结构力学6力法
大学《结构力学》第6章 力法课件
超超静静定定次次数数==33××51==135
? 超超静静定定次次数数==33××52-=356=120
结构超静定次数的判定方法(拆除约束法)
一般从约束数少的约束开始拆(截断),直到使结构成为一个
无多余约束的几何不变体系(静定结构)为止。
1)去掉一根支座链杆或截断一根桁架杆,相当拆除1个约束;
2)去掉一个固定铰支座或切开一个单铰,相当拆除2个约束;
•
荷载作用下超静定结构的力法计算及内力图绘制与校核;
• (2)难点:根据已知变形条件建立力法典型方程;
•
利用对称性取等效半结构;
§6-1 超静定结构的组成和超静定次数
一、超静定结构 几何特征:多余约束
静力特征:多余力
组成 :有多余联系的几何不变体系。注意多余联系是对几何不变 体而言,可在结构内部或外部,多余联系中产生的力称为多余力。 如果一个结构的支座反力和各截面内力都可以由静力平衡
l
MP
M1
3、力法基本方程-
11 1p 0
11 11 X 1
11 X 1 1P 0
X1 1
4、系数与自由项 1P ,11
1P
M1M P dx ql4
EI
8 EI
5、解方程
l3 3EI
X1
ql 4 8EI
0
11
M1M1 dx l3
EI
3EI
X1
3 8
ql
8
X1
3 8
ql
4
3次超静定
P
X
X
3
2
X
3
X1
X
X
2
1
3.切断一根梁式杆等于去掉三个约束
结构力学第六章 力法
四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此
结构力学- 力法
0
X1 4X2
0
解方程得:
X1
1 15
ql 2
(
)
X2
1 60
ql2 (
)
3. 作内力图 1) 根据下式求各截面M值,然后画M图。
M M1X1 M2X2 MP
23
ql2 15
A
C
B
ql2 60
11ql 2 120
D M图
2) 根据M图求各杆剪力并画FQ图。
AB杆: MB 0
FQAB
26
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
l
1 ql 2 8
1 2
ql3 ql3 24E1I1 24E2I2k
2P 0
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
M 2图
1
27
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
1 M2图
11
1 E1I1
1 2
1 l
2 3
1
1 E2 I 2
1 2
1
l
2 3
1
l l l E1I1 E2I2 l k 1 3E1I1 3E2I2 3 E1I1E2I2 3E2I 2 k
( E1I1 k) E2 I2
12
21
1 E2 I2
△iP—荷载产生的沿Xi方向的位移
《结构力学》_龙驭球_第6章_力法(1)
X2=1
l M2 图
1 l l l l3 12 21 l (l l ) EI 2 2 EI
l
l
l
l
ql 2 2
EI
EI
原结构
X1=1
l
1、力法方程:
基本体系
M1 图 l
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
l
1 l l 2l 5l 2、系数和自 11 ( ) 2 ( l l l ) 由项的计算: EI 2 3 3EI
解方程得: X 1 ql 2
X2=1
A
1
M2图
(
1 2 1 X 2 ql 4 3k 4
E1 I1 k) E2 I 2
1 2
1 3k 4
1 2 1 X 1 ql 2 3k 4 3. 讨论 1)当k = 0
即 E1 I1 很小或 E2 I2 很大
ql X1 8
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
q=1kN/m
3m
q=1kN/m
FP = 3kN 4 2I I 2I 2 1
3m 3m
FP = 3kN
18
27
9
M P kN m
3m
X1
11
X2
6
6
§6-3 超静定刚架和排架
计算超静定刚架和排架位移时,通常忽略轴力和剪力的影响,只考虑弯 矩的影响,使计算简化。 例6-1:求图示刚架 M 图。 q q C X1 B
结构力学课件--6力法3
2
内容回顾
对称荷载:
反对称荷载:
EI
P EI
EI P P
EI
P EI
EI P P
B.有中柱对称结构(偶数跨结构) 对称荷载:
反对称荷载:
EI EI
P EI
EI P P
EI EI
P EI EI EI P P
EI/2
2019/7/14
课件
3
用力法计算下图所示结构,并作结构M图。
1 kN/m EI
EI
EI 2m
可能使: 21 = 12 = 0
即得:
课件
11X1 1P = 0 22 X 2 2P = 0 33 X 3 3P = 0
y y´
12
X2
X2 y
X1 X1 a
y
O
x
x'
1
y
x
X1 = 1
y
X2 =1
M1 =1 N1 = 0 Q1 = 0
12 =
15
4m
a
y
2EI
EI
EI
x
8m
X1 X1
X2 X2 X3
a
=
y
1 EI
ds
1 EI
ds
=
1 2EI
8 4
2( 1 EI
4 2)
=
8
=
2.667m
1 8 2( 1 4)
3
2019/7/14
2EI
EI 课件
§6-7 支座移动和温度改变时的内力计算
16
一、支座移动时的计算
(a 11
1 2
结构力学课件--6力法
2m 2m
4m
1
4m
125
15
11.3
15
M kN m
Q kN
3.7 75
200
15 147.5
11.3 22.5
11.3 3.7
22.5
2021/4/9竖向力不平衡
147.5
N kN
二、变形条件的校核
25
200
100 60
2
2 30
1
40
1
150
4m
1
1
20 2m 2m
15 4m
11
M kN m
2) 3
4a 3EI
X2 1
22
1 EI
(1 2
a 1
2) 3
a 3EI
M2
12
1 EI
(1 2
a 1 1) 3
a 6EI
1 1 Pa
1 Pa 2 5Pa2
1P
EI
( 2
2
a1 2
2
a ) 3 12EI
2P
1 EI
1 2
Pa 2
a
1) 3
Pa 2 12EI
Pa 2
P 2 MP 1
X1 1 M1
EA
0 E1A1
1P
M1M P EI
ds
=
1P
l N12 dx l 12 dx l
0 E1A1
0 E1A1
E1 A1
11
M12 ds EI
N12 ds EA
l E1 A1
11
l E1 A1
两类拱的比较: 无拉杆 H 1P
11
E1A1 H H 相当于无拉杆
结构力学——力法
X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP
结构力学第六章力法
弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C
结构力学第6章力法
结构力学第6章力法力法(也叫统一力法)是一种简化结构分析和计算的方法,通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的复杂性。
力法在结构力学中有很广泛的应用,特别是在求解复杂结构的内力分布和变形方程时非常有用。
力法的基本原理是将结构的内力分布看作是由一系列基本力的叠加形成的。
这些基本力包括拉力、压力、剪力和弯矩等。
通过对这些基本力的作用点和大小进行合理的选取,可以将结构的内力分布近似为一个简单的形式,从而方便地进行计算。
力法的具体步骤如下:1.选择合适的基本力系统:根据结构的受力情况,选择适合的基本力系统,一般包括平行力、共点力、算术力和等效力等。
2.确定基本力的作用点和大小:通过结构的受力平衡条件和变形方程,确定基本力的作用点和大小,一般可以通过静力平衡方程或者变形方程进行计算。
3.将基本力作用在结构上:将确定的基本力作用在结构上,这些基本力可以是集中力也可以是分布力,根据具体情况进行选择。
4.分析结构的受力和变形:应用力学的基本原理和公式,分析结构的受力和变形情况,求解结构的内力和位移等参数。
5.进行计算和分析:根据步骤4中得到的结果,进行计算和分析,比较计算结果与实际情况的差异,进行调整和修正。
力法的优点是计算简单、直观,尤其适用于计算结构的内力和变形情况;缺点是只能得到局部的内力情况,无法得到整体的受力情况。
在结构力学中,力法的应用非常广泛。
例如,可以利用力法求解悬臂梁的内力分布和变形情况,以及桁架和刚架的受力情况等。
同时,力法还可以用于计算复杂结构的等效荷载,简化结构的计算过程。
总结起来,力法是一种通过将结构的内力和力的作用点集中在一些特定的位置,从而简化结构计算的方法。
通过选择合适的基本力系统,确定基本力的作用点和大小,将基本力作用在结构上,进行受力和变形分析,最终得到结构的内力和变形情况。
力法在结构力学中有很广泛的应用,对于求解复杂结构的内力分布和变形方程非常有用。
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第六章【圣才出品】
3.力法典型方程
从一次超静定结构的力法分析到二次超静定结构的力法分析,可以发现一定的规律,那
么具有 n 次超静定结构的力法典型方程归纳如下:
11X1 12 X 2 1n X n 1P 0
21 X1
22 X 2 2n X n
2P
0
n1X1 n2 X 2 nn X n nP 0
表 6-1-5 力法解超静定桁架和组合结构
7 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
8 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、力法解对称结构(表 6-1-6) 表 6-1-6 力法解对称结构
七、超静定结构位移的计算(见表 6-1-8) 表 6-1-8 超静定结构位移的计算
14 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
八、超静定结构计算的校核(表 6-1-9)
表 6-1-9 超静定结构计算的校核
6.2 课后习题详解 6-1 试确定下列图 6-2-1 所示结构的超静定次数。
16 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 6-2-2 6-2 试用力法计算下列图 6-2-3 所示结构,作 M、FQ 图。除图 6-2-3(b)为变截面 外,其余各图 EI=常数。
17 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
15 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 6-2-1 解:(a)如图 6-2-2(a)所示,铰结点左右两段分别去掉 1 根单链杆,超静定次数为 2; (b)如图 6-2-2(b)所示,每个正方形内去掉 1 根斜杆,两个单链支座任意去掉其 中 1 个,共计 7 根单链杆,超静定次数为 7; (c)如图 6-2-2(c)所示,去掉 1 根链杆和 1 个铰支,超静定次数为 3; (d)如图 6-2-2(d)所示,去掉 3 根链杆,超静定次数为 3; (e)如图 6-2-2(e)所示,去掉 2 个铰支,超静定次数为 4; (f)如图 6-2-2(f)所示,去掉 2 根链杆,超静定次数为 2; (g)如图 6-2-2(g)所示,去掉 2 个铰支和切断 1 根杆,超静定次数为 7; (h)如图 6-2-2(h)所示,去掉 4 个链杆和切断位于中间区间的 2 根杆,超静定次 数为 10;
结构力学第六章力法
例 求图示刚架M图。
q
B
C
E1I1 l
E2I2 l A
E1I1 k E2 I 2
原结构
q
X1
B
C
φA=0
X2
ΔφB=0
A 基本体系
1. 力法方程
11X1 12 X2 1P B 0 21X1 22 X 2 2P A 0
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
1 ql2 14CΒιβλιοθήκη B 5 ql256
B
C
1 ql2 8
A
1 ql2 28
a) M图
A
b) M图
3)当k=∞,即E1I1很大或E2I2很小。由于柱AB抗 弯刚度趋近于零,只提供轴向支撑,故梁BC相当
于简支梁,M图见图b)。
结论:
在荷载作用下,超静定结构的内力只与各杆 抗弯刚度EI的比值k 有关,而与杆件抗弯刚度 EI的绝对值无关。若荷载不变,只要 k 不变, 结构内力也不变。
(变形协调条件)。
Δ1=δ11X1 + Δ1P=0
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
〓
RB
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B 当ΔB=Δ1=0
X1 =><RB
〓
δ11
+
×X1 X1=1
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
Δ1P
二、ii q力法↓M↓E↓↓I的i↓2↓↓d↓典s 型0,方ik程
MiMk ↓↓E↓↓I↓↓↓↓
11 X1 12 X 2 13 X 3 1P 0 21 X1 22 X 2 23 X 3 2P 0 P 31 X1 32 X 2 33 X 3 3P 0
结构力学第6章力法2ppt课件38页PPT
•⊿1P= -[(1/3×ql2/2×l)×3/4×l
•
+(ql2/2×l )×l )/EI = -5ql4/8EI
•⊿2P=[(ql2/2×l )×l ] =ql4/2EI
(3)、解方程 (求解未知量)
• 力法方程:(可消去 l3/EI)
•
4/3 X 1 -X 2 - 5ql/8 = 0
• (2) 荷载作用下超静定 结构反力、内力的特点:
• 多余力(反力、内力) 的大小只与各杆件的相 对刚度有关,而与其绝 对刚度无关,同一材料 所构成的结构,其反力 内力也与材料的性质 (弹性模量)无关。
• 右上图刚架的各杆弯 矩值与例题中各杆的弯 矩值是否相同?
如不同,为什么?
2、铰接排架
• 计算特点: • 横梁 : EA=∞ • 柱:
• (3)、 X3=1单独作用于基本体系,相应位移
•
δ 13
δ 23
δ 33
• 未知力X3单独作用于基本体系,相应位移
•
δ 13 X3 δ 23 X3 δ 33 X3
• (4)、荷载单独作用于基本体系,相应位移
•
⊿1P
⊿2P
⊿3P
• X1方向的位移⊿1
•
⊿1=δ 11X1+δ 12X2+δ 13X3+ ⊿1P
• 2、系பைடு நூலகம்和自由项
• δ 11 =[(1/2×6×6 )×2/3×6 ]/EI1
•
+[(1/2×6×6)×2/3×6 ]/EI2
• =504/EI2
16/3 23/3
•δ 22=2×[(1/2×3×3)×2/3×3]/EI1
•
+2× [(1/2×3×7 )×(2/3×3+1/3×10)
结构力学(龙驭球)第6章_力法
C
B 8 kN m
X3
B X1 X2
A
A
精品课件
24
例6-1:试作图示结构的内力图。I1:I2=2:1
1 1 M E 1M I1d s2 8 E 8 I m 131 4 E 4 I m 235 7 E 6 I m 13
1PM E 1M IPds5120 E kIN 1.m 2 精品课件 25
80 X1 = 9 kN
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
矩明显增大。
精品课梁件 最大弯矩可进一步减小。
37
§6-5 力法解对称结构 内容回顾
n次超静定结构的力法典型方程:
11X1 12X2 21X1 22X2
n1X1 n2X2
1nXn 1P 0
2nXn
2P
0
nnXn nP 0
精品课件
38
§6-5 力法解对称结构
1. 结构的对称性: 例1:
1. 结构的几何形式和支承情况对某轴对称 2. 杆件的截面和材料性质也对此轴对称(EI等)
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑
位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案
称为混合法。
结构力学 力法
§6-2 力法基本原理
说明: ii 0 主系数, ij ji 副系数,可正、可负、可零。
iP 自由项,可正、可负、可零。
ii
s
M
2
i ds,
EI
ij
ji
s
MiM EI
j
ds, iP
MiM P ds s EI
X1, X2
进一步说明:
M X1M1 X 2M 2 M P
二、超静定排架
单跨排架 排架
双跨排架
例: 求作图示排架弯矩图。
EA→ ∞
EA→ ∞
EA→ ∞
E1I1
E1I1
E2I2
E2I2
EI
EI
EI
5kN/m 6m 2m
原结构
18
§6-3 超静定刚架和排架
解: ⑴选取基本体系确定基本未知量
⑵建立力法方程
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
⑴力法求解超静定结构,可以选取多种不同形式的基本结构,无论选取那种
形式的基本结构,也无论是哪种类型的超静定结构,只要超静定次数相同其
力法方程的形式就相同,(不包括含有弹性支承及支移的超静定结构)但力
法方程及方程中的系数和自由项的力学意义不同。
⑵基本结构的合理选取
(a)基本结构必须是几何不变的静定结构。
810 EI
,2P
0
5kN/m
90kN.m
M2图
8
8
MP图
19
§6-3 超静定刚架和排架
⑸解方程
144 EI
X1
108 EI
X2
810 EI
0
108 EI
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(力 法)【圣才出品】
第6章力法6.1 复习笔记本章重点介绍了力法的原理以及如何运用力法对超静定结构在各种荷载作用下的内力和位移进行求解。
首先,从单次超静定结构到多次超静定结构,对力法的解题步骤进行了归纳并推导出了力法的典型方程;随后,论述了超静定结构超静定次数的判定方法,演示了刚架、排架、桁架、组合结构、对称结构在荷载作用以及支座移动和温度改变下的力法分析步骤,讨论了基于力法和虚功原理的超静定结构的位移计算思路;最后,强调了超静定结构计算中校核的重要性,以确保最终计算结构的准确性和可靠性。
一、力法的基本概念1.力法的基本未知量、基本体系和基本方程力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表6-1-1,此外,表中还归纳了超静定结构的力法分析步骤。
表6-1-1 力法的基本未知量、基本体系和基本方程2.多次超静定结构的力法分析(见表6-1-2)表6-1-2 多次超静定结构的力法分析步骤3.力法典型方程从一次超静定结构的力法分析到二次超静定结构的力法分析,可以发现一定的规律,那么具有n次超静定结构的力法典型方程归纳如下:式中,ΔiP表示由荷载产生的沿X i方向的位移;δij表示由单位力X j=1产生的沿X i=1方向的位移,常称为柔度系数,且δij=δji。
在解得多余未知力之后,超静定结构的内力可根据叠加原理计算如下:或根据结构受力平衡求解。
二、超静定次数的确定——力法的前期工作(见表6-1-3)表6-1-3 超静定次数的确定——力法的前期工作三、力法解超静定刚架和排架(见表6-1-4)表6-1-4 力法解超静定刚架和排架四、力法解超静定桁架和组合结构(见表6-1-5)表6-1-5 力法解超静定桁架和组合结构五、力法解对称结构(表6-1-6)表6-1-6 力法解对称结构。
龙驭球《结构力学Ⅰ》笔记和课后习题(含考研真题)详解(力 法)【圣才出品】
第6章力法6.1 复习笔记一、超静定次数的确定——力法的前期工作1.超静定结构的静力平衡特征和几何构造特征(1)静力平衡特征一个结构,如果它的支座反力和各截面的内力不能完全由静力平衡条件唯一地加以确定,就称为超静定结构。
(2)几何构造特征超静定结构是有多余约束的几何不变体系。
2.超静定次数的确定(1)从几何构造看,超静定次数=多余约束的个数。
(2)从静力分析看,超静定次数=未知力个数-平衡方程的个数。
(3)求超静定次数时,应注意以下事项:①撤去一根支杆或切断一根链杆,等于拆掉一个约束;②撤去一个铰支座或撤去一个单铰,等于拆掉两个约束;③撤去一个固定端或切断一个梁式杆,等于拆掉三个约束;④在连续杆中加入一个单铰,等于拆掉一个约束;⑤不要把必要约束拆掉;⑥要把全部多余约束都拆除。
二、力法的基本概念1.力法的基本未知量、基本体系和基本方程 (1)力法的基本未知量把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力——称为力法的基本未知量。
(2)力法的基本体系和基本结构①含有多余未知力的静定结构,称为力法的“基本体系”; ②去掉多余约束力和荷载后的静定结构,称为力法的“基本结构”。
(3)力法的基本方程11δ——基本结构在单位未知力单独作用下沿1X 方向的位移;1X ——未知力;1P ∆——基本结构在荷载单独作用下沿1X 方向的位移。
2.多次超静定结构的计算 (1)二次超静定结构①图6-1-1(a )为二次超静定结构,取B 点两个支杆为多余约束,用X 1、X 2作为基本未知量代替,则基本体系如图6-1-1(b )所示。
图6-1-1②二次超静定结构的力法基本方程(2)多次超静定——力法典型方程——由荷载产生的沿方向的位移;——由单位力产生的沿方向的位移,常称为柔度系数。
在得到多余未知力的数值之后,超静定结构的内力可根据平衡条件求出,或者根据叠加原理用下式计算三、力法解超静定刚架和排架1.刚架的解法步骤(1)选取基本体系;(2)列出力法方程;(3)求系数和自由项;(4)求多余未知力;(5)作内力图。
结构力学-6 力法 2.ppt
EI= (c)
(b)与(c)具有完全等效关系。 此时将图(c)在对称轴位置截断,
对于两对称内力:X1、X2。 X1=1作用下,基本体系同侧受拉; X2=1作用下,基本体系异侧受拉。
当附加竖向刚臂长度变化时,就
可能使: 21 = 12 = 0
即得: 11 X1 1P 0 22 X 2 2P 0 33 X 3 3P 0 16
nn X n nP 0
一、对称性的利用
对称的含义:1、结构的几何形状和支承情况对某轴对称;
2、杆件截面和材料(E I 、EA)也对称。
X
X
1
3
X
1
I2
I1
I1
X2
X
X
3
2
4
X1 X1 1
X2 X2 1
X3 1
X3
M1
M2
11 X 1 21 X 1
12 X 2 22 X 2
13 X 3 23 X 3
X1 1
M1
10
P I 2I I
P/2 I 2I
P/2 I
P/2 I
P/2 I 2I
P/2 I
P/2 I I 2次超静定
11
二、广义未知力的利用
用于原体系与基本体系都是对称的,但未知力并非对称或反对称。
A
B
X1
X1
Y1
Y2 X 2
X2
11
11 22
22
X1 1
X1 1 X2 1
X2 1
2、对称荷载作用在对称结构上,如果基本未知量都是对称力 或反对称力,则反对称未知力为0,只需计算对称未知力。 3、反对称荷载作用在对称结构上,如果基本未知量都是对称 力或反对称力,则对称未知力为0,只需计算反对称未知力。
6力法(结构力学第六版)
B X 1= 1
X1=1作用
A A
X2=1作用
荷载作用
(4)求系数、自由项
C
B X 1= 1 C
qL2/2 L
B
X 2= 1
qL2/2
q
B
C
L
A
L M1
A
L M2
A
qL2/2
M 2 M 2ds EI
MP
11
M 1 MP 1 2 5120 D1P ds 8 160 6 = EI EI1 3 EI1
(4)求基本未知量
576 5120 X1 0 EI1 EI1
X1 = 80 kN 9
(5)作内力图 1)作弯矩图 53.33 53.33 C 160 106.7
M M 1 X1 MP
6 6 6 6
53.33 D 53.33
160
2)作剪力图 以杆件为隔离体,利用已知的杆端弯矩,由平衡条件求出 杆端剪力。 53.33 C D 53.33
FQCD
FQDC
MC 0
FQDC 8 20 8 4 53.33 53.33 FQDC 80 KN
(4)基本体系的选取不是唯一的。
青岛工学院 力法的基本体系不是唯一的!
C q
第6章 力法
B
L
原结构
A
L
× √
!! 瞬 变 体 系 不 能 作为力法的基本 体系
√
青岛工学院
第6章 力法
§6-3 超静定刚架和排架
■计算刚架和排架位移时,为了简化,通常忽略轴力 和剪力的影响;
结构力学 力法讲解
§6-1 超静定结构的组成和超静定次数 §6-2 力法基本原理 §6-3 超静定刚架和排架 §6-4 超静定桁架和组合结构 §6-5 对称结构的利用 §6-8 支座移动温度变化时超静定结构的计算 §6-9 超静定结构的位移计算 §6-10 超静定结构计算的校核
1
§6-1 超静定结构的组成和超静定次数
B Δ1P
Δ2P
11
§6-2 力法基本原理
说明: ii 0 主系数, ij ji 副系数,可正、可负、可零。
iP 自由项,可正、可负、可零。
ii
s
M
2
i ds,
EI
ij
ji
s
MiM EI
j
ds, iP
原结构
n=2
X2 X1
基本结构
X2
基本结构
X1
4
§6-1 超静定结构的组成和超静定次数
X2 X1
X1 X2
n=2
原结构
基本结构
方法:③去掉一个固定支座或切开一个单刚结点,相当于去掉三个约束或联系;
X3
原结构
n=3
X3
X1
基本结构(1) X2
X1
X1
X2
基本结构(2)
5
§6-1 超静定结构的组成和超静定次数
方法:④将单刚结点改成单铰联接,相当于去掉一个转动约束或联系;
原结构
原结构 n=3
X1
X3
X2
X3
X1
X2
基本结构(3)
不要把原结构拆成几何 可变体系。此外,要把 超静定结构的多余约束 全部拆除。
说明:⑴同一超静定结构去掉多余约束的方法很多,相 应的得到的静定基本结构的形式很多,但必须是几何 不变结构。 ⑵力法求解超静定结构的顺序 ①先用变形连续或位移边界条件建立补充方程求解 多余力。②再用平衡方程求其它反力、内力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2P
0
....................................................................
n1 X 1 n2 X 2 ............... nn X n nP 0
1) iP,ij 的物理意义;
ij
2)由位移互等定理 ij ji ; 位移的地点
产生位移的原因
3) ij 表示柔度,只与结构本身和基本未知力的选择有关,与外荷载无关;
4)柔度系数及其性质
对称方阵
11 12 ........... 1n
21
22
...........
2
n
....................................
n1
n2
...........
2.83
I3 16.1 104 cm4
1.59
I1 81.8 104 cm4
8.1
X2
1
2.83
X1 X1
X2
1.59
43.2kN m
1.59
17.6kN m
8.1
11 X 1 12 X 2 1P 0 8.1 21 X 1 22 X 2 2P 0
X1 1
M1 X1
M
8
基本体系有多种选择;
但基本方程不变
11 X 1 1P 0
q
X1
q
q
EI
1
X1
qБайду номын сангаас
q
q
1 p
1 p
X1
X1
11 X 1
) 11 X 1
X1
(a)
(b)
(c)
9
二、多次超静定结构
P
P
X2
P
2 P
1 P
21
11
X1 1
X1
22
X2 1
12
(1)基本体系 悬臂刚架
6
q
EI l (a) X1
q 1 P
(b)
1111
X1
(c) X 1 1
ql 2
2
1、力法基本未知量-X 1
l
2、力法基本体系-悬臂梁
MP
M1
3、力法基本方程-
11X 1 1 p 0
11 11 X 1
11 X 1 1P 0
X1 1
4、系数与自由项 1P , 11
1P
M1M P dx ql4
一个结构有多少个多余约束呢?
2
二、超静定次数 一个结构所具有的多余约束数就是它的超静定次数。
P
1次超静定
A 2次超静定
X1
X1
切断一根链杆等于去掉一个约束
P X2
X1
X
X
2
1
Q
去掉一个单铰等于去掉两个约束
3
3次超静定
P
X
X
3
2
X
3
X1
X
X
2
1
切断一根梁式杆等于去掉三个约束
P X1 X1
1次超静定
nn
系数行列式之值>0
主系数 ii 0
0
副系数 ij 0
0
5)最后内力 M M 1 X 1 M 2 X 2 .......... ... M n X n M P
12
一、刚架
§6-3 超静定刚架和排架
P=3kN
3m 3m q=1kN/m
3
4
2I
I
2I
2
1
X1 X2
X1
3m 3m
207 X1 135X2 702 0...............1 135X1 144X2 520 0..............2
X1 X2
2.67kN
1.11k
N
2.67
5、内力
M M1X1 M2X2 MP
2
4.33
1.33
5.66 3.56
M kN m
1.11
3.33
在连续杆中加一个单铰等于去掉一个约束
4
4次超静定 3
1
5
§6-2 力法的基本概念
一、基本思路
q
EI
1
(a)
q
=
X1
(b)
q
1 P (c)
11
X1
(d)
(1)平衡条件 如图(b)当 X1 取任何值都满足平衡条件。
(2)变形条件 1 1 p1p11110X1 0
力法基本未知量、基本体系、基本方程。
X1
1、基本体系与基本未知量: X 1 , X 2
2、基本方程
1 0 2 0
11 X1 12 X 2 1P 0 21 X1 22 X 2 2P 0
13
X2 X2
3m 3m q=1kN/m
P=3kN
3
4
2I
I
2I
2
1
3m 3m
X1 X2
18
27
9
M P kN m
6
6
3、系数与 自由项
EI
8 EI
5、解方程
l3 3EI
X
1
ql 4 8 EI
0
11
M1M1 dx l3
EI
3EI
X1
3 8
ql
7
X1
3 8
ql
ql 2
q
2
EI l
X1
MP
3ql 2 8
6、绘内力图(以弯矩图为例,采用两种方法)
(1)
q
EI l
3ql 8
ql 2 8
ql 2 16
(2) M M 1 X 1 M P
(2)基本未知力 X 1 , X 2
(3)基本方程 1 0
2 0
(4)系数与自由项
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2P 0
(5)解力法方程 X 1
X2
(6)内力
M M1 X1 M2 X2 MP
10
同一结构可以选取不同的基本体系
P
P
X2
3.33 1.9
1.11
2.67
Q kN
15
3.33 1.9
N kN
4.65m 2.1m 6.75m 2.6m
二、排架
II 1
I2
II 3 J I
J
I4
II 3
I4
排架主要分析柱子 柱子固定于基础顶面 不考虑横梁的轴向变形 不考虑空间作用
I1 10.1 104 cm4
相对值 1
I2 28.6 104 cm4
超静定结构
1、任务-计算超静定结构的内力和位移。 2、依据-静力平衡条件、变形协调条件。 3、超静定结构的两种基本解法:
力 法-以结构的多余未知力作为基本未知量。 位移法-以结构的结点位移作为基本未知量。
1
§6-1 超静定结构的组成和超静定次数
一、超静定结构 几何特征:
静力特征:
要求出超静定结构的内力必须先求出多余约束的内力,一 旦求出它们,就变成静定结构内力计算问题了。所以关键在于 解决多余约束的内力。
X1
X2
P
X1
1 0 2 0
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2P 0
但基本方程不变
11
n次超静定结构
11 X 1
12 X 2
............... 1n X n
nP
0
21 X 1
22 X 2
............... 2n X n
11
M1M1 dx 207
EI
EI
22
M 2M 2 dx 144
EI
EI
12 21
M1M 2 dx 135
EI
EI
X1 1
3
M 1m
6 6
1P
M1M P dx 702
EI
EI
2P
M 2M P dx 520
EI
EI
14
M 2 m
X2 1
4、 解方程