结构力学课后答案第6章力法

合集下载

结构力学章节习题及参考答案

结构力学章节习题及参考答案
第3章静定梁与静定刚架习题解答
习题3.1是非判断题
(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( )
(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( )
(3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( )
(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。( )
(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题 2.1(6)图
习题2.2填空
(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2) 习题2.2(2)图所示体系为__________体系。
习题 2-2(2)图
(4)习题5.1(3)图(a)和(b)所示两结构的变形相同。( )
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(3) 习题7.2(3)图所示刚架各杆的线刚度为i,欲使结点B产生顺时针的单位转角,应在结点B施加的力矩MB=______。
习题 7.2(1)图习题 7.2(2)图 习题 7.2(3)图
(4) 用力矩分配法计算习题7.2(4)图所示结构(EI=常数)时,传递系数CBA=________,CBC=________。

结构力学- 力法

结构力学- 力法

0
X1 4X2
0
解方程得:
X1
1 15
ql 2
(
)
X2
1 60
ql2 (
)
3. 作内力图 1) 根据下式求各截面M值,然后画M图。
M M1X1 M2X2 MP
23
ql2 15
A
C
B
ql2 60
11ql 2 120
D M图
2) 根据M图求各杆剪力并画FQ图。
AB杆: MB 0
FQAB
26
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
l
1 ql 2 8
1 2
ql3 ql3 24E1I1 24E2I2k
2P 0
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
M 2图
1
27
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
1 M2图
11
1 E1I1
1 2
1 l
2 3
1
1 E2 I 2
1 2
1
l
2 3
1
l l l E1I1 E2I2 l k 1 3E1I1 3E2I2 3 E1I1E2I2 3E2I 2 k
( E1I1 k) E2 I2
12
21
1 E2 I2
△iP—荷载产生的沿Xi方向的位移

《结构力学》_龙驭球_第6章_力法(1)

《结构力学》_龙驭球_第6章_力法(1)
3 1 l l 2l 4l 22 (l l l ) EI 2 3 3EI
X2=1
l M2 图
1 l l l l3 12 21 l (l l ) EI 2 2 EI
l
l
l
l
ql 2 2
EI
EI
原结构
X1=1
l
1、力法方程:
基本体系
M1 图 l
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
l
1 l l 2l 5l 2、系数和自 11 ( ) 2 ( l l l ) 由项的计算: EI 2 3 3EI
解方程得: X 1 ql 2
X2=1
A
1
M2图
(
1 2 1 X 2 ql 4 3k 4
E1 I1 k) E2 I 2
1 2
1 3k 4
1 2 1 X 1 ql 2 3k 4 3. 讨论 1)当k = 0
即 E1 I1 很小或 E2 I2 很大
ql X1 8
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
q=1kN/m
3m
q=1kN/m
FP = 3kN 4 2I I 2I 2 1
3m 3m
FP = 3kN
18
27
9
M P kN m
3m
X1
11
X2
6
6
§6-3 超静定刚架和排架
计算超静定刚架和排架位移时,通常忽略轴力和剪力的影响,只考虑弯 矩的影响,使计算简化。 例6-1:求图示刚架 M 图。 q q C X1 B

工程力学课后习题答案第六章 杆类构件的内力分析共6页

工程力学课后习题答案第六章  杆类构件的内力分析共6页

第六章 杆类构件的内力分析6.1。

题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示: 图一图二由平衡条件得:0,AM=∑ 6320N F ⨯-⨯=解得: N F =9KN CD 杆的变形属于拉伸变形。

应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有:0,O M =∑6210N F M ⨯-⨯-=(1)0,y F =∑60N S F F --=(2)将N F =9KN 代入(1)-(2)式,得: M =3 kN·m S F =3 KN AB 杆属于弯曲变形。

(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有: 图三NF =2KN0,DM=∑ 210M -⨯= M =2KNAB 杆属于弯曲变形6.2题6.2图解:首先根据刚体系的平衡条件,求出AB 杆的内力。

刚体1的受力图如图一所示图一图二平衡条件为:0,CM=∑104840D NF F ⨯-⨯-⨯=(1) 刚体2受力图如图二所示,平衡条件为:0,EM=∑240N D F F ⨯-⨯= (2)解以上两式有AB 杆内的轴力为:N F =5KN6.3 题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。

利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN 2N F =-8KN , (b )解题步骤和(a )相同,杆的受力图和轴力图如(1b )(2b )所示,截面1和截面2上的轴力分别为1N F =4KN 2N F =6KN(c )解题步骤和(a )相同,杆的受力图和轴力图如(1c )(2c )所示,截面1,截面2和截面3上的轴力分别为1N F =3F2N F =4F ,3N F =4F(d )解题步骤和(a )相同,杆的受力图和轴力图如(1d )(2d )所示,截面1和截面2上的轴力分别为1N F =2KN 2N F =2KN 6.4。

结构力学课后答案-第6章--力法

结构力学课后答案-第6章--力法

习题6-1试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定I II 刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a)解:上图=l1M pM 01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EI l F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61F PA2l 3l 3B2EIEIC题目有错误,为可变体系。

+pF p lF 32X 1=1M 图p Q X Q Q +=11p F 21⊕p F 21(b)解:基本结构为:l1M 3l l2M l F p 21pM l F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211pQ X Q X Q Q ++=22116-4试用力法计算图示结构,并绘其内力图。

(a)l2l 2l2lABCD EI =常数F Pl 2E FQ 图F PX 1X 2F P解:基本结构为:1M pM 01111=∆+p X δpM X M M +=11(b)解:基本结构为:EI=常数qACEDB4a 2a4a4a20kN/m3m6m6mAEI 1.75EIB CD 20kN/mX 1166810810计算1M ,由对称性知,可考虑半结构。

结构力学力法习题及答案

结构力学力法习题及答案

力法 作业 01〔0601-0610 为课后练习,答案已给出〕0601 图示结构,假设取梁 B 截面弯矩为力法的基本未知量 1X ,当 2I 增大时,则 1X 绝对值:A .增大;B .减小;C .不变;D .增大或减小,取决于21/I I 比值 。

〔 C 〕q0602 图示桁架取杆 AC 轴力(拉为正)为力法的基本未知量1X ,则有:A .X 10=;B .X 10>;C .X 10<;D .1X 不定 ,取决于12A A 值及α值 。

〔 A 〕aD0603 图 b 示图a 结构的力法基本体系,则力法方程中的系数和自由项为:A .∆11200P ><,; δB .∆11200P <<,;δC .∆11200P >>,;δ D .∆11200P <>,δ 。

〔 B 〕X X0604 图 a 结构取力法基本体系如图 b ,1X 是基本未知量,其力法方程可写为11111c X δ+∆=∆,其中: A .∆∆1100c >=,; B .∆∆1100c<=,;C .∆∆1100c =>,; D .∆∆1100c =<, 。

〔 A 〕(a)(b)X 10605 图 a 结构的最后弯矩图为 :A .图 b ;B .图 c ;C .图 d ;D .都不 对 。

〔 A 〕l 3M /4M /4(a)(b)M /43M /4M /8M /43M /4M /2(c)(d)0606 图示结构 f (柔 度) 从小到大时,固定端弯矩 m 为:A .从小到大;B .从大到小;C .不变化;D . m 反向 。

〔 B 〕0607 图示对称结构,其半结构计算简图为图:B.原 图〔 A 〕0608图示结构( f 为柔度):A .M MA C >;B .M M AC =; C .M M A C <;D .M M A C =- 。

结构力学第六章力法

结构力学第六章力法

弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C

结构力学第六章-1(力法)

结构力学第六章-1(力法)

遵循材料力学中同时考虑“变形、本构、平衡” 分析超静定问题的思想,可有不同的出发点:
以力作为基本未知量,在自动满足平衡条件的 基础上进行分析,这时主要应解决变形协调问题, 这种分析方法称为力法(force method)。 以位移作为基本未知量,在自动满足变形协调 条件的基础上来分析,当然这时主要需解决平衡问 题 , 这 种 分 析 方 法 称 为 位 移 法 ( displacement method)。 如果一个问题中既有力的未知量,也有位移的 未知量,力的部分考虑位移协调,位移的部分考虑 力的平衡,这样一种分析方案称为混合法(mixture method)。 返
ij
图乘来求
(5) 求基本结构的广义荷载位移
注意:用图乘法求
ij
iP
和 iP 时应注意图乘条件
(6) 解方程求未知力 X i
(7)根据叠加原理作超静定结构的内力图
M M i X i M P FN FN i X i FN P i i FQ FQ i X i FQP
FP
原 结 构
FP
基 本 体 系
FPa
M1 图
M2 图
FP
MP图
单位荷载和荷载弯矩图
由单位和荷载弯矩图可勾画出基本体系变形图
FP FP
FPa
11 12 12 00 X X2 1 1p 1 11 1P X 00 2 21 22 2 p X 21 1 22 2 2P
结论:对计算结果除需进行力的校核外, 还必需进行位移的校核。
FP
(×Fpa)
返 章 首
Ax
1 a2 2 3 1 1 3 2a 2 FP a [ FP a EI 1 2 3 88 2 EI 1 2 88 3

结构力学第6章力法

结构力学第6章力法
要点
原结构在外因作用下的
基本体系在外因和多余力
内力变形(位移) = 共同作用下的内力变形(位移)
C
q
B
EI=常数 φB A 原结构
D
C
X1 受力变形状态完全相同
q D
B
X2
φB EI=常数
A
基本体系
求原结构的位移问题
求基本结构的位移问题
4ql2/56
3ql2/56
ql2/8
C
q
D
4ql2/56 3ql2/56
61.2 M 图 (kN·m)
1
MK 图
M ds [-(1/2×115.2×6) + (1/2×28.8×6) +(2/3×
I
63.0×6)-(1/2×46.8×6)+(1/2×61.2×6)]/2EI
+[-(1/2×46.8×6) +(1/2×28.8×6)] / 3EI
= -3.6/EI + 21.6/EI -18/EI =0
1、 超静定结构的特性
a) 在超静定结构中,支座移动、温度改变、材料 胀缩、 制造误差等因素都可以引起内力。
b) 在荷载作用下,超静定结构的内力分布与各杆 刚度的比值有关,而与其绝对值无关。因此, 在计算内力时,允许采用相对刚度。若改变各 杆的刚度比值,则结构的内力分布也随之改变。 一般来说,刚度大的杆件,分配到的内力也大; 若各杆件的刚度按同一比例增减,则结构的内 力保持不变。
3. 力法的典型方程
力法方程:
n
ik X k ig i
k 1
(i 1,2, , n ) ( g p , c, t, )
方程的物理意义;方程左右式的意思。 各系数δik的物理意义和计算方法。

同济大学 朱慈勉版 结构力学 课后答案(下)

同济大学 朱慈勉版 结构力学 课后答案(下)

第六章 习 题6-1 试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g) 所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定去掉复铰,可减去2(4-1)=6个约束,沿I-I 截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定刚片I 与大地组成静定结构,刚片II 只需通过一根链杆和一个铰与I 连接即可,故为4次超静定(h)6-2 试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义? 6-3 试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a) 解:上图=l1M p M01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EIl F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61 2l 3l 3 题目有错误,为可变体系。

+ lF 2 1=1M 图p Q X Q Q +=11p F 21p F 2(b) 解:基本结构为:l1Ml l 2Ml F p 21 p Ml F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδ p M X M X M M ++=2211p Q X Q X Q Q ++=22116-4 试用力法计算图示结构,并绘其内力图。

(a)l2l 2 l2l l 2Q 图12解:基本结构为:1Mp M01111=∆+p X δ p M X M M +=11(b)解:基本结构为:4a 2a4a4a3m6m 6m810810计算1M,由对称性知,可考虑半结构。

结构力学_第六章_作业参考答案(整理_BY_TANG_Gui-he)

结构力学_第六章_作业参考答案(整理_BY_TANG_Gui-he)

结构力学 第六章习题 参考答案TANG Gui-he6-1 试用积分法求图示刚架B 点的水平位移。

q解:(1) 实际状态下的内力AC 杆:22P qx M qlx =−+BC 杆:2P qlxM =(2) 虚拟状态下的内力AC 杆:M x = BC 杆:M x = (3)求Bx Δ200411()223 ()8l lp Bx M M ds qlx qx xdx qlx xdx EIEI EI qlΔ==+−+=∑∫∫∫i i→6-2 图示曲梁为圆弧形,EI =常数。

试求B 的水平位移。

1解:(1) 实际状态下的内力(sin 2p FM R R )θ=− (2) 虚拟状态下的内力1sin M R θ=i (3)求 Bx Δ/2312(sin )sin 22p Bx M M ds F F R R R Rd EIEIEIπθθθΔ==→−=∑∫∫ii i ()R6-3B AAB解:(1) 实际状态下的内力20sin()(1cos )p M qRd R qR θϕθϕθ=−=−∫i(2) 虚拟状态下的内力1sin M R θ=i(3)求 Bx Δ/2421(1cos )sin ()2p Bx M M ds FR qR R Rd EIEIEIπθθθΔ==←−=∑∫∫i i6-4 图示桁架各杆截面均为,32210m A −=×210 GPa E =,40 kN F =,。

试求:(a) C 点的竖向位移;(b) 角ADC 的改变量。

2 m d =F (kN)NP解: 实际状态下的桁架内力如上图。

(a )在C 点加上一个单位荷载,得到虚拟状态下的内力如上图。

11[2()(222322]22210)()N Np Cy F F l F d F d EAEA FdEAΔ==−−+↓++=+∑i i i i i i iNPNP(b)虚拟状态下的内力如上图。

11(22()(]4) ()N NpADCF F lF dEA EA dFEAϕ∠Δ==++−=∑ii i i增大6-6 试用图乘法求指定位移。

结构力学课后习题解答:6位移法习题解答

结构力学课后习题解答:6位移法习题解答

第6章位移法习题解答习题6.1确定用位移法计算习题6.1图所示结构的基本未知量数目,并绘出基本结构。

(除注明者外,其余杆的EI为常数。

)(a) (b) (c) (d)习题6.1图【解】各题基本未知量(取独立未知结点位移为基本未知量)如下:(a)n=4 (b)n=2 (c)n=6 (d)n=8习题6.2是非判断(1)位移法基本未知量的个数与结构的超静定次数无关。

()(2)位移法可用于求解静定结构的内力。

()(3)用位移法计算结构由于支座移动引起的内力时,采用与荷载作用时相同的基本结构。

()(4)位移法只能用于求解连续梁和刚架,不能用于求解桁架。

()【解】(1)正确。

位移法求解时基本未知量是结构的未知结点位移,与结构是否超静定无关。

(2)正确。

无任何结点位移发生的静定结构内力图可利用载常数直接确定;有结点位移发生的静定结构则可利用位移法的一般步骤计算。

(3)正确。

用位移法计算支座位移引起的内力时,可采用与荷载作用相同的基本结构,自由项可根据形常数和支移值确定。

(4)错误。

只要能够取得杆端力与杆端位移之间的函数关系,位移法就可用于求解任何杆系结构。

习题6.3已知习题6.3图所示刚架的结点B产生转角θB =π/180,试用位移法概念求解所作用外力偶M。

习题 6.3图【解】30i π 。

发生转角θB 时,可直接求得结点B 所连的各杆端弯矩,再由结点B 的平衡条件即可得M 。

习题6.4 若习题6.4图所示结构结点B 向右产生单位位移,试用位移法中剪力分配法的概念求解应施加的力F P 。

习题 6.4图【解】315lEI。

结点B 向右产生单位位移时,横梁所连各柱端剪力之和即为F P 。

习题6.5 已知刚架的弯矩图如习题6.5图所示,各杆EI =常数,杆长l =4m ,试用位移法概念直接计算结点B 的转角θB 。

m习题 6.5图【解】由M 图可知,BC 杆上无外荷载,其杆端弯矩为330BC BC B M i θ==-,由此求得40B EIθ=-。

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第六章【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第六章【圣才出品】

3.力法典型方程
从一次超静定结构的力法分析到二次超静定结构的力法分析,可以发现一定的规律,那
么具有 n 次超静定结构的力法典型方程归纳如下:
11X1 12 X 2 1n X n 1P 0
21 X1
22 X 2 2n X n
2P
0
n1X1 n2 X 2 nn X n nP 0

表 6-1-5 力法解超静定桁架和组合结构
7 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
8 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、力法解对称结构(表 6-1-6) 表 6-1-6 力法解对称结构

七、超静定结构位移的计算(见表 6-1-8) 表 6-1-8 超静定结构位移的计算
14 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

八、超静定结构计算的校核(表 6-1-9)
表 6-1-9 超静定结构计算的校核
6.2 课后习题详解 6-1 试确定下列图 6-2-1 所示结构的超静定次数。
16 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 6-2-2 6-2 试用力法计算下列图 6-2-3 所示结构,作 M、FQ 图。除图 6-2-3(b)为变截面 外,其余各图 EI=常数。
17 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台
15 / 151
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 6-2-1 解:(a)如图 6-2-2(a)所示,铰结点左右两段分别去掉 1 根单链杆,超静定次数为 2; (b)如图 6-2-2(b)所示,每个正方形内去掉 1 根斜杆,两个单链支座任意去掉其 中 1 个,共计 7 根单链杆,超静定次数为 7; (c)如图 6-2-2(c)所示,去掉 1 根链杆和 1 个铰支,超静定次数为 3; (d)如图 6-2-2(d)所示,去掉 3 根链杆,超静定次数为 3; (e)如图 6-2-2(e)所示,去掉 2 个铰支,超静定次数为 4; (f)如图 6-2-2(f)所示,去掉 2 根链杆,超静定次数为 2; (g)如图 6-2-2(g)所示,去掉 2 个铰支和切断 1 根杆,超静定次数为 7; (h)如图 6-2-2(h)所示,去掉 4 个链杆和切断位于中间区间的 2 根杆,超静定次 数为 10;

结构力学(龙驭球)第6章_力法

结构力学(龙驭球)第6章_力法

C
B 8 kN m
X3
B X1 X2
A
A
精品课件
24
例6-1:试作图示结构的内力图。I1:I2=2:1
1 1 M E 1M I1d s2 8 E 8 I m 131 4 E 4 I m 235 7 E 6 I m 13
1PM E 1M IPds5120 E kIN 1.m 2 精品课件 25
80 X1 = 9 kN
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
矩明显增大。
精品课梁件 最大弯矩可进一步减小。
37
§6-5 力法解对称结构 内容回顾
n次超静定结构的力法典型方程:
11X1 12X2 21X1 22X2
n1X1 n2X2
1nXn 1P 0
2nXn
2P
0
nnXn nP 0
精品课件
38
§6-5 力法解对称结构
1. 结构的对称性: 例1:
1. 结构的几何形式和支承情况对某轴对称 2. 杆件的截面和材料性质也对此轴对称(EI等)
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑
位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案
称为混合法。

结构力学第六章力法

结构力学第六章力法

a/2
X1
qa2/8
X1=1
§6-6 支座移动和温度改变时的计算
一 支座移动时的计算 例6-8 图示梁当B发生位移Δ时,计算并作弯矩图
EI

B Δ
l
解:1 选取力法基本体系
2.6
9.35 2
6.75 6.75 (2 9.35
2
3
1 3
2.6)
=
73.2
d12
= d 21
=
- 1 6.75 6.75 8.1 2
( 2 9.35 3
1 2.6) 3
=
-19.97
d 22
=
2.13 31
1 2.1 4.65 2.83
2.1 6.75 2
4.65 4.65 2
( 2 6.75 3
1 2.1) 3
6.75 3 3 8.1
= 50.88
2.6m
X1=1
2.6m 2.1m
X2=1
M1
9.35m
9.35m 6.75m
M2
6.75m
17.6kN.m 43.2kN.m
43.2kN.m H 17.6kN.m
MP
D1P
=
1 2.6 9.35 6.75 (17.6 43.2)
X2=1 X2=1
X3=1 X3=1
X1=1 X1=1
M1
M2
M3
(1) 对称荷载作用
FP
FP
FP X3
X3 FP
X1X2 X2 X1
D2P=0 xX22==10 X2=1
FP X2 X2 FP
X1
X1
X3=1 X3=1
X1=1 X1=1

结构力学 力法

结构力学 力法
11
§6-2 力法基本原理
说明: ii 0 主系数, ij ji 副系数,可正、可负、可零。
iP 自由项,可正、可负、可零。
ii
s
M
2
i ds,
EI
ij
ji
s
MiM EI
j
ds, iP
MiM P ds s EI
X1, X2
进一步说明:
M X1M1 X 2M 2 M P
二、超静定排架
单跨排架 排架
双跨排架
例: 求作图示排架弯矩图。
EA→ ∞
EA→ ∞
EA→ ∞
E1I1
E1I1
E2I2
E2I2
EI
EI
EI
5kN/m 6m 2m
原结构
18
§6-3 超静定刚架和排架
解: ⑴选取基本体系确定基本未知量
⑵建立力法方程
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
⑴力法求解超静定结构,可以选取多种不同形式的基本结构,无论选取那种
形式的基本结构,也无论是哪种类型的超静定结构,只要超静定次数相同其
力法方程的形式就相同,(不包括含有弹性支承及支移的超静定结构)但力
法方程及方程中的系数和自由项的力学意义不同。
⑵基本结构的合理选取
(a)基本结构必须是几何不变的静定结构。
810 EI
,2P
0
5kN/m
90kN.m
M2图
8
8
MP图
19
§6-3 超静定刚架和排架
⑸解方程
144 EI
X1
108 EI
X2
810 EI
0
108 EI

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(力 法)【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(力 法)【圣才出品】

第6章力法6.1 复习笔记本章重点介绍了力法的原理以及如何运用力法对超静定结构在各种荷载作用下的内力和位移进行求解。

首先,从单次超静定结构到多次超静定结构,对力法的解题步骤进行了归纳并推导出了力法的典型方程;随后,论述了超静定结构超静定次数的判定方法,演示了刚架、排架、桁架、组合结构、对称结构在荷载作用以及支座移动和温度改变下的力法分析步骤,讨论了基于力法和虚功原理的超静定结构的位移计算思路;最后,强调了超静定结构计算中校核的重要性,以确保最终计算结构的准确性和可靠性。

一、力法的基本概念1.力法的基本未知量、基本体系和基本方程力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表6-1-1,此外,表中还归纳了超静定结构的力法分析步骤。

表6-1-1 力法的基本未知量、基本体系和基本方程2.多次超静定结构的力法分析(见表6-1-2)表6-1-2 多次超静定结构的力法分析步骤3.力法典型方程从一次超静定结构的力法分析到二次超静定结构的力法分析,可以发现一定的规律,那么具有n次超静定结构的力法典型方程归纳如下:式中,ΔiP表示由荷载产生的沿X i方向的位移;δij表示由单位力X j=1产生的沿X i=1方向的位移,常称为柔度系数,且δij=δji。

在解得多余未知力之后,超静定结构的内力可根据叠加原理计算如下:或根据结构受力平衡求解。

二、超静定次数的确定——力法的前期工作(见表6-1-3)表6-1-3 超静定次数的确定——力法的前期工作三、力法解超静定刚架和排架(见表6-1-4)表6-1-4 力法解超静定刚架和排架四、力法解超静定桁架和组合结构(见表6-1-5)表6-1-5 力法解超静定桁架和组合结构五、力法解对称结构(表6-1-6)表6-1-6 力法解对称结构。

结构力学力法习题及答案

结构力学力法习题及答案

结构力学力法习题及答案结构力学力法习题及答案结构力学是一门研究物体在外力作用下产生的应力和变形的学科。

在工程学中,结构力学是非常重要的一门学科,它为我们设计和分析各种建筑和机械结构提供了基础。

在学习结构力学的过程中,习题是必不可少的一部分。

下面将给出一些结构力学的力法习题及其答案,希望对读者有所帮助。

1. 一个悬臂梁上有一个集中力作用在梁的自由端,求该梁的弯矩分布图。

解答:根据悬臂梁的特点,自由端处的弯矩最大。

假设集中力为F,梁的长度为L,弹性模量为E,梁的截面惯性矩为I。

根据悬臂梁的弯矩公式M = F * L,可以得到弯矩分布图为一个从自由端开始逐渐减小的直线。

2. 一个等截面的梁上有一个均布载荷作用,求该梁的剪力分布图。

解答:假设均布载荷为q,梁的长度为L,根据梁的受力平衡条件,可以得到梁上任意一点的剪力大小为V = q * x,其中x为距离梁的一端的距离。

因此,该梁的剪力分布图为一个线性增长的直线。

3. 一个梁上有多个集中力作用,求该梁的弯矩和剪力分布图。

解答:对于每个集中力,可以分别求出其在梁上的弯矩和剪力分布图。

然后将所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪力分布图。

4. 一个悬臂梁上有一个集中力和一个均布载荷同时作用,求该梁的弯矩和剪力分布图。

解答:首先,根据集中力的大小和悬臂梁的长度,可以求出集中力在悬臂梁上的弯矩分布图。

然后,根据均布载荷的大小和悬臂梁的长度,可以求出均布载荷在悬臂梁上的剪力分布图。

最后,将两者叠加在一起,即可得到梁的总弯矩和总剪力分布图。

5. 一个梁上有多个集中力和多个均布载荷同时作用,求该梁的弯矩和剪力分布图。

解答:对于每个集中力和均布载荷,可以分别求出其在梁上的弯矩和剪力分布图。

然后将所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪力分布图。

通过以上习题的解答,我们可以看到结构力学中力法的应用。

在实际工程中,我们需要根据具体的结构形式和受力情况,运用结构力学的理论知识,求解结构的受力分布,从而保证结构的安全可靠。

6力法(结构力学第六版)

6力法(结构力学第六版)
δ11 C δ21 C B δ12 δ22 C X 2= 1 Δ1P A q B Δ2P
B X 1= 1
X1=1作用
A A
X2=1作用
荷载作用
(4)求系数、自由项
C
B X 1= 1 C
qL2/2 L
B
X 2= 1
qL2/2
q
B
C
L
A
L M1
A
L M2
A
qL2/2
M 2 M 2ds EI
MP
11
M 1 MP 1 2 5120 D1P ds 8 160 6 = EI EI1 3 EI1
(4)求基本未知量
576 5120 X1 0 EI1 EI1
X1 = 80 kN 9
(5)作内力图 1)作弯矩图 53.33 53.33 C 160 106.7
M M 1 X1 MP
6 6 6 6
53.33 D 53.33
160
2)作剪力图 以杆件为隔离体,利用已知的杆端弯矩,由平衡条件求出 杆端剪力。 53.33 C D 53.33
FQCD
FQDC
MC 0
FQDC 8 20 8 4 53.33 53.33 FQDC 80 KN
(4)基本体系的选取不是唯一的。
青岛工学院 力法的基本体系不是唯一的!
C q
第6章 力法
B
L
原结构
A
L
× √
!! 瞬 变 体 系 不 能 作为力法的基本 体系

青岛工学院
第6章 力法
§6-3 超静定刚架和排架
■计算刚架和排架位移时,为了简化,通常忽略轴力 和剪力的影响;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题
6-1试确定图示结构的超静定次数。
(a)
(b)
(c)
(d)
(e)
(f)
(g)所有结点均为全铰结点
(h)
6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?
6-3试用力法计算图示超静定梁,并绘出M、FQ图。
(a)
解:
上图=
其中:
(b)
解:
基本结构为:
6-4试用力法计算图示结构,并绘其内力图。
(Байду номын сангаас)
解:基本结构为:
(b)
解:基本结构为:
计算 ,由对称性知,可考虑半结构。
计算 :荷载分为对称和反对称。
对称荷载时:
反对称荷载时:
6-5试用力法计算图示结构,并绘出M图。
(a)
解:基本结构为:
用图乘法求出
(b)
解:基本结构为:
(c)
解:基本结构为:
(d)
解:基本结构为:
相关文档
最新文档