点;当a>时,两图象有2个交点.24.(14分)如图1,在正方形ABCD中,E为AB的中点,FE⊥AB,交CD于点F,点P 在直线EF上移动,连接PC、P A,回答下列问题:(1)如图2,当点P在E的左侧,且∠P AE=60°时,连接BD,交直线PC于点M,求∠DMC的度数;(请完成下列求解过程)解:连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是①等边三角形三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC的度数是②45°,∴∠PBC=150°,∴∠PCB的度数是③15°,∴∠DMC=∠PCB+∠DBC=④60°.(2)如图3,在(1)的条件下,点P关于AB的对称点为点P',连结CP'并延长交BD 于点M'.求证:△MCM'是等边三角形;(3)直线BD与直线EF、直线PC分别相交于点O和点M,若正方形的边长为2,是否存在点P,使△PMO的面积为1?若存在,求出OP的长度;若不存在,请说明理由.【分析】(1)如答图1,连接PB.构造等边△APB,结合正方形的性质和三角形外角定理求得∠DMC的度数;(2)如答图2,连接BP',由题意可得△ABP'是等边三角形,由对称的性质、等边三角形的性质和等边三角形的判定定理推知结论;(3)需要分类讨论:结合题意作出四种不同的图形,利用相似三角形的判定与性质解答.【解答】(1)解:如答图1,连接PB.∵FE⊥AB,E为AB的中点,∴P A=PB,∵∠P AE=60°,∴△APB是等边三角形,∵四边形ABCD是正方形,∴PB=BC=AB,且∠DAB=∠ABC=90°,∠DBC=45°,∴∠PBC=150°,∴∠PCB=15°,∴∠DMC=∠PCB+∠DBC=60°.故答案是:①等边三角形,②45°,③15°,④60°.(2)如答图2,连接BP',由题意可得△ABP'是等边三角形,∠P'BC=30°,可得:∠BC P'=75°,∵∠PCB=15°,∴∠PC P'=60°,∵∠PC P'=60°,∴△MCM'是等边三角形;(3)存在.设PO为x,过点M作MH⊥OP,①如答图3,当点P在点O左侧时:∵△BCM∽△OPM,∴MH=∴S△PMO=解得:x1=1+,x2=1﹣(舍去);②如答图4,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=解得:x1=﹣1+>1(舍去),x2=﹣1﹣(舍去)点P不存在;③如图③,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=解得:x1=﹣1+,x2=﹣1﹣(舍去)④如图④,由△BCM∽△OPM可得:△OPM的高为,∴S△PMO=方程无解.综上所述,存在点P,使△PMO的面积为1,此时OP的长为1+和﹣1+.。
2020年浙江省台州市中考数学全真模拟试卷解析版
2020年浙江省台州市中考数学全真模拟试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)2的相反数是()A.﹣2B.﹣C.D.22.(4分)下列手机应用图标是中心对称图形的是()A.B.C.D.3.(4分)对于一组数据:x1,x2,x3,…,x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.平均数B.中位数C.众数D.方差4.(4分)若a>b,则下列不等式中一定成立的是()A.a﹣b<0B.ab>0C.﹣a>﹣b D.a+1>b﹣1 5.(4分)对于一次函数y=3x﹣1,下列说法正确的是()A.图象经过第一、二、三象限B.函数值y随x的增大而增大C.函数图象与直线y=3x相交D.函数图象与y轴交于点(0,)6.(4分)如图,直线l1∥l2,且分别与等腰△ABC的两条腰相交,若∠1=40°,∠2=86°,则∠B的度数为()A.54°B.60°C.63°D.70°7.(4分)某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=48.(4分)如图,矩形ABCD中,AB=8,BC=4.点G,E分别在边AB,CD上,点F,H 在对角线AC上.若四边形EFGH是菱形,则AG的长是()A.2B.5C.3D.69.(4分)如图,将边长相等的正△ABP和正五边形ABCDE的一边AB重叠在一起,当△ABP绕着点A顺时针旋转α°时,顶点P刚好落在正五边形的对称轴EF上,此时α的值为()A.45B.30C.26D.2410.(4分)设实数a,b,c满足a+b=3c2﹣4c+6,a﹣b=c2﹣4c+4,则a,b,c的大小关系是()A.a<b≤c B.b≤a<c C.c<b≤a D.c≤b≤a二、填空题(本题有6小题,每小题5分,共30分)11.(5分)面积等于5的正方形的边长是.12.(5分)点(2,﹣3)关于y轴对称的点的坐标是.13.(5分)某校准备组织一次“研学之旅”活动,现用抽签的方式从以下四个地方:九峰公园、柑橘博览园、平田桐树坑、长潭水库(其中九峰公园、平田桐树坑是爱国主义教育基地)中确定两个作为活动地点.将四个地点分别写在4张完全相同的卡片上,背面朝上并洗匀,先从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.则“抽中的两个地方都是爱国主义教育基地”的概率为.14.(5分)如图,将一块含30°角的直角三角板ABC和半圆形量角器按图中方式叠放,三角板的直角边BC与量角器的零刻度线所在直线重合,斜边与半圆相切于点D,若圆心O 对应的刻度为2cm,量角器的边缘E对应的刻度为9.5cm,则线段BD的长度为cm.15.(5分)已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a (x﹣h﹣1)2+k=0的解为.16.(5分)如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(1)计算:﹣()﹣1﹣2cos30°;(2)解方程组:18.(8分)先化简,再求值:(a﹣3)2﹣(a﹣2)(a﹣6),其中a=1011.19.(8分)如图,一次函数y1=x+2与反比例函数y2=的图象交于A,B两点,点A的坐标为(1,a).(1)求出k的值及点B的坐标;(2)根据图象,写出y1>y2时x的取值范围.20.(8分)如图是一个由1×1的正方形点阵组成的点阵图,请用无刻度的直尺按要求作图.(1)如图1,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)(2)如图2,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)21.(10分)某学校组织七年级学生进行“垃圾分类”知识测试,现随机抽取部分学生的成绩进行统计,并绘制如下频数分布表以及频数分布直方图.分数档分数段/分频数频率A90<x≤100 a0.12B80<x≤90 b0.18C70<x≤8020cD60<x≤7015d请根据以上信息,解答下列问题:(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.(3)你能确定被抽取的这些学生的成绩的众数在哪一档吗?请说明理由.22.(12分)如图,AB,DE为⊙O的直径,过点D作弦DC⊥AB于点H,连接AE并延长交DC的延长线于点F.(1)求证:=;(2)若sin D=,求tan F.23.(12分)某水果店以10元/千克的价格购进某种水果进行销售,经过市场调查获得部分数据如下表:销售价格x(元/千克)1013161922日销售量y(千克)10085705540(1)请根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识刻画y与x之间的函数关系;(2)该水果店应该如何确定这批水果的销售价格,才能使日销售利润最大?(3)若该水果店平均每销售1千克这种水果会损耗a千克,当20≤x≤22时,水果店日获利的最大值为405元,求a的值.24.(14分)如图,△ABC和△ADE是两个不全等的等腰直角三角形,其中点B与点D是直角顶点,现固定△ABC,而将△ADE绕点A在平面内旋转.(1)如图1,当点D在CA延长线上时,点M为EC的中点,求证:△DMB是等腰三角形.(2)如图2,当点E在CA延长线上时,M是EC上一点,若△DMB是等腰直角三角形,∠DMB为直角,求证:点M是EC的中点.(3)如图3,当△ADE绕点A旋转任意角度时,线段EC上是否都存在点M,使△BMD 为等腰直角三角形,若不存在,请举出反例;若存在,请予以证明.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)2的相反数是()A.﹣2B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.2.(4分)下列手机应用图标是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断.【解答】解:A、不是中心对称图形,不合题意;B、不是中心对称图形,不合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不合题意.故选:C.3.(4分)对于一组数据:x1,x2,x3,…,x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.平均数B.中位数C.众数D.方差【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:先去掉一个最高分,去掉一个最低分,再进行统计,则上述四个统计量中,一定不会发生变化的是中位数;故选:B.4.(4分)若a>b,则下列不等式中一定成立的是()A.a﹣b<0B.ab>0C.﹣a>﹣b D.a+1>b﹣1【分析】根据不等式的基本性质解答即可.【解答】解:∵a>b,∴a﹣b>0,故A错误;﹣a<﹣b,故C错误,a+1>b+1,故D正确.由于不能确定a 与b是否同号,所以ab的符号不能确定,故B错误,故选:D.5.(4分)对于一次函数y=3x﹣1,下列说法正确的是()A.图象经过第一、二、三象限B.函数值y随x的增大而增大C.函数图象与直线y=3x相交D.函数图象与y轴交于点(0,)【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵一次函数y=3x﹣1,∴该函数图象经过第一、三、四象限,故选项A错误,函数值y随x的增大而增大,故选项B正确;函数图象与y=3x互相平行,故选项C错误;函数图象与y轴交于点(0,﹣1),故选项D错误,故选:B.6.(4分)如图,直线l1∥l2,且分别与等腰△ABC的两条腰相交,若∠1=40°,∠2=86°,则∠B的度数为()A.54°B.60°C.63°D.70°【分析】根据对顶角的性质得到∠3=∠2=86°,∠5=∠1=40°,根据平行线的性质得到∠4=180°﹣∠3=94°,由三角形的外角性质得到∠A=∠4﹣∠5=54°,根据等腰三角形的性质即可得到结论.【解答】解:∵∠3=∠2=86°,∠5=∠1=40°,∵直线l1∥l2,∴∠4=180°﹣∠3=94°,∴∠A=∠4﹣∠5=54°,∵AB=AC,∴∠B=(180°﹣∠A)=63°,故选:C.7.(4分)某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=4【分析】设第一次买了x本素描本,根据第一次用120元,第二次在同一家商店又购买了240元,这次商家每本优惠4元,列出方程即可.【解答】解:设第一次买了x本素描本,列方程得:﹣=4.故选:A.8.(4分)如图,矩形ABCD中,AB=8,BC=4.点G,E分别在边AB,CD上,点F,H 在对角线AC上.若四边形EFGH是菱形,则AG的长是()A.2B.5C.3D.6【分析】首先连接EG交AC于O,由矩形ABCD中,四边形EEFGH是菱形,易证得△CEO≌△AOG(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOG∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【解答】解:连接GE交AC于O,∵四边形EFGH是菱形,∴GE⊥AC,OG=OE,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CEO与△AOG中,,∴△CEO≌△AOG(AAS),∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOG=∠B=90°,∴△AOG∽△ABC,∴=,∴=,∴AG=5.故选:B.9.(4分)如图,将边长相等的正△ABP和正五边形ABCDE的一边AB重叠在一起,当△ABP绕着点A顺时针旋转α°时,顶点P刚好落在正五边形的对称轴EF上,此时α的值为()A.45B.30C.26D.24【分析】分别求出∠P AE,∠P′AE即可解决问题.【解答】解:如图,∵ABCDE是正五边形,∴∠EAB=AED=108°,∵△P AB是等边三角形,∴∠P AB=60°,∴∠EAP=48°,∵EF是正五边形的对称轴,∴∠AEF=54°,∵AE=AP=AP′,∴∠AP′E=∠AEF=54°,∴∠EAP′=180°﹣2×54°=72°,∴∠P AP′=72°﹣48°=24°,∴旋转角α=24°,故选:D.10.(4分)设实数a,b,c满足a+b=3c2﹣4c+6,a﹣b=c2﹣4c+4,则a,b,c的大小关系是()A.a<b≤c B.b≤a<c C.c<b≤a D.c≤b≤a【分析】把c看作常数解方程组,可表示b的值,利用作差法可比较b和c的大小,利用②可比较a和b的大小,从而得结论.【解答】解:,①﹣②得:2b=2c2+2,b=c2+1,∴b﹣c=c2+1﹣c=(c﹣1)2+c>0,∴b>c,由②知:a﹣b=(c﹣2)2≥0,∴a≥b,∴c<b≤a,故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)面积等于5的正方形的边长是.【分析】根据算术平方根的定义解答.【解答】解:面积等于5的正方形的边长是.故答案为:.12.(5分)点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3).【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3).13.(5分)某校准备组织一次“研学之旅”活动,现用抽签的方式从以下四个地方:九峰公园、柑橘博览园、平田桐树坑、长潭水库(其中九峰公园、平田桐树坑是爱国主义教育基地)中确定两个作为活动地点.将四个地点分别写在4张完全相同的卡片上,背面朝上并洗匀,先从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.则“抽中的两个地方都是爱国主义教育基地”的概率为.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:记九峰公园、柑橘博览园、平田桐树坑、长潭水库分别为A、B、C、D,列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中抽中的两个地方都是爱国主义教育基地的有2种结果,所以抽中的两个地方都是爱国主义教育基地的概率为=.故答案为:.14.(5分)如图,将一块含30°角的直角三角板ABC和半圆形量角器按图中方式叠放,三角板的直角边BC与量角器的零刻度线所在直线重合,斜边与半圆相切于点D,若圆心O 对应的刻度为2cm,量角器的边缘E对应的刻度为9.5cm,则线段BD的长度为cm.【分析】连接OD,根据切线的性质得到∠BDO=90°,求得OD=OE=9.5﹣2=7.5,∠B=30°,由直角三角形的性质即可得到结论.【解答】解:连接OD,∵斜边与半圆相切于点D,∴∠BDO=90°,∵OD=OE=9.5﹣2=7.5,∠B=30°,∴BD=OD=cm,故答案为:.15.(5分)已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a (x﹣h﹣1)2+k=0的解为x1=0,x2=4.【分析】利用关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,从而得到x﹣1=﹣1或x﹣1=3,然后解两个一次方程即可.【解答】解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.16.(5分)如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为76.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(1)计算:﹣()﹣1﹣2cos30°;(2)解方程组:【分析】(1)先根据二次根式的性质,负整数指数幂,特殊角的三角函数值进行计算,再求出即可;(2)把①+②即可求出x,把x=2代入②求出y即可.【解答】解:(1)原式=2﹣2﹣2×=2﹣2﹣=﹣2;(2)①+②得3x=6,解得:x=2,把x=2代入②得:4+y=5,解得:y=1,所以原方程组的解是:.18.(8分)先化简,再求值:(a﹣3)2﹣(a﹣2)(a﹣6),其中a=1011.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(a﹣3)2﹣(a﹣2)(a﹣6)=a2﹣6a+9﹣a2+6a+2a﹣12=2a﹣3,当a=1011时,原式=2×1011﹣3=2019.19.(8分)如图,一次函数y1=x+2与反比例函数y2=的图象交于A,B两点,点A的坐标为(1,a).(1)求出k的值及点B的坐标;(2)根据图象,写出y1>y2时x的取值范围.【分析】(1)将A坐标代入一次函数求出a的值,将A坐标代入反比例解析式求k的值,即可确定出反比例函数解析式,然后联立方程即可求得B的坐标;(2)根据图象和交点坐标找出一次函数图象位于反比例函数图象上方时x的范围即可.【解答】解:(1)把(1,a)代入y1=x+2得a=3,∴A(1,3),把A(1,3)代入y2=得,k=1×3=3,∴y2=,解得或∴B(﹣3,﹣1);(2)当﹣3<x<0或x>1时,y1>y2.20.(8分)如图是一个由1×1的正方形点阵组成的点阵图,请用无刻度的直尺按要求作图.(1)如图1,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)(2)如图2,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)【分析】(1)利用平行线等分线段定理解决问题即可.(2)利用平行线等分线段定理解决问题即可.【解答】解:(1)如图1中,点E,点F即为所求.(2)如图2中,点G,点K即为所求.21.(10分)某学校组织七年级学生进行“垃圾分类”知识测试,现随机抽取部分学生的成绩进行统计,并绘制如下频数分布表以及频数分布直方图.分数档分数段/分频数频率A90<x≤100 a0.12B80<x≤90 b0.18C70<x≤8020cD60<x≤7015d请根据以上信息,解答下列问题:(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.(3)你能确定被抽取的这些学生的成绩的众数在哪一档吗?请说明理由.【分析】(1)根据A,B档的学生人数之和等于D档学生人数和A,B档的频率可以求得本次调查的学生人数,然后再求出A档和B档的人数即可将频数分布直方图补充完整;(2)根据频数分布表中的数据可以求得七年级成绩在C档的学生人数;(3)根据题意和频数分布表中的数据可以求得众数在哪一档,本题得以解决.【解答】解:(1)被抽取的学生有:15÷(0.12+0.18)=50(名),B档人数为:50×0.18=9,A档人数为:50×0.12=6,补全的频数分布直方图如右图所示;(2)200×=80(人),即七年级成绩在C档的学生有80人;(3)被抽取的这些学生的成绩的众数在C档,理由:∵A档有6人,B档有9人,C档有20人,D档有15人,∴众数在C档.22.(12分)如图,AB,DE为⊙O的直径,过点D作弦DC⊥AB于点H,连接AE并延长交DC的延长线于点F.(1)求证:=;(2)若sin D=,求tan F.【分析】(1)连接OC,先证∠DOH=∠COH,再证∠COH=∠AOE,由圆心角、弧、弦的关系可推出结论;(2)连接EC,用特殊值法,设OH=3,OD=5,求出CD的长,利用勾股定理求出CE 的长,再证△EFC∽△AFH,可求出FC的长,即可求出tan F.【解答】(1)证明:连接OC∵OC=OD,AB⊥CD∴∠DOH=∠COH,∵∠DOH=∠AOE,∴∠COH=∠AOE,∴=;(2)解:连接EC,∵AB⊥CD,∴∠AHD=90°,∵sin D=,∴设OH=3,OD=5,∴DH==4,∵AB⊥CD,∴CD=2DH=8,∵DE为⊙O的直径,∴∠ECD=90°,∴CE===6,设FC=x,则FH=x+4,∵∠AHD=∠ECD=90°,∴EC∥AH∴△EFC∽△AFH,∴,即,解得,x=12,∴tan F===.23.(12分)某水果店以10元/千克的价格购进某种水果进行销售,经过市场调查获得部分数据如下表:销售价格x(元/千克)1013161922日销售量y(千克)10085705540(1)请根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识刻画y与x之间的函数关系;(2)该水果店应该如何确定这批水果的销售价格,才能使日销售利润最大?(3)若该水果店平均每销售1千克这种水果会损耗a千克,当20≤x≤22时,水果店日获利的最大值为405元,求a的值.【分析】(1)首先根据表中的数据,利用待定系数法求解可得;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)设y=kx+b,把和代入得:,解得∴y=﹣5x+150;(2)设日销售利润为W元,则w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500当x=﹣=20时,w最大=500.答:当这批水果的销售价格定为20元/千克时,日销售利润最大.(3)w=(x﹣10﹣10a)(﹣5x+150)=﹣5x2+(200+50a)x﹣1500﹣1500a,其对称轴为直线x=﹣=20+5a.当20+5a>22时,即a>0.4时,当x=22时,(22﹣10﹣10a)(﹣5×22+150)=405,解得a=(舍去)当20+5a≤22时,即a≤0.4时,当x=20+5a时,(20+5a﹣10﹣10a)[﹣5(20+5a)+150]=405,解得a1=0.2,a2=3.8(舍去).∴综上所述,a=0.224.(14分)如图,△ABC和△ADE是两个不全等的等腰直角三角形,其中点B与点D是直角顶点,现固定△ABC,而将△ADE绕点A在平面内旋转.(1)如图1,当点D在CA延长线上时,点M为EC的中点,求证:△DMB是等腰三角形.(2)如图2,当点E在CA延长线上时,M是EC上一点,若△DMB是等腰直角三角形,∠DMB为直角,求证:点M是EC的中点.(3)如图3,当△ADE绕点A旋转任意角度时,线段EC上是否都存在点M,使△BMD 为等腰直角三角形,若不存在,请举出反例;若存在,请予以证明.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半得出BM=DM=EC,即可得出答案;(2)根据AAS证明△DFM≌∠MGB,得FM=BG,DF=MG,根据线段的和表示EM 和MC,可得结论;(3)线段EC上都存在中点M,使△BMD为等腰直角三角形,作辅助线,构建全等三角形,证明△DFM≌∠MGB(SAS),得BM=DM,∠FMD=∠GBM,再证明∠DMB=90°,可得结论.【解答】证明:(1)如图1,∵∠EDC=90°,点M为EC的中点,∴DM=EC.同理可得:BM=EC.∴DM=BM,∴△DMB是等腰三角形;(2)证明:过点D作DF⊥EA,过点B作BG⊥AC,∴∠DFM=∠BGM=90°,∴∠FDM+∠DMF=90°,∵△DMB是等腰直角三角形,∴DM=BM,∠DMB=90°,∴∠BMG+∠DMF=90°,∴∠FDM=∠BMG,∴△DFM≌∠MGB(AAS),∴FM=BG,DF=MG,∵BG=GC,DF=EF,∴FM=GC,MG=EF,∵EM=EF+FM,MC=MG+GC,∴EM=MC,∴点M是EC的中点;(3)线段EC上都存在中点M,使△BMD为等腰直角三角形,理由是:取AE中点F,AC中点G,连接FD,FM,BG,GM,∵点M是EC的中点,点G是AC的中点,∴GM=AE,GM∥AE,∵F是AE中点,∴AF=AE,∴AF∥GM,AF=GM,∴四边形AFMG是平行四边形,∴∠AFM=∠AGM,∴∠EFM=∠MGC.∴∠DFM=∠BGM,∵GM=AF=DF,∴DF=GM,同理可得BG=FM,∴△DFM≌∠MGB(SAS),∴BM=DM,∠FMD=∠GBM,∵FM∥AC,∴∠FMG=∠CGM,∴∠DMB=∠FMD+∠FMG+∠GMB,=∠GBM+∠CGM+∠GMB,=180°﹣∠BGC,=90°,∴△BMD是等腰直角三角形.。
2020年浙江省台州市中考数学模拟试卷含答案
23.【答案】 (1)12;15;84
15.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图 1,AB 和 BC 组 成圆的折弦,AB>BC,M 是弧 ABC 的中点,MF⊥AB 于 F,则 AF=FB+BC.如图 2,△ABC 中,∠ABC=60°, AB=8,BC=6,D 是 AB 上一点,BD=1,作 DE⊥AB 交△ABC 的外接圆于 E,连接 EA,则∠EAC=________°.
A. 只有甲出错
B. 甲和乙
C. 乙和丙
D. 丙和丁
10.如图,已知在△ABC 中,∠BAC>90°,点 D 为 BC 的中点,点 E 在 AC 上,将△CDE 沿 DE 折叠,使得点
C 恰好落在 BA 的延长线上的点 F 处,连结 AD,则下列结论不一定正确的是( )
A. AE=EF
B. AB=2DE
11.【答案】 x≠1 且 x≠2
12.【答案】
且
13.【答案】
14.【答案】 y=-
h
15.【答案】 60
16.【答案】 三、解答题(本大题共 8 小题,共 80 分)
17.【答案】 解: h t
ht不等式②的解集为:x>2. 故不等式组的解集为:2<x<4.
两组样本数据的平均数、中位数、众数、方差如表所示:
年级 平均数 中位数 众数 方差
八年级 78.3 77.5 75 33.6
九年级 78 80.5 a 52.1 (1)表格中 a 的值为________; (2)请你估计该校九年级体质健康优秀的学生人数为多少? (3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角 度说明推断的合理性) 20.一艘轮船位于灯塔 P 南偏西 60°方向的 A 处,它向东航行 20 海里到达灯塔 P 南偏西 45°方向上的 B 处, 若轮船继续沿正东方向航行,求轮船航行途中与灯塔 P 的最短距离.(结果保留根号)
2020年浙江省台州市中考数学全真模拟考试试卷A卷附解析
2020年浙江省台州市中考数学全真模拟考试试卷A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( )A .h>15B . 10<h<15C . 5<h<10D . 3<h<5 2.在Rt △ABC 中,若∠C=90°,a 、b 分别是∠A 、∠B 的对边,如果sinA :sinB=•2:3,那么a :b 等于( )A .2:3B .3:2C .4:9D .9:43.如图,有一张矩形纸片ABCD ,AB=2.5,AD=1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则CF 的长为( )A .0.5B .0.75C .1D .1.25 4.若等腰三角形的一个外角为110°,则它的底角为( )A .55°B .70°C .55°或70°D .以上答案都不对 5.下列说法错误的是( )A .错误的判断也是命题B .命题有真命题和假命题两种C .定理是命题D .命题是定理6.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和 一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单位:分)如下:9.64,9.73,9.72,9.77,9.73,9.68,9.70,则这名选手的最后得分是( )A .9.71分B .9.712分C .9.72分D .9.73分 7.下列分解因式正确的是( )A .32(1)x x x x -=-B .26(3)(2)m m m m +-=+-C .2(4)(4)16a a a +-=-D .22()()x y x y x y +=+-8.2007年10月,“欧洽会”在浙江上虞举行,总投资额累计达8700万欧元. 总投资额用记数法表示( )A .38.710⨯欧元B .78.710⨯欧元C .38710⨯ 欧元D .48.710⨯欧元 9.用加减法解方程组232(1)523(2)x y x y -=⎧⎨+=-⎩,若消去 y ,下列正确的是( ) A .①×3+②×2,得160x =B . ①×2+②×3,得195x =-C . ①×3+②×2,得161x =-D .①×2+②×3,得19 1.x =-二、填空题10.某日的最高气温是15℃,气温的极差为10℃,则该日的最低气温是_______℃.11.将某样本数据分析整理后分成6组,且组距为5,画频数分布折线图时,从左到右第三组的组中值为20.5,则分布两端虚设组组中值为 和 .12.如图所示,是某单位职工的年龄(取正整数)的频数分布直方图,根据图中提供的信息,回答下列问题(每组可含最低值,不含最高值).(1)该单位共有职工 人;(2)不小于36岁但小于42岁的职工占总人数的百分比是 ;(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有 人.解答题13. 方程22220x x -+=,这里24b ac -= .14.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n则n解答题 15.若x+y=5,xy=4,则x 2 +y 2 = ;若x+y=4, x -y=11,则x 2 -y 2 = .16.如果543a +与23a -互为倒数,那么a = . 17.请写出是轴对称图形的英文字母(至少写出五个) .18.若x=2是关于x的方程 2x+3k-1 =0 的解,则k的值是.19.不改变分式的值. 使分子、分母都不含不含负号:(1)23x-= ;(2)xyz--= ;(3)2ab---;(4)5yx---= .20.如图,若∠AOC=∠BOD=90°,∠AOB=55°,则∠DOC = .三、解答题21.曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)22.有砖和水泥,可砌长 48m 的墙. 要盖三间面积一样的平房,如图所示,问应怎样砌,才能使房屋的面积最大?23.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离y(m)与时间 x(s)的数据如下表所示:时间 x (s)01234…距离 y(m)0281832…(2)求出 y关于x 的函数解析式.24.已知一个几何体的三视图和有关的尺寸如图所示.求这个几何体的表面积.25.桌面上放着一个圆锥和一个长方体,下面画着三幅图,请找出主视图、左视图和俯视图对应的字母.26.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.27.若方程组25342x yx y-=⎧⎨+=⎩的解也是方程107x my的解,求m.28.已知115x y-=,求2423x xy yx xy y+---的值.3429.△ABC,△A1B1C1和△A2B2C2在方格纸中的位置如图所示.方格纸每格的边长为1.(1)将△ABC向下平移格得到△A1B1C1;(2)将△A1B1C1的各边长放大倍,得到△A2B2C2;(3)分别计算△A2B2C2和△ABC的面积,并说明△A2B2C2的面积是△ABC的面积的多少倍.30.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭月用水量为x(m3)时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.D6.B7.B8.B9.B二、填空题10.55.5,40.512.(1)50;(2)54%;(3)1513.14.3n+115.17,4416.317.A ,C ,E ,H ,K 等18.-119. (1)23x -;(2)x yz ;(3)2ab -;(4)5y x+ 20.55°三、解答题21.解:在Rt △BAD 中 ∵ABDB B =∠cos ,∴00.640cos 6.4cos ≈=∠= B DB AB (米). 在Rt △BEC 中, ∵CBEC B =∠tan ,∴35.240tan 8.2tan ≈⨯=∠⋅= B CB EC (米). 则斜杆AB 与直杆EC 的长分别是2.35米和6.00米. 22.设长为 x(m),则宽为(283x -)m ,∴222(8)+833s x x x x =-=- 当62b x a=-=时,S 最大,即当长为 6m 、宽 4m 时,才能使房屋面积最大.(1)(2)由(1)设2y ax =,把x= 1,y=2代入得a=2. ∴这个函数梓析式为22y x =. 24.1432422352362⨯⨯⨯+⨯+⨯+⨯=(cm 2) 25.A :左视图,B :主视图,C :俯视图 26.6cm 227.m=-13.28.3429. (1)7;(2)3;(3)3ABC S ∆=,27A B C S '''∆=,9倍 30.(1)y=2x ,y=2.6x-12;(2)53 m 3。
2020年浙江省台州市中考数学模拟试卷解析版
2020年浙江省台州市中考数学模拟试卷解析版一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.2019的相反数()A. B. -2019 C. - D. 20192.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A. B. C. D.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A. 35°B. 25°C. 65°D. 50°5.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A. 0个B. 1个C. 2个D. 4个6.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x,则下列方程正确的是()A. 27.49+27.49x2=38B. 27.49(1+2x)=38C. 38(1﹣x)2=27.49D. 27.49(1+x)2=387.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则cos∠ODA= ( )A. B. C. D.8.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A. (2,2 )B. (,)C. (2,)D. (,)9.已知:如图,直线y=kx+b(k,b为常数)分别与x轴、y轴交于点A(﹣4,0),B(0,3),抛物线y=﹣x2+4x+1与y轴交于点C,点E在抛物线y=﹣x2+4x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是()A. 2B. 4C. 2.5D. 310.如图甲,已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…如图乙,是六次旋转的位置图象,图中虚线是点M的运动轨迹,则在第四次旋转的过程中,点B,M间的距离可能是()A. 0.6B. 0.8C. 1.1D. 1.4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:3a3﹣12a =________.12.若,则=________.13.在某国际乡村音乐周活动中,来自中、韩、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“中—美—韩”顺序演奏的概率是________.14.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。
2020年浙江省台州市中考数学模拟试卷含答案解析
2020年浙江省台州市中考数学模拟试卷解析版一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.2019的相反数()A. 12019 B. -2019 C. - 12019D. 20192.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A. B. C. D.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A. 23760毫升B. 2.376×105毫升C. 23.8×104毫升D. 237.6×103毫升4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A. 35°B. 25°C. 65°D. 50°5.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A. 0个B. 1个C. 2个D. 4个6.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x,则下列方程正确的是()A. 27.49+27.49x2=38B. 27.49(1+2x)=38C. 38(1﹣x)2=27.49D. 27.49(1+x)2=387.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则cos∠ODA= ( )A. √55B. √35C. √32D. 12 8.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B′处,则B′点的坐标为( )A. (2,2 √3 )B. ( 32 , 2−√3 )C. (2, 4−2√3 )D. ( 32 , 4−2√3 ) 9.已知:如图,直线y =kx +b (k , b 为常数)分别与x 轴、y 轴交于点A (﹣4,0),B (0,3),抛物线y =﹣x 2+4x +1与y 轴交于点C , 点E 在抛物线y =﹣x 2+4x +1的对称轴上移动,点F 在直线AB 上移动,CE +EF 的最小值是( )A. 2B. 4C. 2.5D. 310.如图甲,已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;…如图乙,是六次旋转的位置图象,图中虚线是点M 的运动轨迹,则在第四次旋转的过程中,点B ,M 间的距离可能是( )A. 0.6B. 0.8C. 1.1D. 1.4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:3a3﹣12a =________.12.若−x+2y=5,则7−3x+6y=________.13.在某国际乡村音乐周活动中,来自中、韩、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“中—美—韩”顺序演奏的概率是________.14.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。
精品模拟2020年浙江省台州市中考数学模拟试卷5解析版
2020年浙江省台州市中考数学模拟试卷5一.选择题(共10小题,满分40分,每小题4分)1.下列各数中,绝对值最大的数是()A.1B.﹣1C.3.14D.π2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.如图,几何体的左视图是()A.B.C.D.5.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分7.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.8.已知∠A=18°20′36″,∠B=18.35°,∠C=18°21′,下列比较正确的是()A.∠A<∠B B.∠B<∠A C.∠B<∠C D.∠C<∠B9.若方程组的解满足x﹣y=1,则a的取值是()A.﹣1B.﹣2C.2D.a不能确定10.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等二.填空题(共6小题,满分30分,每小题5分)11.(5分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么6※3=.12.(5分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.(5分)用一段长为30米的篱笆围成一个一边靠墙的矩形菜园ABCD,设AB=x,S四边形ABCD =y,写出y与x的函数关系式.14.(5分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.15.(5分)如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B 的动弦,则弦CD的最小值为.16.(5分)已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:当x=﹣1时,y=.三.解答题(共8小题,满分80分)17.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(8分)计算:﹣19.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B 时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)20.(8分)函数y=x2+3x+2的图象如图1所示,根据图象回答问题:(1)当x时,x2+3x+2>0;(2)在上述问题的基础上,探究解决新问题:①函数y=的自变量x的取值范围是;②如表是函数y=的几组y与x的对应值.如图2,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点的大概位置,请你根据描出的点,画出该函数的图象:③写出该函数的一条性质:.21.(10分)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请从图中找出二对相似三角形,要求其中一对必须不是直角三角形,并说明这一对三角形相似的理由.22.(12分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区的一个环保组织在2014年4月份随机问卷了一些民众,对垃极分类所持态度进行调查,将调查结果绘成扇形图(如图).(1)扇形图中,表示持“一般”态度的民众所占比例的扇形的圆心角度数是 ;(2)调查中,如果把所持态度中的“很赞同”和“赞同”统称为“支持”,2016年4月,该环保组织又进行了一次同样的调查,发现“垃圾分类支持者”占到了调查人数的84.7%,那么这两年里“垃圾分类支持者”的年平均增长率大约是多少?23.(12分)某批发商以70元/千克的成本价购入了某畅销产品1000千克,该产品每天的保存费用为300元,而且平均每天将损耗30千克,据市场预测,该产品的销售价y (元/千克)与时间x (天)之间函数关系的图象如图中的折线段ABC 所示.(1)求y 与x 之间的函数关系式;(2)为获得最大利润,该批发商应该在进货后第几天将这批产品一次性卖出?最大利润是多少?24.(14分)如图,四边形ABCD 内接于⊙O .AC 为直径,AC 、BD 交于E ,=.(1)求证:AD +CD =BD ; (2)过B 作AD 的平行线,交AC 于F ,求证:EA 2+CF 2=EF 2;(3)在(2)条件下过E ,F 分别作AB 、BC 的垂线垂足分别为G 、H ,连GH 、BO 交于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 半径.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】先求出每个数的绝对值,再根据实数的大小比较法则比较即可.【解答】解:∵1、﹣1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选:D.【点评】本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.2.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.【分析】求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,由①得:x>12,由②得:x>7,∴不等式组的解集是x>12,在数轴上表示为:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.4.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为72,77,80,81,81,89,所以这组数据的众数为81分,中位数为=80.5(分),故选:A.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.8.【分析】依据∠A=18°20′36″,∠B=18.35°=18°21′,∠C=18°21′,即可得到三个角的大小关系.【解答】解:∵∠A=18°20′36″,∠B=18.35°=18°21′,∠C=18°21′,∴∠A<∠B=∠C.故选:A.【点评】本题主要考查了角的大小的比较,掌握度分秒的换算是解决问题的关键.9.【分析】把a看做已知数求出方程组的解表示出x与y,代入x﹣y=1中,求出a的值即可.【解答】解:,①×4﹣②得:15x=9a﹣6,即x=,②×4﹣①得:15y=9﹣6a,即y=,代入x﹣y=1中,得:﹣=1,去分母得:9a﹣6﹣9+6a=15,即15a=30,解得:a=2.故选:C.【点评】此题考查了二元一次方程组的解,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.二.填空题(共6小题,满分30分,每小题5分)11.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答.【解答】解:6※3==1.故答案为:1.【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键.12.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.【分析】直接利用已知表示出矩形中AD的长,进而得出答案.【解答】解:由题意可得:y=x(30﹣x)=﹣x2+15x.故答案为:y=﹣x2+15x.【点评】此题主要考查了函数关系式,正确表示出AD的长是解题关键.14.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣1时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.15.【分析】连接OC,利用垂径定理解答即可.【解答】解:连接OC,当CD⊥OA时,CD有最小值,在Rt△CBO中,CB==,∴CD=2CB=10,故答案为:10【点评】本题考查了垂径定理,掌握垂径定理和勾股定理是解题的关键.16.【分析】先确定出抛物线的对称轴,然后利用对称性求解即可.【解答】解:依据表格可知抛物线的对称轴为x=1,∴当x=﹣1时与x=3时函数值相同,∴当x=﹣1时,y=3.故答案为:3.【点评】本题主要考查的是二次函数的性质,利用二次函数的对称性求解是解题的关键.三.解答题(共8小题,满分80分)17.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】根据分式的减法法则计算可得.【解答】解:原式=﹣==.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则.19.【分析】本题要求的实际是BC和DF的长度,已知了AB、BD都是200米,可在Rt△ABC和Rt△BFD中用α、β的正切函数求出BC、DF的长.【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.20.【分析】(1)当抛物线在x轴上方部分进满足条件,可确定出对应的x的取值范围;(2)①由二次根式的意义可得到(x+1)(x+2)≥0,可转化为(1);②利用描点法可画出函数图象;③结合图象可得出答案.【解答】解:(1)x2+3x+2>0的解集即抛物线在x轴上方部分对应的自变量的取值范围,∴x<﹣2或x>﹣1,故答案为:<﹣2或x>﹣1;(2)①由题意可得(x+1)(x+2)≥0,由(1)可得x≤﹣2或x≥﹣1,故答案为:x≤﹣2或x≥﹣1;②如图:③由图象可知关于直线x=﹣1.5对称,故答案为:关于直线x=﹣1.5对称.【点评】本题主要考查二次函数的性质及函数与方程不等式的关系,利用数形结合是解题的关键.21.【分析】全等三角形都相似,此类相似三角形有:△FED∽△FCD、△GED∽△DBG等;不全等的相似三角形有:△HFD∽△DFG;可用正方形的边长分别表示出GF、FD、FH的长,通过证这些线段对应成比例来证得两三角形相似.【解答】解:(1)△HFD∽△DFG(2分)(此对必写)△FED∽△FCD;(或△GED∽△DBG或△HED∽△DAH)(写对任意一对,2分)(2)设每个正方形边长为a,根据勾股定理得DF=a;∵GF=a,HF=2a,∴(3分),又∵∠GFD=∠HFD(1分)∴△HFD∽△DFG.(1分)【点评】此题主要考查了相似三角形的判定方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;需注意的是所有的全等三角形都相似.22.【分析】(1)求出持“一般”态度的民众占的百分比,乘以360即可得到结果;(2)设这两年里“垃圾分类支持者”的年平均增长率是x,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)根据题意得:360°×(1﹣20%﹣39%﹣31%)=36°,故答案为:36°;(2)设这两年里“垃圾分类支持者”的年平均增长率大约是x,根据题意得:70%(1+x)2=84.7%,解得:x1=0.1=10%,x2=﹣2.1(不符合题意,舍去),则这两年里“垃圾分类支持者”的年平均增长率10%.【点评】此题考查了一元二次方程的应用,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.【分析】(1)由函数的图象可知当0≤x≤20时y和x是一次函数的关系;当20<x≤40时y 是x的常数函数,由此可得出y与x之间的函数关系式;(2)设到第x天出售,批发商所获利润为w,根据等量关系“利润=销售总金额﹣收购成本﹣各种费用=该产品的销售价y(元/千克)×(原购入量﹣x×存放天数)﹣收购成本﹣各种费用”列出函数关系式,再求出函数的最值即可.【解答】解:(1)当0≤x≤20,把(0,100)和(20,160)代入y=kx+b得,解得:,∴y=3x+100,当20≤x≤40时,y=160,故y与x之间的函数关系式是y=;(2)设到第x天出售,批发商所获利润为w,由题意得:①当0≤x≤20;w=(y﹣70)(1000﹣30x)﹣300x,由(1)得y=3x+100,∴w=(3x+100﹣70)(1000﹣30x)﹣300x,=﹣90(x﹣10)2+39000,∵a=﹣90<0,∴函数有最大值,当x=10时,利润最大为39000元,②当20<x≤40时,w=(y﹣70)(1000﹣30x)﹣300x,由(1)得y=160,∴w=(3x+100﹣70)(1000﹣30x)﹣30=﹣3000x+90000.∵﹣3000<0,∴函数有最大值,当x=20时,利润最大为30000元,∵39000>30000,∴当第10天一次性卖出时,可以获得最大利润是39000元.【点评】本题考查了二次函数和一次函数的实际应用,本题把实际问题转化为一次函数,二次函数,求二次函数最大值,充分体现了函数在实际中的运用功能,提高学生学习的兴趣.24.【分析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD 是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.【解答】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE ,HF 交于K ,由(2)得EA 2+CF 2=EF 2,∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形COMH =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∴AE =3,CF =(k +3),EF =(8k ﹣3),∴(3)2+[(k +3)]2=[(8k ﹣3)]2,整理,得7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1,∴AB =12,∴AO =AB =6,∴⊙O半径为6.【点评】本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.。
精品模拟2020年浙江省台州市中考数学模拟试卷3解析版
2020年浙江省台州市中考数学模拟试卷3一.选择题(共10小题,满分40分,每小题4分)1.下列四个数中,绝对值最小的数是()A.﹣2B.0C.1D.72.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.一元一次不等式3﹣x≥1的解集,在数轴上表示正确的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学参加了此次竞赛,他们的得分情况如下表所示:则全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,807.如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确8.已知∠A=25°12′,∠C=25.2°,下列结论中,正确的是()A.∠A<∠C B.∠A=∠CC.∠A>∠C D.两个角的大小不确定9.已知关于x,y的方程组的解x和y互为相反数,则m的值为()A.2B.3C.4D.510.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③二.填空题(共6小题,满分30分,每小题5分)11.对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)=.12.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.13.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为(注明s的取值范围).14.命题“四边相等的四边形是菱形”的逆命题是.15.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.16.二次函数y=ax2+bx+c(a≠0)的函数值y与自变量x之间的部分对应值如下表:则的值为.三.解答题(共8小题,满分80分)17.(8分)计算:2﹣1+20160﹣3tan30°+|﹣|18.(8分)设a=﹣1+,b=﹣1﹣.(1)求ab,的值;(2)求,a2+2a﹣1的值.19.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.5米.当起重臂AC长度为8米,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位)【参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53】20.(8分)有这样一个问题:探究函数y=的图象与性质,小静根据学习函数的经验,对函数y=的图象与性质进行了探究,下面是小静的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值.表中的m=;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:.21.(10分)如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.22.(12分)铜陵市义安区实施了城乡居民基本医疗保险(简称“医疗保险”),办法规定农村村民只要每人每年交纳180元钱就可以加入医疗保险,住院时自己先垫付,出院同时就可得到按一定比例的报销款,这项举措惠及民生,吴斌与同学随机调查了他们镇的一些农民,根据收集到的数据绘制了以下的统计图.根据图中信息,解答下列问题:(1)本次调查了多少村民?被调查的村民中参加医疗保险,得到报销款的有多少人?(2)若该镇有34000村民,请估算有多少人参加了医疗保险?要使两年后参加医疗保险的人数增加到业务31460人,假设这两年的年增长率相同,求年增长率?23.(12分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(14分)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,y与x的函数图象如图②所示.(1)矩形ABCD的面积为;(2)如图③,若点P沿AB边向点B以每秒1个单位的速度移动,同时,点Q从点B出发沿BC 边向点C以每秒2个单位的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:①当运动开始秒时,试判断△DPQ的形状;②在运动过程中,是否存在这样的时刻,使以Q为圆心,PQ的长为半径的圆与矩形ABCD的对角线AC相切,若存在,求出运动时间;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值具有非负性可得绝对值最小的数是0.【解答】解:绝对值最小的数是0,故选:B.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】根据不等式的性质求出不等式的解集,根据不等式的解集在数轴上表示出来,即可得到答案.【解答】解:3﹣x≥1,移项得:﹣x≥1﹣3,∴﹣x≥﹣2,不等式的两边都除以﹣1得:x≤2,即在数轴上表示不等式的解集是:,故选:B.【点评】本题主要考查对不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的理解和掌握,能正确解不等式是解此题的关键.4.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.5.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.6.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.【点评】此题考查了中位数和众数众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.7.【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.8.【分析】根据度分秒之间的换算,可以将∠C换为度分秒的形式,即可比较∠A和∠C的大小,本题得以解决.【解答】解:∵∠A=25°12′,∠C=25.2°=25°+0.2×60′=25°12′,∴∠A=∠C,故选:B.【点评】本题考查角的大小比较、度分秒的换算,解答本题的关键是明确度分秒之间的换算.9.【分析】将m看做常数解二元一次方程组求得x和y,再根据x+y=0列出关于m的方程,解之可得.【解答】解:解方程组得:,∵x和y互为相反数,∴x+y=0,则7m﹣12﹣4.5m+7=0,解得:m=2,故选:A.【点评】本题考查了二元一次方程组的解,解题的关键是掌握加减消元法解二元一次方程组.10.【分析】根据全等三角形的判定定理进行判断即可.【解答】解:①两边及一边上的中线对应相等的两个三角形全等是真命题;②底边和顶角对应相等的两个等腰三角形全等是真命题;③斜边和斜边上的高线对应相等的两个直角三角形全等是真命题,故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,掌握全等三角形的判定定理是解题的关键.二.填空题(共6小题,满分30分,每小题5分)11.【分析】求出6*3=1,再求出7*1即可.【解答】解:∵6*3==1,∴7*1==,即7*(6*3)=,故答案为:.【点评】本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.12.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.【分析】求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s.【解答】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余量为Q=52﹣8s;故答案为:Q=52﹣8s(0≤s≤6).【点评】本题考查的是函数在是实际生活中的应用,比较简单.14.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等,故答案为:菱形的四条边相等.【点评】本题考查的是命题和定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD =BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.16.【分析】由图表可知,x=1和2时的函数值相等,然后根据二次函数的对称性求解即可.【解答】解:∵x=1、x=2时的函数值都是﹣1相等,∴此函数图象的对称轴为直线x=﹣==,即=﹣.故答案为:﹣.【点评】本题主要考查了二次函数图象上点的坐标特征,熟练掌握二次函数的图象与性质是解题的关键.三.解答题(共8小题,满分80分)17.【分析】直接利用特殊角的三角函数值以及绝对值的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=+1﹣3×+=+1﹣+=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】(1)先根据a、b的值计算出ab和a+b的值,再代入=计算可得;(2)将a、b的值代入计算可得.【解答】解:(1)∵a=﹣1+,b=﹣1﹣,∴ab=(﹣1+)(﹣1﹣)=1﹣2=﹣1,a+b=﹣1+﹣1﹣=﹣2,则===2;(2)当a=﹣1+,b=﹣1﹣时,====﹣3﹣2,a2+2a﹣1=(a+1)2﹣2=(﹣1++1)2﹣2=2﹣2=0.【点评】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式、平方差公式的运用.19.【分析】作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.5m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.5m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=8sin28°=8×0.47=3.76,∴CE=CF+EF=3.76+3.5≈7.3(m),答:操作平台C离地面的高度为7.3m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行计算.20.【分析】(1)根据分式有意义条件即可得;(2)根据x=0和x=4、x=1和x=3时,函数值y均相等可得x=和x=时,函数值相等,为4;(3)将表格中各组对应值用点标出,再用平滑曲线顺次连接可得;(4)结合函数图象即可得.【解答】解:(1)函数y=的自变量x的取值范围是x﹣2≠0,即x≠2,故答案为:x≠2;(2)由表可知当x=0和x=4、x=1和x=3时,函数值y均相等,∴当x=和x=时,函数值相等,为4,即m=4,故答案为:4;(3)如下图所示:(4)由图象可知,函数图象关于直线x=2对称,故答案为:函数图象关于直线x=2对称.【点评】本题主要考查函数图象及其性质,熟练掌握描点法画函数图象是解题的关键.21.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点评】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.22.【分析】(1)图中参加医疗保险和未参加医疗保险人数的和是本次共调查的村民人数,参加医疗保险并得到报销款的村民占25%,而参加医疗保险的总人数是260,那么参加医疗保险并得到报销款的人数可求;(2)根据统计的数据可求出参保率,34000人中有多少人参保可求,每年参保的人数等于上一年的参保人数乘以(1+x)(x为年增长率),据此可算出两年后的参保人数,而人数是31460,故可得到一个一元二次方程,解此方程可求年增长率.【解答】解:(1)260+80=340(人),260×25%=65(人);(2)34000×=26000(人).设这个相同的年增长率为x.依题意得,26000(1+x)2=31460,解得,x1=0.1=10%,x2=﹣2.1(不合题意舍去).答:该镇大约有26000人参加了医疗保险,相同的年增长率为10%.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.也考查了条形统计图、扇形统计图的应用以及利用样本估计总体.23.【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x 之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.【分析】(1)由数形结合的思想,从图①,图②分别可以看出,点P在运动过程中,△PAB 面积为y所对应的路程x的值,由此可知矩形的宽和长分别为6和12,即可求出矩形ABCD的面积;(2)分别求出AP,PB,BQ,QC等线段的长度,在Rt△APB,Rt△QPB,Rt△DQC中分别通过勾股定理求出PD,PQ,DQ的长度,通过勾股定理的逆定理即可证出△DPQ是直角三角形;(3)用反证法,假设存在这样的时刻,那么过切点的半径QM与半径PQ相等,通过相似求出QM的长度,再通过勾股定理构造等式,结果无解,故不存在这样的时刻.【解答】解:(1)从图①可看出,当点P在AB上运动时,△PAB面积为0,对应图②中的路程x为0至6;点P在BC上运动时,△PAB面积逐渐增大,对应图②中的路程x为6至18;点P在CD上运动时,△PAB面积不变,对应图②中的路程x为18至24;当点P在DA上运动时,△PAB面积逐渐减小至0,对应图②中的路程x为24至36;由此可知矩形的宽和长分别为6和12,=6×12=72;∴S矩形ABCD(2)设运动时间为t,①当t=时,AP=,BP=6﹣=,BQ=3,CQ=12﹣3=9,∵AD=12,DC=6,∴在Rt△ADP中,DP2=AD2+AP2=,在Rt△PBQ中,PQ2=PB2+BQ2=,在Rt△PQC中,DQ2=DC2+CQ2=117,在△DPQ中,∵DQ2+PQ2=DP2,∴△DPQ是直角三角形;(3)不存在,理由如下:假设存在,如图④,连接AC,过点Q作QM垂直于AC,垂足为点M,则QM=PQ,在Rt△ABC中,AC==6,∵∠QMC=∠ABC=90°,∠QMC=∠ABC,∴△QMC∽△ABC,∴,即,∴QM=,在Rt△BPQ中,PQ2=BP2+BQ2=(6﹣t)2+(2t)2,又∵QM2=()2,∴(6﹣t)2+(2t)2=()2,整理,得7t2﹣4t+12=0,∵△=b2﹣4ac=﹣320<0,∴此方程无解,∴不存在这样的时刻,使以Q为圆心,PQ的长为半径的圆与矩形ABCD的对角线AC相切,【点评】本题考查了数形结合的思想,勾股定理及其逆定理的运用,反证法的运用等,解题关键是要掌握反证法的解题方法.。
台州市2020年中考数学模拟试题及答案
台州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列运算正确的是()A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3•a2=a6 D.(﹣2a2)3=﹣8a62.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定3. 已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.134.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1085.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2 B.600 cm2C.100πcm2D.200πcm26.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.B.C.D.7.如图,ABCD为平行四边形,BC=2AB,∠BAD的平分线AE交对角线BD于点F,若△BEF的面积为1,则四边形CDFE的面积是()A.3 B.4C.5 D.68.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或109.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥ABC.MN=CB D.CM=AC10.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数 C.平均数、方差 D.众数、方差11.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个12.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A. B.C. D.二、填空题(本题共6小题,满分18分。
浙江省台州市2020年中考数学模拟试卷解析版
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.实数-8的倒数是( )A. -B.C. 8D. -82.下列计算正确的是( )A. 2a-a=1B. 6a2b÷2ab=3aC. (-2a2b)3=-6a6b3D. 6ab2•2ab=12a2b23.如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )A.B.C.D.4.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是( )A. 小于B. 等于C. 大于D. 无法确定5.二次函数y=x2-2x的顶点坐标是( )A. (1,1)B. (1,-1)C. (-1,-1)D. (-1,1)6.关于x的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A. 4x-9<xB. -3x+2<0C. 2x+4<0D. x<27.如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A. l00°B. 105°C. 110°D. 1208.如图,在△ABC中,点E是线段AC上一点,AE:CE=1:2,过点C作CD∥AB交BE的延长线于点D,若△ABE的面积等于4,则△BCD的面积等于( )A. 8B. 16C. 24D. 329.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个内角为60°,A、B、C都是格点,则tan∠ABC=( )A. B. C. D.10.如图,⊙O的半径为2,圆心O在坐标原点,正方形ABCD的边长为2,点A、B在第二象限,点C、D在⊙O上,且点D的坐标为(0,2),现将正方形ABCD绕点C按逆时针方向旋转150°,点B运动到了⊙O上点B1处,点A、D分别运动到了点A1、D1处,即得到正方形A1B1C1D1(点C1与C重合);再将正方形A1B1C1D1绕点B1按逆时针方向旋转150°,点A1运动到了⊙O上点A2处,点D1、C1分别运动到了点D2、C2处,即得到正方形A2B2C2D2(点B2与B1重合),…,按上述方法旋转2020次后,点A2020的坐标为( )A. (0,2)B. (2+,-1)C. (-1-,-1-)D. (1,-2-)二、填空题(本大题共6小题,共30.0分)11.16的算术平方根是______.12.因式分解:a2b-4ab+4b=______.13.如图,已知等边△ABC的边长为8,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为______.14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出十二,盈八;人出十,不足六,问人数、物价各几何?译文:今有人合伙购物,每人出12钱,会多8钱;每人出10钱,又会差6钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组______.15.为运用数据处理道路拥堵问题,现用流量q(辆/小时)、速度v(千米/小时)、密度k(辆/千米)来描述车流的基本特征.现测得某路段流量q与速度v之间关系的部分数据如表:速度v(千米/小…1520324045…时)流量q(辆/小时)…105012001152800450…若已知q、v满足形如q=mv2+nv(m、n为常数)的二次函数关系式,且q、v、k满足q=vk.根据监控平台显示,当5≤v≤10时,道路出现轻度拥堵,试求此时密度k 的取值范围是______.16.在滑草过程中,小明发现滑道两边形如两条双曲线,如图,点A1,A2,A3…在反比例函数y=(x>0)的图象上,点B1,B2,B3…反比例函数y=(k>1,x>0)的图象上,A1B1∥A2B2…∥y轴,已知点A1,A2…的横坐标分别为1,2,…,令四边形A1B1B2A2、A2B2B3A3、…的面积分别为S1、S2、….(1)用含k的代数式表示S1=______.(2)若S19=39,则k=______.三、解答题(本大题共8小题,共80.0分)17.计算:2sin60°+(2020-π)0-.18.解方程:.19.如图,在4×4的格点图中,△ABC为格点三角形,即顶点A、B、C均在格点上,利用无刻度直尺按要求完成下列各题,并保留作图痕迹;(1)在边AB上找一点E,使∠BCE=45°(请在图①中完成);(2)在边AC上找一点D,使(请在图②中完成).20.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了部分学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)在这次调查中一共抽查了______学生,扇形统计图中“乒乓球”所对应的圆心角为______度,并请补全条形统计图;(2)已知该校共有1200名学生,请你估计该校最喜爱跑步的学生人数;(3)若在“排球、足球、跑步、乒乓球”四个活动项目任选两项设立课外兴趣小组,请用列表法或画树状图的方法求恰好选中“排球、乒乓球”这两项活动的概率.21.已知:如图,在矩形ABCD中,若CD=5,以D为圆心,DC长为半径作⊙D交CA的延长线于E,过D作DF⊥AC,垂足为F,且DF=3.(1)求证:BC是⊙D的切线;(2)求AE的长.22.在平面直角坐标系中,点A,B为反比例函数y=(k>0,x>0)上的两个动点,以A,B为顶点构造菱形ABCD.(1)如图1,点A,B横坐标分别为1,4,对角线BD∥x轴,菱形ABCD面积为,求k的值.(2)如图2,当点A,B运动至某一时刻,点C,点D恰好落在x轴和y轴正半轴上,此时∠ABC=90°,求点A,B的坐标.23.如图1,抛物线y=x2+bx+c过点A(4,-1),B(0,-),点C为直线AB下方抛物线上一动点,M为抛物线顶点,抛物线对称轴与直线AB交于点N.(1)求抛物线的表达式与顶点M的坐标;(2)在直线AB上是否存在点D,使得以C,D,M,N为顶点的四边形是平行四边形,若存在,请求出D点坐标;(3)在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.24.某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.【特例探究】(1)如图1,当∠PAB=45°,AB=6时,AC=______,BC=______;如图2,当sin∠PAB=,AB=4时,AC=______,BC=______;【归纳证明】(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC 的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.答案和解析1.【答案】A【解析】解:实数-8的倒数是-.故选:A.根据乘积是1的两个数互为倒数解答.本题考查了实数的性质,主要涉及到倒数的定义,是基础题,熟练掌握概念是解题的关键.2.【答案】B【解析】解:A、原式=a,不符合题意;B、原式=3a,符合题意;C、原式=-8a6b3,不符合题意;D、原式=12a2b3,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】D【解析】解:从上往下看,所以小正方形应在大正方形的右上角.故选:D.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】B【解析】解:∵每一次抛掷一枚质地均匀的硬币是一件随机事件,且正面朝上的概率是.∴抛掷第100次正面朝上的概率也是.故选:B.根据概率的意义分析即可.本题主要考查概率的意义,熟练掌握随机事件、必然事件、不可能事件等的概率的意义是解题的关键.5.【答案】B【解析】解:∵y=x2-2x=(x-1)2-1,∴二次函数y=x2+4x的顶点坐标是:(1,-1),故选:B.先把该二次函数化为顶点式的形式,再根据其顶点式进行解答即可.此题主要考查了二次函数的性质和求抛物线的顶点坐标的方法,熟练配方是解题关键.6.【答案】B【解析】解:解不等式3x>6,可得:x>2,A、4x-9<x,解得:x<3,不符合题意;B、-3x+2<0,解得:x>,符合题意;C、2x+4<0,解得:x<-2,不符合题意;D、,解得:x<4,不符合题意;故选:B.根据解不等式的解集解答即可.此题考查解一元一次不等式,关键是根据解不等式的解集判断.7.【答案】B【解析】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°-∠ABC=90°-30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故选:B.利用圆周角定理得到∠ACB=90°,则利用互余计算出∠BAC=60°,接着根据角平分线定义得到∠BCD=45°,从而利用圆周角定理得到∠BAD=∠BCD=45°,然后计算∠BAC+∠BAD 即可.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8.【答案】C【解析】解:∵CD∥AB∴△ABE∽△CDE又∵AE:CE=1:2∴=∵S△ABE=4∴S△CDE=16∵AE:CE=1:2∴CE=2AE∵△BCE中CE边上的高和△ABE中AE边上的高相等∴S△BCE=2S△ABE∵S△ABE=4∴S△BCE=2×4=8∴S△BCD=S△CDE+S△BCE=16+8=24故选:C.先由CD∥AB,证得△ABE∽△CDE,再根据已知条件及相似三角形的性质得出S△CDE的值,然后根据△BCE中CE边上的高和△ABE中AE边上的高相等及CE=2AE,得出S△BCE 的值,最后利用关系式S△BCD=S△CDE+S△BCE,可得答案.本题考查了相似三角形的判定与性质及等高三角形的面积关系,熟练掌握相关性质及定理是解题的关键.9.【答案】A【解析】解:连接DC,交AB于点E,由题意可得:∠AFC=30°,DC⊥AF,设EC=x,则EF==x,故BF=2EF=2x,则tan∠ABC====.故选:A.直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用tan∠ABC=得出答案.此题主要考查了菱形的性质以及解直角三角形,正确得出EF的长是解题关键.10.【答案】B【解析】解:如图,由题意发现12次一个循环,∵2020÷12=168余数为4,∴A2020的坐标与A4相同,∵A4(2+,-1),∴A2020(2+,-1),故选:B.如图,由题意发现12次一个循环,由2020÷12=168余数为4,推出A2020的坐标与A4相同,由此即可解决问题.本题考查坐标与图形的变化-旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考选择题中的压轴题.11.【答案】4【解析】解:∵42=16,∴=4.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.12.【答案】b(a-2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2-4a+4)=b(a-2)2.故答案为:b(a-2)2.13.【答案】π【解析】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=4,∴长==π;故答案为:π.连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.【答案】【解析】解:依题意,得:.故答案为:.根据“每人出12钱,会多8钱;每人出10钱,又会差6钱”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】80≤k≤90【解析】解:把(15,1050)和(20,1200)代入q=mv2+nv得,,解得:,∴q=-2v2+100v,∵q=vk,∴vk=-2v2+100v,把v=5和v=10分别代入上式得,5k=-2×52+100×5或10k=-2×102+100×10,解得:k=90或k=80,∴此时密度k的取值范围是80≤k≤90,故答案为:80≤k≤90.把(15,1050)和(20,1200)代入q=mv2+nv解方程组即可得到结论.本题考查了二次函数的应用,待定系数法求函数的解析式,正确的理解题意是解题的关键.16.【答案】(k-1) 761【解析】解:(1)∵A1B1∥A2B2…∥y轴,∴A1和B1的横坐标相等,A2和B2的横坐标相等,…,A n和B n的横坐标相等,∵点A1,A2…的横坐标分别为1,2,…,∴点B1,B2…的横坐标分别为1,2,…,∵点A1,A2,A3…在反比例函数y=(x>0)的图象上,点B1,B2,B3…反比例函数y=(k>1,x>0)的图象上,∴A1B1=k-1,A2B2=-,∴S1=×1×(-+k-1)=(k-)=,故答案为:;(2)由(1)同理得:A3B3=-=,A4B4=,…,∴S2=[+(k-1)]=(k-1),S3=[]=…,∴S n=,∵S19=39,∴×(k-1)=39,解得:k=761,故答案为:761.(1)根据反比例函数图象上点的特征和平行于y轴的直线的性质计算A1B1、A2B2、…,最后根据梯形面积公式可得S1的面积;(2)分别计算S2、S3、…S n的值并找规律,根据已知S19=39列方程可得k的值.本题主要考查了反比例函数的性质,这里体现了数形结合的思想,确定A1B1,A2B2的长是关键,也是图形和数字类的规律问题,值得重视.17.【答案】解:原式=2×+1-2=+1-2=1-.【解析】原式利用特殊角的三角函数值,零指数幂法则,以及二次根式性质计算即可求出值.此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【答案】解:方程的两边同乘2(2x-1),得2=2x-1-3,解得x=3.检验:把x=3代入2(2x-1)≠0.所以原方程的解为:x=3.【解析】观察可得最简公分母是2(2x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.【答案】解:(1)如图①所示:∠BCE=45°;(2)如图②所示:,即为所求.【解析】(1)直接利用网格结合等腰直角三角形的性质得出答案;(2)直接利用相似三角形的判定与性质得出答案.此题主要考查了应用设计图与作图,正确利用网格分析是解题关键.20.【答案】150 36【解析】解:(1)在这次调查中一共抽查学生21÷14%=150(人),扇形统计图中“乒乓球”所对应的圆心角为360°×=36°,“足球”人数为150×20%=30(人),补全图形如下:故答案为:150、36;(2)估计该校最喜爱跑步的学生人数为1200×=312(人);(3)排球、足球、跑步、乒乓球依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①排球、④乒乓球”两项活动的有2种情况,所有故恰好选中“排球、乒乓球”两项活动的概率为=.(1)由排球人数及其所占百分比可得总人数,用360°乘以乒乓球人数所占比例可得其对应圆心角度数,总人数乘以足球对应的百分比可得其人数,从而补全图形;(2)用总人数乘以样本中跑步人数所占比例即可得;(3)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①排球、④乒乓球”两项活动的结果数,然后根据概率公式计算.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.21.【答案】解:(1)∵在矩形ABCD中,∠BCD=90°,∴BC⊥CD,∴BC是⊙D的切线;(2)∵DF⊥AC,即DF⊥CE,∴EF=FC,∵CD=5,DF=3,∴CF=4,∴EF=4,∵∠ADC=90°,∴∠ADF=DCF,∴△ADF∽△DCF,∴,∴,∴AF=,∴AE=.【解析】(1)根据切线的性质即可得到结论;(2)根据垂径定理和相似三角形的判定和性质到了即可得到结论.本题考查了切线的判定和性质,相似三角形的判定和性质,垂径定理,正确的识别图形是解题的关键.22.【答案】解:(1)连接AC,交BD于点E,∵点A,B横坐标分别为1,4,对角线BD∥x轴,∴BE=4-1=3,∵四边形ABCD是菱形,∴BD=2BE=6,AC⊥DB,∵菱形ABCD面积为,∴×BD×AC=,∴AC=,∴AE=CE=设点B(4,a),则点A(1,+a)∵点A,B为反比例函数y=(k>0,x>0)上的两个点,∴4a=1×(+a)∴a=,∴k=4a=;(2)如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,∵四边形ABCD是菱形,∠ABC=90°,∴四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,∴∠ADE+∠EAD=90°,∠EDA+∠CDO=90°,∠DCO+∠CDO=90°,∠BCF+∠DCO=90°,∴∠EAD=∠CDO=∠BCF,且∠AED=∠DOC=90°,AD=CD,∴△AED≌△DOC(AAS)∴AE=DO,ED=OC,同理可得:BF=OC,CF=DO,设点A(m,)∴AE=DO=CF=m,DE=OC=BF=-m,∴点B坐标(,-m)∴(-m)=∴m1=,m2=-(舍去)∴点A(,),点B(,).【解析】(1)由菱形的性质可得BD=2BE=6,AC⊥DB,由菱形的面积公式可求AC=,设点B(4,a),则点A(1,+a),代入解析式可求a的值,即可求k的值;(2)过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,设点A(m,),由全等三角形的性质可得AE=DO=CF=m,DE=OC=BF=-m,可求点B坐标,代入解析式可求解.本题是反比例综合题,考查了反比例函数的性质,菱形的性质,正方形的性质,全等三角形的判定和性质,利用参数求点B坐标是本题的关键.23.【答案】解:(1)将点A(4,-1),B(0,-)代入抛物线y=x2+bx+c,得,解得,∴y=x2-x-,∴M点的坐标为(1,-4);(2)设直线AB的表达式为y=mx+n,∴,解得,∴y=x-;当x=1时,y=-3,∴N(1,-3),∴MN=1;①若MN为平行四边形的一边时,则有CD∥MN,且CD=MN,设C(t,t2-t-),则D(t,t-),∴CD=t--(t2-t-)=1,∴t=3或t=1(舍去),∴D(3,-);②若MN为平行四边形的对角线,设D(t,t-),则C(2-t,-t-),将点C代入抛物线解析式得,(2-t)2-(2-t)-=-t-,∴t=-1或t=1(舍去),∴D(-1,-);综上所述:符合条件的D点坐标为(3,-)或(-1,-);(3)在对称轴上取点P(1,-1),∴PA=PM=3,∠APM=90°,以P为圆心,PA为半径作圆交y轴于点Q,∴∠AQM=∠APM=45°,作PE⊥y轴交于点E,∴PE=1,∵PQ=3,∴EQ==2,∴Q点坐标为(0,-1+2)或(0,-1-2).【解析】(1)将点A与B代入抛物线解析式即可确定b与c的值;(2)求出AB直线的解析式,当x=1时,y=-3,即可求N点坐标;分两种情况讨论:①若MN为平行四边形的一边时,CD∥MN,且CD=MN,设C(t,t2-t-),则D(t,t-),利用CD=1,可求D(3,-);②若MN为平行四边形的对角线,设D(t,t-),则C(2-t,-t-),将点C代入抛物线解析式可求D(-1,-);(3)在对称轴上取点P(1,-1),以P为圆心,PA为半径作圆交y轴于点Q,作PE⊥y 轴交于点E,在Rt△PEQ中,可得EQ==2,即可确定Q点坐标.本题考查二次函数的综合应用;熟练掌握二次函数的图象及性质,会用待定系数法求函数的解析式,熟练应用平行四边形的性质、直角三角形的性质解题是关键.24.【答案】6 6 2 2【解析】(1)解:如图1,∵AF⊥BE,∴∠APB=∠APE=∠BPF=90°,∵∠PAB=45°,AB=6,∴AP=PB=6,如图1,连接EF,∵AF,BE是△ABC的中线,∴EF是△ABC的中位线,∴EF∥AB.且EF=AB,∴,∴PE=PF=3,由勾股定理得:AE=BF===3,∴AC=BC=2AE=6,如图2,∵sin∠PAB=,AB=4,AF⊥BE,∴∠PAB=30°,∴BP=AB=2,AP=2,∵AF、BE是△ABC的中线,∴PE=PB=1,PF=AP=,由勾股定理得:AE===,BF===,∴AC=2AE=2,BC=2BF=2,故答案为:6,6,2,2;(2)解:猜想:AB2、BC2、AC2三者之间的关系是:AC2+BC2=5AB2,证明:如图3,设PF=m,PE=n则AP=2m,PB=2n,在Rt△APB中,(2m)2+(2n)2=AB2①,在Rt△APE中,(2m)2+n2=()2②,在Rt△BPF中,m2+(2n)2=()2③,由①得:m2+n2=,由②+③得:5(m2+n2)=,∴AC2+BC2=5AB2;(3)解:如图4,连接CG,EF,过点F作FN∥BG交CG于点N,FG与AC交于点Q ,∵FN∥BG,BG⊥AC,∴FN⊥AC,∵F是BC的中点,∴N是CG的中点,∵D、E分别是AB、AC的中点,∴DE=FC,DE∥FC,∵ED=EG,∴EG=FC,EG∥FC,∴四边形EFCG是平行四边形,∴Q是FG的中点,∴△FCG是中垂三角形,∵AB=4,BC=2,∴CG=EF=BD=2,FC=,由(2)中结论可知:5FC2=CG2+FG2,即5×5=(2)2+FG2,∴GF=.(1)如图1,由等腰直角三角形的性质得到AP=BP=6,根据三角形中位线的性质和平行线分线段成比例定理可得PE=PF=3,利用勾股定理可得AC和BC的长;如图2,根据特殊三角函数值可得∠BAP=30°,计算PB和AP的长,同理由中线的性质和勾股定理可得结论;(2)设PF=m,PE=n则AP=2m,PB=2n,根据勾股定理分别列等式,可得结论;(3)如图4,作辅助线,证明四边形EFCG是平行四边形,得Q是FG的中点,根据中垂三角形的定义可知:△FCG是中垂三角形,利用(2)中三边的关系可得GF的长.本题考查三角形综合题、中垂三角形的定义和应用、勾股定理、三角形的中位线定理、平行四边形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造中垂三角形解决问题,属于中考压轴题.。
2020年浙江省台州市中考数学摸底测试试卷附解析
2020年浙江省台州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( )A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定3.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( )A .52ºB .60ºC .72ºD .76º4.如图,是一次函数y =kx+b 与反比例函数y =2x 的图像,则关于x 的方程kx+b =2x的解为( )A . x l =1,x 2=2B .x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-15.如图,在梯形ABCD 中,AD BC ∥,AB a DC b ==,,DC 边的垂直平分线EF 交BC 边于E ,且E 为BC 边的中点,又DE AB ∥,则梯形ABCD 的周长等于( )A .22a b +B .3a b +C .4a b +D .5a b +6.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形7.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的 ( )A .平均数B .最大值C .众数D .频率分布8. 已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程2242(2)34mx x m x x --=+++的解为( )A .12x =-,232x =-B .12x =,232x =C .67x =-D .12x =-,232x =-或67x =- 9.如图,CD 是等腰直角三角形斜边AB 上的中线,DE ⊥BC 于E ,则图中等腰直角三角形的个数是( )A .3个B .4个C .5个D .6个10.如图,△ABD ≌△DCA ,B 和C 是对应顶点,则∠ADB 和∠DAC 所对的边是( )A .A0和DOB .AB 和DC C .A0和BD D .D0和AC11. -a 表示的数是( )A .负数B .负数或正数C .正数D .以上都不对12.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l13.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题14.如图所示,Rt △ABC 中,∠B=15°,若 AC=2,则BC= .A CB A ' B 'C ' 图2 图115.将抛物线23(1)3y x=---向右平移 1个单位,再向上平移 2个单位,得到的抛物线的解析式为.16.:yx-y-xx-y=__________.17.一个三角形最多有个钝角,最多有个直角.18.二次函数y=mx2-3x+2m-m2的图像经过原点,则m=.2三、解答题19.如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧).20.小明的爸爸开着一辆满栽西瓜的大卡车经过一个底部为矩形、上部为半圆形形状(如图所示)的古城门,若已知卡车的高是3m,顶部宽是2.5m,古城门底部矩形的宽3m,高 2m.问该卡车能否通过城门?21.要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?22. 计算:22432()||3553---. 11523.一个几何体的表面展开图如图所示,说出它是一个怎样的几何体.24.如图 ,CD ⊥AB ,EF ⊥AB ,∠1 =∠2,试说明∠AGD =∠ACB.25.如图,已知:A ,F ,C ,D 四点在一条直线上,AF=CD ,∠D=∠A ,且AB=DE .请将下面说明△ABC ≌△DEF 的过程和理由补充完整.解:∵AF=CD( ),∴AF+FC=CD+ ,即AC=DF .在△ABC 和△DEF 中,____(__________(AC D AAB =⎧⎪∠=∠⎨⎪=⎩已证)()已知)(已证), ∴△ABC ≌△DEF( ).26.已知2286250x y x y -+-+=,试求34x y +的值.27.将分式10(2)(1)(2)(1)(1)x x x x x +++-+约分,再讨论x 取哪些整数时,能使分式的值是正整数.28.把下列各数填人相应的集合内:-133|8-251π,0.7⋅,35-,039-(1)有理数集合:(2)无理数集合:(3)负数集合:(4)正数集合:29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km ,则这次养护共耗油多少升?30.如图所示,以Rt △ABC 的两直角边AB ,BC 为边向外作正△ABE 和正△BCF ,连结EF ,EC,请说明EF=EC.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.C5.C6.D7.D8.D9.C10.B11.D12.B13.B二、填空题14.7.4615.2=---16.y x3(1)1-117.1,118.三、解答题19.略.20.设AB为半圆的直径,O为圆心,高3m处城门的宽为CD,作OE⊥CD于E,连结 OC,则OE= 1 m,OC= 1.5m ,由勾股定理,得22=⋅=≈(m),CE-151 1.25 1.1所以 CD=2.2 m<2. 5m,所以卡车不能过城门.21.11 cm,6cm22.123.15长方体24.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.∵∠l=∠2,∴∠1=∠3,∴DG ∥BC ,∴∠AGD=∠ACB . 25.已知,FC ,DF ,已知,DE ,SAS26.由已知得:22816690x x y y -++-+=,即22(4)(3)0x y -+-= ∴x= 4 ,y= 3,∴3424x y +=27.101x -,当 x=2或3 或6或 1128.略29.(1)在出发点的向东方向,距出发点15千米;(2)3.88升 30.略。
2020年浙江省台州市中考数学全真模拟试卷4解析版
2020年浙江省台州市中考数学全真模拟试卷4解析版一.选择题(共10小题,满分40分,每小题4分)1.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣22.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列运算正确的是()A.a2•a3=a6B.a3÷a3=a C.4a3﹣2a2=2a D.(a3)2=a64.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分7.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN 交BA的延长线于点E,则AE的长是()A.B.1C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y 轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2)B.(4,1)C.(4,)D.(4,2)10.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.因式分解:(a﹣b)2﹣(b﹣a)=.12.若二次根式在实数范围内有意义,则x的取值范围是.13.在矩形ABCD中,对角线AC,BD相交于点O,AC+BD=20,AB=6,点E是BC边上一点,直线OE交CD边所在的直线于点F,若OE=,则DF=.14.二次函数y=x2﹣3x+2的图象不经过第象限.15.如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O 顺时针旋转α(0°<α<360°),使点A仍在双曲线上,则α=.16.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP 交AP于点D,点P从B运动到C时,则点D运动的路径长为.三.解答题(共8小题,满分80分)17.(8分)计算:4cos30°﹣+20180+|1﹣|18.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D →C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)21.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.22.(12分)问题情境有一堵长为am的墙,利用这堵墙和长为60m的篱笆围成一个矩形养鸡场,怎样围面积最大?最大面积是多少?题意理解根据题意,有两种设计方案:一边靠墙(如图①)和一边“包含”墙(如图②).特例分析(1)当a=12时,若按图①的方案设计,则该方案中养鸡场的最大面积是m2;若按图②的方案设计,则该方案中养鸡场的最大面积是m2.(2)当a=20时,解决“问题情境”中的问题.解决问题(3)直接写出“问题情境”中的问题的答案.23.(12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)24.(14分)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.(1)求直线l的解析式;(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD的面积;(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数定义,只有符号不同的两个数互为相反数,即可得出答案.【解答】解:只有符号不同的两个数互为相反数,且互为相反数两个数相加得0,﹣0.5+=0.故选:B.【点评】题目考查了相反数的定义,解决题目的关键是掌握相反数的定义,并且了解互为相反数的两个数相加得0.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、幂的乘方运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a3÷a3=1,故此选项错误;C、4a3﹣2a2,无法计算,故此选项错误;D、(a3)2=a6,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项法则、幂的乘方运算,正确掌握运算法则是解题关键.4.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.【分析】根据图示,判断出在哪两个整数之间,即可判断出数轴上表示实数的点可能是哪个.【解答】解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,80分出现次数最多,所以众数为80分;由于一共调查了4+8+12+11+5=40人,所以中位数为第20、21个数据的平均数,即中位数为=80(分),故选:B.【点评】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.9.【分析】由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【解答】解:∵AD′=AD=4,AO=AB=2,∴OD′==2,∵C′D′=4,C′D′∥AB,∴C′(4,2),故选:D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.【分析】本题是直线同侧两定点到直线上动点距离之和最短问题,取点O关于直线AB的对称点C,连接CP,则CP为所求最小值.用勾股定理表示s即可.【解答】解:作点O关于直线AB的对称点C,∵A(2,0),B(0,2)∴易得C(2,2)连接CP,则OM+MP的最小值为此时的CP记CP2=s∴s=CP2=AC2+AP2=22+(2﹣x)2=x2﹣4x+8故选:A.【点评】本题是动点问题的函数图象问题,考查了轴对称,两点之间线段最短和勾股定理得有关性质.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.【分析】作ON⊥BC于N,由矩形的性质得出∠ABC=90°,AD∥BC,CD=AB=6,OA=OC=AC,OB=OD=BD,AC=BD,得出OB=OC,AC=BD=10,由勾股定理求出BC,由等腰三角形的性质得出BN=CN=BC=4,由三角形中位线定理得出ON=AB=3,再由勾股定理求出EN,分两种情况:①求出CE的长,由平行线得出△DMF∽△CEF,得出对应边成比例,即可得出结果;②求出CE的长,由平行线证出△ONE∽△FCE,得出对应边成比例求出CF,即可得出DF的长.【解答】解:作ON⊥BC于N,∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,CD=AB=6,OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∵AC+BD=20,∴AC=BD=10,∴BC===8,∵ON⊥BC,且OB=OC∴BN=CN=BC=4,且OA=OC∴ON=AB=3,∴EN==1,分两种情况:①如图1所示:∵AD∥BC,OB=OD,∴=1,△DMF∽△CEF,∴DM=BE=BC﹣CN﹣EN=3,,∴解得:DF=9;②如图2所示:由①得:CE=CN﹣EN=3,∵CD⊥BC,ON⊥BC,∴ON∥CD,∴△ONE∽△FCE,∴,∴解得:CF=9,∴DF=CD+CF=6+9=15;故答案为:9或15【点评】本题考查了矩形的性质、勾股定理、等腰三角形的性质、三角形中位线定理、相似三角形的判定与性质;熟练掌握矩形的性质和勾股定理,证明三角形相似得出比例式是解决问题的关键.14.【分析】根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.【解答】解:∵y=x2﹣3x+2=(x﹣)2﹣,∴该函数图象的顶点坐标为(,﹣)且经过点(0,2),函数图象开口向上,∴该函数图象不经过第三象限,故答案为:三.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.15.【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴α=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时α=210°;故答案为:30°、180°、210°.【点评】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.16.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.三.解答题(共8小题,满分80分)17.【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【解答】解:原式==2﹣2+1+﹣1=.【点评】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.20.【分析】(1)要求桥DC与直线AB的距离,只要作CH⊥AB于点H,求出CH的长度即可,由BC和∠B可以求得CH的长,本题得以解决;(2)要求现在从A地到达B地可比原来少走多少路程,只要求出AD与BC的和比AB﹣EF的长度多多少即可,由于DC=EF,有题意可以求得各段线段的长度,从而可以解答本题.【解答】解:(1)作CH⊥AB于点H,如下图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如下图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH==6≈4.1km,即现在从A地到达B地可比原来少走的路程是4.1km.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的图形,利用数形结合的思想解答问题,注意ME=DC=EF.21.【分析】(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【解答】(1)证明:连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,OC=OB,∴∠OBA=∠BAO,∠C=∠OBC,∴∠PBA+∠OBA=∠C+∠OBA,∴∠PBA=∠C;(2)解:∵⊙O的半径是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=4.【点评】本题考查了平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键.22.【分析】(1)如图,设:AB=x,则BC=60﹣2x,则0<60﹣2x≤12,即:24≤x<30,即可求解;(2)如图①,设AB=xm,则BC=(60﹣2x)m.所以S=x(60﹣2x)=﹣2(x﹣15)矩形ABCD2+450即可求解,如图②,同理可解;(3)分0<a≤20、20<a<30、a≥30,三种情况求解即可.【解答】解:(1)如图,设:AB=x,则BC=60﹣2x,则0<60﹣2x≤12,即:24≤x<30,S=x(60﹣2x)=﹣2(x﹣15)2+450.矩形ABCD∵24≤x<30,则x=24时,S取得最大值为288,矩形ABCD取得最大值为324,同理,图②的方案设计,S矩形ABCD故:答案为288,324;(2)如图①,设AB=x m,则BC=(60﹣2x)m.=x(60﹣2x)=﹣2(x﹣15)2+450.所以S矩形ABCD根据题意,得20≤x<30.因为﹣2<0,随x的增大而减小.所以当20≤x<30时,S矩形ABCD有最大值,最大值是400(m2).即当x=20时,S矩形ABCD如图②,设AB=x m,则BC=(40﹣x)m.所以S=x(40﹣x)=﹣(x﹣20)2+400.矩形ABCD根据题意,得0<x≤20.因为﹣1<0,所以当x=20时,S有最大值,最大值是400(m2).矩形ABCD综上,当a=20时,该养鸡场围成一个边长为20m的正方形时面积最大,最大面积是400 m2.(3)当0<a≤20时,围成边长为m的正方形面积最大,最大面积是m2.当20<a<30时,围成两邻边长分别为a m,m的养鸡场面积最大,最大面积为m2.当a≥30时,当矩形的长为30m,宽为15m时,养鸡场最大面积为450m2.【点评】本题为二次函数综合运用的题目,主要考查函数最值问题,此类题目通常要综合考虑自变量的取值范围,结合对称轴位置情况进行综合分析再行求解.23.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.24.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得直线l 的解析式;(2)联立直线l 和直线y =x ,可求得C 点坐标,由条件可求得直线PD 的解析式,同理可求得D 点坐标,则可分别求得△POD 和△POC 的面积,则可求得△PCD 的面积;(3)由P 、A 、C 的坐标,可分别表示出PA 、PC 和AC 的长,由等腰三角形的性质可得到关于m 的方程,则可求得m 的值,则可求得P 的坐标.【解答】解:(1)设直线l 解析式为y =kx +b ,把A 、B 两点坐标代入可得,解得,∴直线l 解析式为y =﹣2x +12;(2)解方程组,可得, ∴C 点坐标为(4,4),设PD 解析式为y =﹣2x +n ,把P (3,0)代入可得0=﹣6+n ,解得n =6,∴直线PD 解析式为y =﹣2x +6,解方程组,可得, ∴D 点坐标为(2,2),∴S △POD =×3×2=3,S △POC =×3×4=6,∴S △PCD =S △POC ﹣S △POD =6﹣3=3;(3)∵A (6,0),C (4,4),P (m ,0),∴PA 2=(m ﹣6)2=m 2﹣12m +36,PC 2=(m ﹣4)2+42=m 2﹣8m +32,AC 2=(6﹣4)2+42=20,当△PAC 为等腰三角形时,则有PA =PC 、PA =AC 或PC =AC 三种情况,①当PA =PC 时,则PA 2=PC 2,即m 2﹣12m +36=m 2﹣8m +32,解得m =1,此时P 点坐标为(1,0);②当PA=AC时,则PA2=AC2,即m2﹣12m+36=20,解得m=6+2或m=6﹣2,此时P点坐标为(6+2,0)或(6﹣2,0);③当PC=AC时,则PC2=AC2,即m2﹣8m+32=20,解得m=2或m=6,当m=6时,P与A 重合,舍去,此时P点坐标为(2,0);综上可知存在满足条件的点P,其坐标为(1,0)或(6+2,0)或(6﹣2,0)或(2,0).【点评】本题为一次函数的综合应用,涉及待定系数法、函数图象的交点、三角形的面积、等腰三角形的性质、勾股定理、分类讨论思想及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中求得C、D的坐标是解题的关键,在(3)中用P点坐标分别表示出PA、PC的长是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,难度适中.。
2020年浙江省台州市中考数学全真模拟试卷5解析版
2020年浙江省台州市中考数学全真模拟试卷5解析版一.选择题(共10小题,满分40分,每小题4分)1.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.5.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0B.ab=0C.﹣<0D.+>06.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,57.如图,点A ,B ,P 是⊙O 上的三点,若∠AOB =40°,则∠APB 的度数为( )A .80°B .140°C .20°D .50°8.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =4,则AE 的长为( )A .B .2C .3D .49.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,矩形ABCD 的边AB 在x 轴上,其中O 点是坐标原点,AO =2,BO =3,BC =4,点A、B是固定点,把正方形沿箭头方向推,使点D落在y 轴正半轴上点D′处,则点C 的对应点C ′的坐标为( )A .(2,3)B .(2)C .(3,2)D .(5,2)10.如图1,动点K 从△ABC 的顶点A 出发,沿AB ﹣BC 匀速运动到点C 停止,在动点K 运动过程中,线段AK 的长度y 与运动时间x 的函数关系如图2所示,其中点D 为曲线部分的最低点,若△ABC 的面积是10,则a =( )A.7B.3C.8D.4二.填空题(共6小题,满分30分,每小题5分)11.分解因式:x2﹣4x=.12.若a,b都是实数,b=+﹣2,则a b的值为.13.如图,已知点E为矩形ABCD内的点,若EB=EC,则EA ED(填“>”、“<”或“=”)14.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.15.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.16.如图,在直径为8的弓形ACB中,弦AB=,C是弧AB的中点,点M为弧上动点,CN⊥AM于点N,当点M从点B出发逆时针运动到点C,点N所经过的路径长为.三.解答题(共8小题,满分80分)17.(8分)计算:|﹣1+|﹣﹣(5﹣π)0+4cos45°.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(8分)我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)20.(8分)每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB 垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)21.(10分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若AB=10,AC=8,求EF的长.22.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳x 2元的附加费,设月利润为w 外(元)(利润=销售额﹣成本﹣附加费).(1)当x =1000时,y = 元/件,w 内= 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标是(). 23.(12分)问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为 .(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM +MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.24.(14分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】依据相反数的定义以及有理数的乘方法则进行判断即可.【解答】解:A、a,b互为相反数,则a2=b2,故A错误;B、a,b互为相反数,则a3=﹣b3,故a3与b5不是互为相反数,故B错误;C、a,b互为相反数,则a2n=b2n,故C错误;D、a,b互为相反数,由于2n+1是奇数,则a2n+1与b2n+1互为相反数,故D正确;故选:D.【点评】本题考查了相反数和乘方的意义,明确只有符号不同的两个数叫做互为相反数,还要熟练掌握互为相反数的两个数的偶数次方相等,奇次方还是互为相反数.2.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<0<a,∴ab<0,故选项B错误;C、∵b<0<a,∴﹣>0,故选项C错误;D、∵b<﹣1<0<a<1,∴+>0,故选项D正确.故选:D.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】直接利用圆周角定理求解.【解答】解:∠APB=∠AOB=×40°=20°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选:B.【点评】本题考查的是作图﹣基本作图、平行四边形的性质、勾股定理、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,由勾股定理求出AO是解决问题的关键.9.【分析】根据勾股定理,可得OD′,根据平行四边形的性质,可得答案.【解答】解:由勾股定理,得OD′==2,即D′(0,2).矩形ABCD的边AB在x轴上,∴四边形ABC′D′是平行四边形,AD′=BC′,C′D′=AB=3﹣(﹣2)=5,C′与D′的纵坐标相等,∴C′(5,2)故选:D.【点评】本题考查了多边形,利用平行四边形的性质得出AD′=BC′,C′D′=AB=3﹣(﹣2)=5是解题关键10.【分析】根据题意AB=AC,点D表示点K在BC中点,由△ABC的面积是10求BC,则可求BC,利用勾股定理求AC即可.【解答】解:由图象可知,点D左右对应图象呈现对称性,则AB=AC,点K位于BC中点时,AK为△ABC底边BC上高,AK=5最小∵△ABC的面积是10∴解得BC=4由勾股定理a=AB=故选:A.【点评】本题为动点问题的函数图象探究题,考查动点在临界点前后的函数图象变化规律,解答关键是数形结合.二.填空题(共6小题,满分30分,每小题5分)11.【分析】直接提取公因式x进而分解因式得出即可.【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.【点评】此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.13.【分析】根据矩形的对边相等和4个角都是90°的性质可得AB=CD,∠ABC=∠BCD,由EB =EC,可得∠EBC=∠ECB,那么∠ABE=∠ECD,所以△ABE≌△DCE,进而可得AE=ED.【解答】解:∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠BCD,∵EB=EC,∴∠EBC=∠ECB,∴∠ABE=∠ECD,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴AE=ED.故答案为:=.【点评】本题考查矩形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,属于中考常考题型.14.【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).【点评】本题主要考查了二次函数的性质,熟练掌握顶点式是解题的关键,难度适中.15.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【分析】首先确定圆心,由弧中点联想到垂径定理,从而通过计算不难得到△AOC为等边三角形.确定AC=4,再由圆的定义确定点N的轨迹,最后由弧长公式计算出路经长.【解答】解:设O为圆心,C为弧AB的中点,由垂径定理可得:OC⊥AB,OC平分ABAB=2,AO=4,则HO=2,∠AOC=60°,AC=AO=4,CN⊥AM取AC得中点D,ND=AC=2,∴点N的轨迹为D为圆心,2为半径的圆的部分,且圆心角为60°路经长为:故答案:【点评】本题是个常规的圆的轨迹题,通过定角(∠ANC=90°)和定弦(AC=4)确定N的轨迹再来计算,难度不大.三.解答题(共8小题,满分80分)17.【分析】原式利用绝对值的代数意义,二次根式性质,零指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1﹣×2﹣1+4×=2﹣2.【点评】此题考查了实数的运算,零指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.19.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.故答案为:抽样调查.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【分析】过点A作AE⊥CD于点E,由∠BAC=15°可求出∠DAC的度数,在Rt△AED中由∠ADE=60°,AD=4可求出DE及AE的长度,在Rt△AEC中由直角三角形的性质可得出AE=CE,故可得出CE的长度,再利用锐角三角函数的定义可得出AC的长,进而可得出结论.【解答】解:过点A作AE⊥CD于点E,∵∠BAC=15°,∴∠DAC=90°﹣15°=75°,∵∠ADC=60°,∴在Rt△AED中,∵cos60°===,∴DE=2,∵sin60°===,∴AE=2,∴∠EAD=90°﹣∠ADE=90°﹣60°=30°,在Rt△AEC中,∵∠CAE=∠CAD﹣∠DAE=75°﹣30°=45°,∴∠C=90°﹣∠CAE=90°﹣45°=45°,∴AE=CE=2,∴sin45°===,∴AC=2,∴AB=2+2+2≈2×2.4+2×1.7+2=10.2≈10米.答:这棵大树AB原来的高度是10米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)BE、OC交于G,得到四边形EGCD是矩形,根据矩形的性质得到DE=CG,CD=EG,根据垂径定理得到EG=BE,根据勾股定理即可得到结论.【解答】(1)证明:连结OC(如图所示),则∠ACO=∠CAO(等腰三角形,两底角相等),∵CD切⊙O于C,∴CO⊥CD,又∵AD⊥CD,∴AD∥CO.∴∠DAC=∠ACO(两直线平行,内错角相等),∴∠DAC=∠CAO,∴AC平分∠BAD;(2)如图2,BE、OC交于G,∵AB是⊙O的直径,∴BE⊥AD,∵CD是⊙O的切线,∴CD⊥OC,∴四边形EGCD是矩形,∴DE=CG,CD=EG,∴OC⊥BE,∴EG=BE=BG,设DC=EG=BG=a,OG=x,则AE=2x,在Rt△ADC中,由勾股定理得:DC2+AD2=AC2,即a2+(5﹣x+2x)2=82①,在Rt△OGB中,由勾股定理得:BG2+OG2=OB2,即a2+x2=52②,①﹣②得:(5﹣x+2x)2﹣x2=64﹣25,解得:x=1.4,a==4.8,即AE=2×1.4=2.8,DC=4.8,由勾股定理得:AD===6.4,∵AB为直径,AD⊥DC,∴∠D=∠AEF=90°,∵∠EAF=∠DAC,∴△AEF∽△ADC,∴=,∴=,∴EF=2.1.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.22.【分析】(1)将x=1000代入函数关系式求得y,并根据等量关系“利润=销售额﹣成本﹣广告费”求得w内;(2)根据等量关系“利润=销售额﹣成本﹣广告费”“利润=销售额﹣成本﹣附加费”列出两个函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值;(4)通过对国内和国外的利润比较,又由于a值不确定,故要讨论a的取值范围.【解答】解:(1)x=1000,y=×1000+150=140,w内=(140﹣20)×1000﹣62500=57500.(2)w内=x(y﹣20)﹣62500=x2+130x﹣62500,w 外=x 2+(150﹣a )x .(3)当x ==6500时,w 内最大;由题意在国外销售月利润的最大值与在国内销售月利润的最大值相同,得:=,解得a 1=30,a 2=270(不合题意,舍去).∴a =30.(4)当x =5000时,w 内=337500,w 外=﹣5000a +500000.若w 内<w 外,则a <32.5;若w 内=w 外,则a =32.5;若w 内>w 外,则a >32.5.∴当10≤a <32.5时,选择在国外销售;当a =32.5时,在国外和国内销售都一样;当32.5<a ≤40时,选择在国内销售.【点评】本题是一道综合类题目,考查了同学们运用函数分析问题、解决问题的能力. 23.【分析】(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M 和N 的位置,再利用面积求出CF ,进而求出CE ,最后用三角函数即可求出CM +MN 的最小值;(3)先确定出EG ⊥AC 时,四边形AGCD 的面积最小,再用锐角三角函数求出点G 到AC 的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF 即可求出BF .【解答】解:(1)如图①,过点C 作CD ⊥AB 于D ,根据点到直线的距离垂线段最小,此时CD 最小,在Rt △ABC 中,AC =3,BC =4,根据勾股定理得,AB =5,∵AC ×BC =AB ×CD ,∴CD ==,故答案为;(2)如图②,作出点C 关于BD 的对称点E ,过点E 作EN ⊥BC 于N ,交BD 于M ,连接CM ,此时CM +MN =EN 最小; ∵四边形ABCD 是矩形,∴∠BCD =90°,CD =AB =3,根据勾股定理得,BD =5,∵CE ⊥BC ,∴BD ×CF =BC ×CD ,∴CF ==,由对称得,CE =2CF =,在Rt △BCF 中,cos ∠BCF ==,∴sin ∠BCF =,在Rt △CEN 中,EN =CE sin ∠BCE ==;即:CM +MN 的最小值为;(3)如图3,∵四边形ABCD 是矩形, ∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5, ∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×h =×4×3+×5×h =h +6, ∴要四边形AGCD 的面积最小,即:h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点, ∴EG ⊥AC 时,h 最小,由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH﹣EG=﹣1=,=h+6=×+6=,∴S四边形AGCD最小过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC﹣CF=4﹣1=3.【点评】此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.24.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。
2020年浙江省台州市中考数学模拟试卷1
浙江省台州市2020年中考数学模拟试卷1(含答案)一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2018年4月12日上午,中央军委在南海海域隆重举行新中国史上最大规模海上阅兵,展示人民海军崭新面貌,激发强国强军坚定信念.这次阅兵向世界宣示,中国海军是中国近300万平方公里海域、32000多公里海岸线的定海神针,其中32000这个数据可以用科学记数法表示为( )A. 32×104B. 3.2×105C. 3.2×104D. 3.2×1062.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x,女生人数为y,则所列方程组正确的是( )A. {x−y=49y=2(x+1) B. {x+y=49y=2(x+1) C. {x−y=49y=2(x−1) D. {x+y=49 y=2(x−1)3.若直线y=k1x与双曲线y=k2x相交于点P、Q,若点P的坐标为(-5,3),则点Q的坐标为()A. (-5,3)B. (5,-3)C. (-5,-3)D. (5,3)4.按面划分,与圆锥为同一类几何体的是()A. 正方体B. 长方体C. 球D. 棱柱5.下列长度的三条线段能组成三角形的是( )A. 1cm,1cm,3cmB. 1cm 2cm.3cmC. 1cm,2cm,2cmD. 1cm,4cm,2cm6.如图,将一张长方形纸片ABCD按图中方式折叠,若AE=3,AB=4,BE=5,则重叠部分的面积为( )A. 6B. 8C. 10D. 127.下列运算正确的是()A. |−3|=3B. −(−3)=−3C. 3ab+2ab=5a2b2D. −2a3b+4a3b=−6a3b8.已知样本数据1,2,3,3,4,5,则下列说法不正确的是()A. 平均数是3B. 中位数是3C. 众数是3D. 方差是39.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A. 8B. 6C. 4D. 310.正方形ABCD 的边长为1,其面积记为S 1 , 以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2 , …按此规律继续下去,则S 2019的值为( )A. (12)2019B. (12)2018C. (√22)2019D. (√22)2018 二、填空题(本大题共6小题,每小题5分,共30分)11.如果 √16 的算术平方根是m,-64的立方根是n,那么m-n=________.12.分解因式:﹣ 12 a 2+2a ﹣2=________.13.有10个杯子,其中一等品7个,二等品3个,任意取一个杯子,是一等品的概率是________。