中职数学同角三角函数的基本关系式
《中职数学综合学分认定会考考纲》
《中职数学综合学分认定会考考纲》一、教材:人民教育出版社出版,中等职业教育课程改革国家规划新教材《数学》(基础模块上下册和职业模块部分章节(详见考试范围及要求))二、参考资料:《中职学生智能拓展训练——数学学分认定目标检测》三、考试题型:1.选择题(单选题)36%2.填空题24%3.解答题(包括简答题、计算题和应用题)40%四、考核要求关键词释义:了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。
掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。
五、数学学分认定会考考试范围及要求:重点考查学生计算技能、数据处理技能、观察能力、空间想象能力、分析与解决问题能力、数学思维能力。
由于条件限制,计算工具使用技能和用软件处理数据表格的技能暂不考查。
职业模块选修了理工类的学生参加理工类数学会考(下称方案A),选修了服务类的学生参加服务类数学会考(下称方案B)。
A、理工类数学会考考试范围及要求1. 基础模块第1单元集合第7单元平面向量第2单元不等式第8单元直线和圆的方程第3单元函数第9单元立体几何第10单元概率与统计初步第5单元三角函数2. 职业模块第1单元三角计算及其应用第4单元数据表格信息处理第6单元数列1. 基础模块第1单元集合第7单元平面向量第2单元不等式第8单元直线和圆的方程第3单元函数第9单元立体几何第4单元指数函数与对数函数第10单元概率与统计初步2. 职业模块第1单元算法与程序框图第3单元数据表格信息处理六、占分比例:方案A:集合、不等式、函数、指数函数与对数函数合计约30分,三角函数、三角计算及其应用合计约15分,数列、平面向量合计约15分,直线和圆的方程约20分,立体几何约10分,概率与统计初步、数据表格信息处理合计约10分。
方案B:集合、不等式、函数、指数函数与对数函数、算法与程序框图合计约35分,三角函数约10分,数列、平面向量合计约15分,直线和圆的方程约20分,立体几何约10分,概率与统计初步、数据表格信息处理合计约10分。
中职数学第一册54同角三角函数的基本关系
方程(组)思想
cos 3 3 ,sin
4
2
当为第四象限角时
1 1 42
cos 3 3 , sin 1 1
42
4
2
例5.化简cos tan
解:cos tan cos sin sin cos
1 sin2 440。
解:原式= 1 sin(2 80 360 ) 1 sin2 80 cos2 80 | cos80 | cos80
5.4同角三角函数 的基本关系
已知角 终边上任一点P(x,y),
它到原点距离为r(r2 = x2 +y2 )。
sin y ,
cos rx ,
r
P(x,y
)
rα
O
x
tan y ( k ,k Z)
x
2
平方关系:sin 2 cos2 1 商数关系:sin tan
cos
小结
1、同角三角函数关系式。 2、关系式的应用:
1)、求值:
指定象限的; 没有指定象限的(注意讨论)。
2)、化简:
作业:p143习题2,3,4
例 象1限:角已,知c求ossin, tan54
,并且 是第二 的值。
解:∵ sin 2 cos2 1
cos2 1 sin 2
1(4)2 9 5 25
又∵ 是第二象限角 cos<0
cos
3 ,tan
sin
4 ( 5) 4
5
cos 5 3 3
例2 已知cos 4,求sin, tan的值
( k , k Z)
2
讨论交流:1、公式sin2 cos2 1特点 移项变形:
{scions2211csoins22
同角三角函数的基本关系式课件
行化简。
转换函数形式
通过同角三角函数的关系式,可 以实现三角函数的转换,如正弦 与余弦、正切与余切之间的转换。
证明恒等式
利用同角三角函数的基本关系式, 可以证明各种三角恒等式。
在解决实际问题中的应用
物理问题求解
在物理问题中,经常需要用到三角函数的知识,同角三角函数的 基本关系式是解决这类问题的重要工具。
03
代数证明法
通过代数运算和恒等变换, 利用已知的三角恒等式推 导出同角三角函数的基本 关系式。
几何证明法
利用单位圆的性质和三角 形的相似性质,通过几何 图形和角度关系证明同角 三角函数的基本关系式。
向量证明法
利用向量的数量积和向量 模的性质,通过向量的运 算证明同角三角函数的基 本关系式。
证明过程
证明结果
同角三角函数的基本关系式
sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ,cotθ = cosθ/sinθ等。
证明结果的应用
同角三角函数的基本关系式在解三角形、求三角函数的值、 判断三角函数的单调性等方面有广泛的应用。
பைடு நூலகம்
04
同角三角函数的基本关系式应用
在解三角形中的应用
代数证明过程
通过三角恒等式的变换,将同角 三角函数的基本关系式化简为已 知的三角恒等式或基本的代数恒
等式。
几何证明过程
利用单位圆的性质,将三角函数的 角度转化为单位圆上的弧长,再利 用三角形相似性质推导出同角三角 函数的基本关系式。
向量证明过程
利用向量的数量积和向量模的性质, 将同角三角函数的基本关系式转化 为向量的运算,通过向量的运算证 明。
同角三角函数的基本关系式
直角三角定义它有六种基本函数(初等基本表示):三角函数数值表(斜边为r,对边为y,邻边为x。
)在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数 sinθ=y/r 正弦(sin):角α的对边比斜边余弦函数 cosθ=x/r 余弦(cos):角α的邻边比斜边正切函数 tanθ=y/x 正切(tan):角α的对边比邻边余切函数 cotθ=x/y 余切(cot):角α的邻边比对边正割函数 secθ=r/x 正割(sec):角α的斜边比邻边余割函数 cscθ=r/y 余割(csc):角α的斜边比对边以及两个不常用,已趋于被淘汰的函数:正矢函数 versinθ =1-cosθ余矢函数 coversθ =1-sinθsinα、cosα、tanα的定义域:sinα定义域无穷,值域【-1,+1】cosα定义域无穷,值域【-1,+1】tanα的定义域(-π/2+kπ,π/2+kπ),k属于整数,值域无穷单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0 和π/2 弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,单位圆的等式是:x^2+y^2 = 1图像中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。
这个交点的x和y坐标分别等于cos θ和sin θ。
图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有sin θ = y/1 和cos θ =x/1。
单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。
对于大于2π 或小于−2π 的角度,可直接继续绕单位圆旋转。
中职数学同角三角函数基本关系式
(1) sin4 cos4 2sin2 1;
证明 (1) 原式左边 (sin 2 cos2 () sin 2 cos2 ) sin 2 cos2 sin 2 (1 sin 2 )
2sin 2 1 =右边
所以 sin 4 cos4 2sin 2 1;
例1
已知
sin 4
5
,且
是第二象限的角,
小结步骤:
求 角 的余弦和正切值.
已知正弦
平
解 由 sin2 + cos2 =1,得
方
关
cos 1sin2
系
因为 是第二象限角, cos 0 ,
求余弦
cos 1 4 2 3 ,
5 4 5
tan
sin cos
5 3
4.
3
5
商 数 关 系
cos 1 sin 1 sin cos
cos2 (1 sin2 ) (1 sin ) cos
cos2 cos2 0, (1 sin ) cos
因此 cos 1 sin . 1 sin cos
作差法
求证: (3) cos 1 sin 1 sin cos
证法 2 由原题知 cos 0, sin 1,
(2) tan2 sin2 tan2 sin2 ;
证明 (2) 原式右边 tan2 (1 cos2 ) tan2 tan2 cos2
= 左边,
所以 tan2 sin 2 tan2 sin 2 ;
求证: (3) cos 1 sin 1 sin cos
证法 1
同角三角函数的基本关系式
1. 知识与题型:
同角三角函数基本关系式
同角三角函数的基本关系与诱导公式知识点
同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。
同角三角函数的两个基本关系
同角三角函数的两个基本关系
同角三角函数的基本关系如下:
(1)平方关系:sin2α+cos2α=1。
(2)商数关系:sin2α/cos2α=tanα。
同角三角函数关系式的常用变形:
(sinα±cosα)2=1±2sinαcosα;sinα=tanα·cosα。
诱导公式的记忆口诀:“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化。
在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
应用诱导公式时应注意的问题:
(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号的确定。
(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
(3)注意求值与化简后的结果要尽可能有理化、整式化。
同角三角函数的基本关系式与诱导公式
课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分
②
①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2
三角函数公式同角三角函数的基本关系
三角函数公式同角三角函数的基本关系倒数关系:tanα ·cotα=1sinα ·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscα平方关系平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+si nθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ) /2]=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2] 2.Cos2a=1-2Sina^2 3.Cos2a=2Cosa^2-1正切 tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)= (1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式sinα=2tan(α/2)/[1+tan(α/2)] cosα=[1-tan(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan&s(α/2)]其他sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/ n]=0 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+ta nA+tanB-tan(A+B)=0四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^ 4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαta nβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(c otB-cotA)三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)和差化积sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]c osθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ=-[cos(α+β)-cos(α-β)] /2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosa cos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan (π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cota cot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A+2ABcos(θ-φ)} · si n{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容三角函数的诱导公式(六公式)公式一:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式二:sin(π/2-α) = cosαcos(π/2-α) = sinα公式三:sin(π/2+α) = cosαcos(π/2+α) =-sinα公式四:sin(π-α) = sinαcos(π-α) = -cosα公式五:sin(π+α) = -sinαcos(π+α) = -cos α公式六:tanA= sinA/cosA tan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))]cosα=[1-(tan(α/2))]/[1+(tan(α/2)] tanα=2tan(α/2)/[1-(tan(α/2))]其它公式三角函数其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2 (csca)^2和自变量数列求和有关的公式sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2)sin(nx/2)]/sin(x/2) tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x +……+cosnx)sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinxcosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)。
四川省中等职业学校对口升学考试-数学-第五章《三角函数》总复习-课件
扇形的弧长公式:l=|α|r或l=nπr/180.
扇形的面积公式:S=1/2lr=1/2|α|r2或S=nπr2/360.
(5)象限角和轴线角的表示法.
第一象限角:{α|2kπ<α<2kπ+π/2,k∈Z}.
第二象限角:{α|2kπ+π/2<α<2kπ+π,k∈Z}.
第三象限角:{α|2kπ+π<α<2kπ+3π/2,k∈Z}.
(3)tan(α±β)=tanα±tanβ/(1∓tanα·tanβ).
2.倍角公式
(1)sin2α=2sinαcosα.
(2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
(3)tan2α=2tanα/(1-tan2α).
一
知识清单
3.降次公式
(1)sin2α=1-cos 2α2;(2)cos2α=1+cos 2α2.
(1)第一象限的诱导公式.
sin(2kπ+α)=sin α,cos(2kπ+α)=cos α,tan(2kπ+α)=tan α.(k∈Z)
(2)第二象限的诱导公式.
sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.
(3)第三象限的诱导公式.
sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.
相同的角不一定相等,但相等的角终边一定相同.
一
典例解析
例2
将75°转化为弧度为 .
【解析】 由角度与弧度的换算关系可得75°=π/180×75=5/12π.
【技巧点拨】 角度化为弧度,分母是180;弧度化为角度,分母是π.
同角三角函数基本关系式及诱导公式
=sin2θ+sinθcosθ- 2cos2θ
=sin2θ+ssiinn2θθc+oscθo-s2θ 2cos2θ=tan2θta+n2tθa+nθ1- 2
=
22+ 2- 22+1
2=23..
答案:D
(2)已知 tan(π-α)=-23,且 α∈-π,-π2,则cocso-sπα-+α3+sin9sπin+αα=________. 解析:由 tan(π-α)=-23,得 tanα=23, 则cocso-sπα-+α3+sin9sπin+αα=-cocosαsα-+39sisninαα=-11-+39tatnanαα=-1- 1+26=-15.
解析:∵sinθ+cosθ=43,∴sinθcosθ=178.
又∵(sinθ-cosθ)2=1-2sinθcosθ=29,θ∈0,π4,
∴sinθ-cosθ=-
2 3.
答案:-
2 3
6.已知 α 为锐角,cos32π+α=45,则 cos(π+α)=________.
解析:∵cos32π+α=sinα=45,且 α 为锐角, ∴cosα=35,∴cos(π+α)=-cosα=-35. 答案:-35
答案:32
(2)已知 cosπ6-θ=a,则 cos56π+θ+sin23π-θ的值是________. 解 析 : 因 为 cos 56π+θ = cos π-π6-θ = - cos π6-θ = - a , sin 23π-θ = sinπ2+π6-θ=cosπ6-θ=a,所以 cos56π+θ+sin23π-θ=0. 答案:0
题型二 诱导公式的应用 例 1 (1)tancoπs+-ααc-os32ππs+inα-si3nπα--α32π=________. 解析:原式=tanαcosαsin-2π+α+π2
中职三角公式汇总
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos正切:xy=αtan二、同角三角函数的基本关系式商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα。
三、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+2R C c B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径)六、余弦定理A bc c b acos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=七、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
万能公式告诉我们,单角的三角函数都可以用半角的正.切.来表示。
八、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin ba b +=ϕ,22cos ba a +=ϕ,ab =ϕtan 。
中职数学基础模块(上册)基础练习-第四章三角函数
第四章 三角函数第四章 第一课时 角的概念的推广【基础知识·一定要看】1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按____________方向旋转所形成的角.负角:按____________方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.2.象限角的判定方法(1)在坐标系中使角的顶点与原点重合,角的始边与x轴的非负半轴重合画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限,角的终边在第几象限,就说这个角是第几象限角.3.象限角①α是第一象限角可表示为____________________________;(用集合表示)②α是第二象限角可表示为____________________________;③α是第三象限角可表示为____________________________;④α是第四象限角可表示为____________________________.4.非象限角如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.①终边在x轴非负半轴上的角的集合可记作_____________________ ;②终边在x轴非正半轴上的角的集合可记作_____________________;③终边在y轴非负半轴上的角的集合可记作_____________________;④终边在y轴非正半轴上的角的集合可记作_____________________;⑤终边在x轴上的角的集合可记作_____________________;⑥终边在y轴上的角的集合可记作_____________________;5.与角α终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.一、选择题1.下列命题正确的是().A.终边相同的角是相等的角 B.锐角是小于90°的角C.终边在第二象限的角是钝角 D.相等的角终边重合2.喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是( )A.30° B.-30° C.60° D.-60°,那么 的终边在()3.已知角563A.第一象限 B.第二象限 C.第三象限 D.第四象限4.与20角终边相同的角是()A.300B.280C.320 D.3405.与75终边相同的角的集合是(),A. 75360,Z k k B. 75360,Z k k C. 180360,Z k k D. (75)360,Z k k 6.已知A {第一象限角},B {锐角},C {小于90 的角},那么A 、B 、C 的关系是( ) A.B A CB.C C B∪C.A CD.A B C二、填空题7.平面直角坐标系中,若角532α ,则 是第 象限的角. 8.已知2022 ,求与角 终边相同的最小正角为 . 9.在0~180 范围内,与930 终边相同的角是 .二、解答题10.写出与21 终边相同的角的集合S ,并把S 中适合不等式360720 的元素α写出来.11.在0360 范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)150 ; (2)650 .第四章 第二课时 弧度制【基础知识·一定要看】1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式:180rad1rad =0180≈57.30°=57°18′,1°=180 ≈0.01745(rad ) 3.重要公式弧长公式:___________________,扇形面积公式:___________________.一、选择题1.若角3rad ,则角 是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.下列命题中正确的是( ).A.1弧度的角就是长为半径的弦所对的圆心角; B.5弧度的角是第三象限角;C. 是第一象限角,则π2也是第一象限角; D.-1弧度角是锐角.3.已知单位圆上有一段长度等于2的弧,则这段弧所对应的圆心角为( ) A.2B.2C.1D.14.用弧度制表示与150 角的终边相同的角的集合为( )A.52,6k k ZB.5180,6k k ZC.22,3k k ZD.52,6k k Z5.若扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是( ) A.2B.3C.4D.56.圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则( ) A.扇形的圆心角大小不变B.扇形的圆心角增大到原来的2倍 C.扇形的圆心角增大到原来的4倍D.不能确定7.某学校大门口有一座钟楼,每到夜晚灯光亮起都是一道靓丽的风景,有一天因停电导致钟表慢10分钟,则将钟表拨快到准确时间分针所转过的弧度数是( ) A.3B.6C.6D.3二、填空题8.将–1485°化为2kπ+α(0≤α<2π,k ∈Z )的形式是 . 9.与240 终边相同的所有角的集合用弧度制可以表示为 . 10.弧长为3 ,圆心角为135 的扇形,其面积为 . 11.用弧度制表示终边落在第二象限的角的集合为 .三、解答题12.已知一个扇形的面积为4,周长为10,求该扇形的半径和圆心角. 13.用弧度制写出终边在阴影部分的角的集合:(1) (2)第四章 第三课时 任意角的三角函数【基础知识·一定要看】1.三角函数定义设 是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则r ,那么: (1)y r 做 的正弦,记做sin ,即sin y r ; (2)x r 叫做 的余弦,记做cos ,即cos x r ;(3)y x 叫做 的正切,记做tan ,即tan (0)yx x .2.三角函数在各象限的符号在记忆上述三角函数值在各象限的符号时,有以下口诀:(全是天才). 判断三角函数值在各象限符号的攻略:1 基础:准确确定三角函数值中各角所在象限;2 关键:准确记忆三角函数在各象限的符号;3 注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误. 3.正弦、余弦、正切函数的定义域一、选择题1.已知角 的终边经过点(8,6),则cos 的值为( )A.34 B.43C.45 D.352.若sin 0,cos 0 ,则 是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.若点(1,2)P 在角 的终边上,则sin ( )A.2B.12C.54.若角 的终边经过点(2,3)P ,则tan 等于( ) A.23B.32C.32D.235.已知角 在第二象限,则( )A.sin 0 ,cos 0 B.sin 0 ,cos 0 C.sin 0 ,cos 0D.sin 0 ,cos 06.已知角 的终边经过(1,3) ,则cos sin ( )C.D.7.如果角 的终边经过点(3,2) ,则sin 2cos 3sin cos( )A.-49B.49C.111D.-1118.已知角 的顶点与原点重合,始边与x 轴非负半轴重合,若 1,A y 是角 终边上一点,且sin y ( ) A.3B.3C.1 D.19.已知角 的终边经过点 3,4P ,则sin cos 11tan的值为( )A.65B.1 C.2 D.310.已知角 的顶点与原点 重合,始边与x 轴的非负半轴重合,终边过点(),40P m m ,且cos 5m,则tan ( ) A.43B.43 C.34D.34二、填空题11.已知角 的终边上有一点(1,3) ,则sin . 12.若角 的终边过点 3,4 ,则cos sin .13.确定下列各式的符号:sin105cos 230 0(填“ ”、“ ”或“ ”). 14.已知sin tan 0 ,则角 位于第 象限.三、解答题15.已知角 的终边经过点(,6)P x ,且5cos 13,求x 的值.16.已知角 的终边上一点P 的坐标为 4,3t t (其中0t ),求角 的正弦、余弦和正切值.17.已知角 的顶点与坐标原点O 重合,始边落在x 轴的正半轴上,终边经过点04,A y ,其中00y .(1)若cos 5,求0y 的值; (2)若04y ,求2sin 3cos cos 4sin的值.第四章 第四课时 同角三角函数的基本关系【基础知识·一定要看】1.同角三角函数的基本关系式 (1)平方关系:_______________;(2)商数关系:_______________ 2.利用同角三角函数的基本关系常见题型: 1 知一求二 2 弦切转换3.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α. 4.特殊角的三角函数值1.若sin , 为第四象限角,则cos 的值为( )A.2B.12C.2D.122.已知5cos 13,且 为第二象限角,则tan ( ) A.125B.512C.1213 D.13123.已知tan 2 ,则cos sin sin cos的值为( )A.13B.13 C.3 D.34.已知 是第二象限角,tan 2 ,则cos 等于( )A.5B.15 C.5D.255.已知 的值为( ) A.sin B.sin C.sin D.cos6.已知角 的顶点与原点重合,始边与x 轴的正半轴重合,点(1,3)P 在角 的终边上,则sin cos 2sin 3cos( )A.34 B.34 C.49D.497.已知tan 2 ,则2sin 2sin cos 的值为( )A.85B.1 C.0D.858.若π(0,)2 ,212tan cos,则tan ( )A.12B.1C.2 9.已知sin cos 3sin cos ,22,则sin cos ( )A.B. 10.已知10,sin cos 25 ,则221cos sin的值为( )A.75 B.257C.725 D.2425二、填空题11.已知3sin 5 ,,2,则cos . 12.若4cos 5,则sin . 13.若 为第二象限角,且1sin 3,则tan = .14.已知7sin cos 13,(0,) ,则sin cos = .15.若sin 2cos 0A A ,则2sin cos sin 3cos A AA A. 16.已知角 的始边为x 轴非负半轴,终边经过点P (1,2),则sin sin cos.17.已知1sin cos 3,则44sin cos .18.已知1sin cos (0π)5,则tan .二、解答题19.已知1sin 5,并且 是第二象限角,求cos ,tan 的值;20.已知 为第二象限角,且4sin 3cos 0 . (1)求tan 与sin 的值; (2)sin 2cos 2sin cos的值.第四章 第五课时 诱导公式【基础知识·一定要看】 1.诱导公式 诱导公式一:sin(2)sin k ; cos(2)cos k ; tan(2)tan k ,其中k Z诱导公式二:sin()sin ; cos()cos ; tan()tan ,其中k Z诱导公式三:sin[((21)]sin k ; cos[(21)]cos k ; tan[(21)]tan k ,其中k Z 诱导公式四:sin cos 2 ; cos sin 2 ; sin cos 2 ; cos sin 2,其中k Z一句话:对象当锐角,符号象限找一、选择题1. cos 300 ( )A.12B.12C.2D. 2.如果12sin 13 ,02,,那么 cos ( ) A.1213 B.513C.1213D.5133.若tan (π)3 ,则2cos sin cos ( )A.25B.35C.35D.25三、填空题4.已知sin 2sin() 的值是 . 5.15cos 4. 6.计算22sin ()cos () . 7.化简下列各式(1) cos ;(2) sin ;(3) tan .8.已知角 的终边经过点(2,1)P ,则cos 2的值为 .9.若 1cos 2π3,则 sin 3 .三、解答题10.求下列角的三角函数值: (1)cos(1050 )(2)sin(314)11.已知角 的终边经过点 3,40P a a a . (1)求sin 的值;(2)求 3sin cos 2的值.12.已知2 ,3sin 5. (1)求tan 的值;(2)求 sin 2cos 2sin cos的值.22.已知sin 3sin 232cos cos 2f. (1)化简 f .(2)已知tan 3 ,求 f 的值.第四章 第六课时 正弦函数的图像和性质【基础知识·一定要看】1.“五点法”作y =sin x 的图像在确定正弦函数y =sin x 在[0,2π]上的图象形状时,起关键作用的五个点是: ______________________________________________.2.正弦函数的性质1.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列哪个点不是关键点( ) A.1,62B.,12C.(π,0) D.(2π,0)2.函数sin ,[0,2]y x x 与12y 图像交点的个数为( ) A.0B.1C.2D.33.正弦函数y =sin x ,x ∈R 的图象的一条对称轴是( ) A.y 轴B.x 轴C.直线x=2D.直线x=π4.函数()2sin f x x 在区间3π0,4上的最大值为( )A.0 B. D.2 5.已知集合 sin ,M y y x x R , 12N x x ,则M N ( ) A. 1,1 B. 1,2C. 1,1 D. 1,16.函数y =|sin x |的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称 D.关于坐标轴对称 7.在同一坐标系中函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( )A.重合B.形状相同,位置不同 C.形状不同,位置相同 D.形状不同,位置不同8.满足1sin 2的角的集合为( ) A.2,3k kZB.2,6k kZC.222,33k k kZ D.522,66k k kZ 二、填空题9.函数 2sin f x x 的最大值是 . 10.函数3sin 2y x 的最小值为 .11.函数4sin 3y x 在[,] 上的递增区间为 . 12.观察正弦函数的图像,可得不等1sin 2x的解集为 . 13.已知函数 sin 1f x a x bx ,若 12f ,则 1f .三、解答题19.设2sin 4x m ,x R ,求m 的取值范围.20.已知函数()sin 2f x x .(1)求函数()f x 的最小正周期;(2)当x [0,2π]时,求函数()f x 的最大值及取得最大值时x 的值.22.写出函数3sin 1y x 的值域和单调区间.第四章 第七课时 余弦函数的图像和性质【基础知识·一定要看】1.“五点法”作y =cos x 图像在确定余弦函数y =cos x 在[0,2π]上的图象形状时,起关键作用的五个点是 ______________________________________________.2.余弦函数的性质1.已知点5(,)6m在余弦曲线上,则m =( ) A.2B.-2C.12D.-122.已知m 是函数 cos f x x 图象一个对称中心的横坐标,则 f m ( ) A.1B.0C.12D.13.从函数 cos ,0,2y x x 的图象来看,当 0,2x 时,对于cos x 的x 有( ) A.0个B.1个C.2个D.3个4.在区间0,2上,下列说法正确的是( )A.sin y x 是增函数,且cosy x 是减函数 B.sin y x 是减函数,且cos y x 是增函数 C.sin y x 是增函数,且cos y x 是增函数 D.sin y x 是减函数,且cos y x 是减函数 5.函数cos y x 的一个单调递增区间是( )A. ,22B.[0,π] C.[π,32 ] D.[32 ,2π]6.函数cos y x 在区间[ ,a ]上为增函数,则a 的取值范围是( )A.(,)2B.( ,0] C.(2,0]D.(,)二、填空题7.若cos 21x m ,且R m ,则m 的取值范围是 . 8.函数cos y x 相邻对称中心之间距离为 . 9.函数 2cos 2cos 1f x x x 的最小值是 .10.函数5()cos ,,46ππf x x x的值域为 .三、解答题11.已知函数cos y a x b 的最大值是0,最小值是4 ,求,a b 的值.12.求使函数1cos 12y x 取得最大值,最小值的自变量x 的取值范围,并分别写出最大值,最小值.。
第三章 §1 同角三角函数的基本关系
α α
仅对α≠kπ+
π2(k∈Z)成立.
三、基本技能·素养培优
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)当 α∈R 时,tan α=csions αα成立
(× )
(2)若 α+β=90°,则 sin2α+sin2β=1
(√ )
2.若 α 是第四象限角,且 cos α=1123,则 sin α=
(2)关于 sin α±cos α,sin αcos α 知一求二问题 ①sin α+cos α,sin α-cos α,sin αcos α 三个式子中,已知 其中一个,可以求其他两个,即“知一求二”,它们的关系是: (sin α+cos α)2=1+2sin αcos α;(sin α-cos α)2=1-2sin αcos α. ②求 sin α+cos α 或 sin α-cos α 的值时,要注意判断它们 的符号.
解:(1)因为 tan x=12,
所以原式=tan tan
xx- +31=1212-+31=-53.
(2)因为 tan x=12,所以原式=cosc2oxs-2xs+insixnc2oxs x=11+-ttaann2xx
=11-+1214=25.
[类题通法] (1)已知 tan α 的值,求关于 sin α,cos α 的分式值的问题, 有以下两种情况 ①若分子、分母中 sin α,cos α 的次数相同(称为齐次式), 由 cos α≠0,令分子、分母同除以 cosnα(n∈N*),将待求式化为 关于 tan α 的表达式,再整体代入 tan α 的值求解. ②若待求式形如 asin2α+bsin αcos α+ccos2α,注意可将分母 “1”化为 sin2α+cos2α,通过进一步转化,变为关于 tan α 的表达 式,然后求值.
同角三角函数的基本关系式
4
3
2
解:(2) 1 sin2α+ 1 sin αcos α+ 1 cos2α
4
3
2
1 sin2 1 sin cos 1 cos2
=4
3
2
sin2 cos2
=
1 4
tan2
1 3
tan
1 2
=
13
.
tan2 1
30
方法技巧 关于sin α、cos α的齐次式就是式子中的每一项都是关于sin α、cos α的式子且它们的次数之和相同,设为n次,解题时,分子、 分母同除以cos α的n次幂,即可化为关于tan α的式子,再计算就简单 多了.
(A) 1 5
(B) 3 5
(C)- 1 (D)- 3
5
5
解析:由
tan tan
sin sin
3, 2,
解得 tan θ= 5 ,sin θ= 1 ,
2
2
所以 cos θ= sin = 1 . tan 5
4.已知sin α=5cos α,则sin αcos α的值为
.
解析:法一
由
sin sin
=tan α·( 1 cos 2 - 1 cos 2 )=tan α·( 1 cos - 1 cos )
1 cos2
1 cos2
| sin | | sin |
= sin ·(- 1 cos + 1 cos )= sin · 2cos =-2.
cos
sin
sin
cos sin
答案:-2
解:(1)因为 sin A+cos A= 1
①
5
所以两边平方得 1+2sin A·cos A= 1 ,sin A·cos A=- 12 .
同角三角函数的基本关系与诱导公式
同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________. 解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α =tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C.3D .-3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.。
中职数学练习第12讲同角三角函数及诱导公式
B.sin(2π + x) = − sin x
C.sin(2π + x) = sin x
D.cos(π + x) = cos x
13. 已知sin α − cos α = − , 则sin α . cos α = ( ) C
√
A.
B.−
C.−
D.
14.若tan θ = 2,则
A.
B.
C.
=( )
D.
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(03T2)已知sin α = − ,且α是第三象限的角,则cos α =( )
A. B.−
C.
D.−
π
9.(19T12)已知sin α = , α ∈ ( , π),则cos(π + α) = ( )
√
A. −
B. −
√
C.
D.
10.(07T14)已知sin(π + θ) = − ,且θ为第二象限的角,则cos θ =( )
A.−
B. −
C.
D.
11.已知tan α = −2,cos α > 0,则sin α =( )
√
√
√
√
A.
B.
C.−
D. ±
12.下列等式中成立的是 ( )
A.sin( − x) = cos( − x)
第 12 讲 同角三角函数关系及诱导公式
√
15.若角α ∈ (0,2π),且 sin α =
和 cos α = − ,则α =
(
)
A.
B.
C.
D.
二.填空题:本大题共 5 小题,每小题 5 分,满分 25 分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数(2)
姓名: 班级:
一、选择题(每题7分,共84分)
1、若角α的终边经过点()1,2-,则cos α的值为 ( )
A . B. C. - D. 12 2、若cos 0,sin 0αα<<,那么角α在( )
A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
3、已知1cos 2
α=-,且α 是第三象限的角,则tan α的值为 ( )
A . B.
C. D. 4、253
π在( ) A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
5、4cos 5
α=,则sin α的值为( ) A . 45- B. 45 C. 35 D. 35
±
6、若角α的终边经过点()()0a a -≠,则sin α的值为( )
A . 2± B. 2 C. 2
- D. 7、若sin cos 0αα⋅>,那么角α( )
A . 第一、二象限 B. 第二、三象限 C. 第三、四 象限 D. 第一 、四象限
8、若角α的终边经过点()1,2-,则sin α的值为( )
A . 2 B. C. 25- D. 2-
9、下列三角函数中为负值的是( )
A . 0sin1150 B. ()
0cos 3100- C. 0tan 230 D. 0sin 425 10、已知tan 0,cos 0αα<<,那么角α在( )
A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
11、一钟表的分针长10cm,经过35分钟,分针的端点所转过的长为( )
A . 70cm B. 706cm C. 353cm π D. 25(3
cm π- 12、若角α
+的值为( )
A . 3 B. 3- C. 1 D. 1-
二、填空题(每题6分,共36分)
1、3sin cos 0sin tan 0sin 22
πππ++-+= 。
2、用><“”或“”填空
7sin 6π 0 23cos 6π 0 16tan 3π⎛⎫- ⎪⎝⎭
= 0 16sin 5π 0 7c o s 4π= 0 3tan 4π⎛⎫- ⎪⎝⎭
0 3、若5
=4απ-,则它的正弦值、正切值、余弦值为正数的是 。
4、sin 0,cos 0αα><,则2
α是第 象限的角。
5、tan sin 0,αα⋅<若,则角α为第 象限的角。
6、适合条件sin sin αα=-的角α在第 象限。
18、若α是第三象限的角,1cos 3α=-
,则sin α= 。
三、解答题(共80分)
19、求值:03cos 0sin
4tan sin 5cos 22
ππππ+--+
20、已知点P ()6,8-是角α终边上一点,求角α的正弦、余弦、正切
21、tan 1α=,求sin ,cos αα
22、求函数()f x =有意义的角x 的取值范围。
23、若角α的终边经过点P ()(),20a a a <,求sin ,cos ,tan ααα的值
24、已知角α终边上一点P (),9a ,且3tan 4=-
,求sin ,cos αα
25、已知角α是第四象限的角,2
α是第几象限的角。