同角三角函数的基本关系式_练习题

合集下载

同角三角函数基本关系及诱导公式练习zst

同角三角函数基本关系及诱导公式练习zst

同角三角函数基本关系及诱导公式练习【基础知识梳理】1.终边与角α的终边关于--------------------对称的角可以表示为π+α.2.终边与角α的终边关于--------------------对称的角可以表示为-α(或2π-α).3.终边与角α的终边关于--------------------对称的角可以表示为π-α.4.终边与角α的终边关于--------------------对称的角可以表示为2π-α. 5.诱导公式(1)公式一 sin(α+k ·2π)=--------------------------------, cos(α+k ·2π)=--------------------------, tan(α+k ·2π)=----------------------------,其中k ∈Z.(2)公式二 sin [(21)]k πα++=----------------------------, cos [(21)]k πα++=--------------------------------, tan [(21)]k πα++=----------------------------.(3)公式三 sin(-α)=--------------------,cos(-α)=----------------,tan(-α)=----------------.(4)公式四sin(π-α)=----------------------, cos(π-α)=----------------------, tan(π-α)=----------------------.(5) 公式五 sin(2π-α)=---------------------------------,cos(2π-α)=---------------------------------. (6)公式六 sin(2π+α)=---------------------------------,cos(2π+α)=---------------------------------. 口诀:一、选择题1. 已知53cos =α,且α是第四象限角,则sin α=__________. A.54 B.43 C.54- D.43- 2.已知sin α=21,且α为第二象限角,则cos α=________. A.23 B.43 C. 23- D.43- 3.下列各式中正确的是_________.A.απαsin )sin(=+B.απαcos )2cos(-=+C.ααπtan )tan(-=+D.ααπsin )sin(=-4.若tan α=1,则ααααcos sin cos 3sin 2++的值是____________.A.21B.23 C.25 D.27 5.已知5cos 5sin 2cos 3sin -=+-αααα,则tan α=________. A.-2 B.1225 C.1128 D.922- 6.下列等式中正确的个数有__________.(1)ααπsin )sin(-=+ (2)ααπcos )2cos(-=+(3)ααπtan )3tan(-=+ (4)ααπcos )5cos(-=- A.1 B.2 C.3 D.4 7,已知sin α=54,α的终边在第一象限,则)sin(απ+和)2cos(απ-的值是_____. A.5354和 B.5354和- C.5354-和 D.5354--和 二、填空题 1.2cos 2sin 22αα+=______________.2.)4sin(π-=____________;613sin π=________. 3.45cos π=__________;32cosπ=_________. 4.)300cos(0-=_________;0495sin =____________. 5.)43tan(π-=________;67cos π=________;)49sin(π-=________. 6.1)(cos 2)tan()sin()sin(22+------x x x x π=__________. 7.已知πθπθ 2,21cos 且-=,则θtan =_________. 8.化简:)tan()cos()3sin(απααπ+--=___________. 三、解答题1.化简:)3tan()cos()tan()2sin(x x x x --+-ππππ 2. 已知41tan =x ,求xx x x sin 3cos 2sin 5cos +-的值。

同角三角函数的基本关系典型例题

同角三角函数的基本关系典型例题

同角三角函数的基本关系典型例题一、引言在学习三角函数的过程中,同角三角函数的基本关系是非常重要的。

通过掌握同角三角函数的基本关系,我们可以更深入地理解三角函数的性质和应用。

本文将通过深入讨论同角三角函数的基本关系典型例题,帮助您更好地理解这一重要概念。

二、同角三角函数的基本关系概述在三角函数中,同角三角函数是指正弦、余弦、正切、余切这四个函数。

它们之间有着一系列的基本关系,包括互余关系、平减关系、倒数关系等。

通过这些基本关系,我们可以在不知道某一个函数值的情况下,通过其他函数值来求解,极大地方便了我们在解题时的计算。

三、例题分析1. 已知角A的余弦值为0.6,求角A的正弦值和正切值。

解析:根据同角三角函数的基本关系,我们知道正弦值是余弦值的互余,正切值是正弦值与余弦值的倒数关系。

我们可以通过计算得出角A的正弦值和正切值分别是0.8和1.33。

2. 若角B的正切值为3,求角B的正弦值和余切值。

解析:根据同角三角函数的基本关系,我们知道正切值是正弦值与余弦值的倒数,余切值是正切值的倒数。

我们可以通过计算得出角B的正弦值和余切值分别是0.33和0.3。

以上两道例题展示了同角三角函数基本关系在解题中的应用,通过灵活运用基本关系,我们可以迅速求解三角函数的各种数值,为解题提供了便利。

四、总结通过本文的讨论,我们可以清晰地了解了同角三角函数的基本关系,以及在例题中的应用。

同角三角函数的基本关系是三角函数学习的重要基础,掌握了这些基本关系,将有助于我们更好地理解三角函数的性质和运用。

个人观点与理解在学习同角三角函数的基本关系时,我深刻体会到这些基本关系的重要性。

它们为我们解决三角函数相关问题提供了方便,也为我们深入理解三角函数的性质奠定了基础。

通过刻苦练习例题,我不断提高自己的解题能力,也更加深刻地理解了同角三角函数的基本关系。

结语同角三角函数的基本关系在三角函数学习中占据着重要地位。

在解题中,我们要灵活运用基本关系,以便更加便捷地得出答案。

1.2.2同角三角函数的基本关系式练习题

1.2.2同角三角函数的基本关系式练习题

同角三角函数的基本关系式练习题1.若 sin α= 4,且 α是第二象限角,则 tan α的值等于 () 5A .- 4 3 3 43 B. C .± D . ±4 4 3 2.化简 1-sin 2160 °的结果是 ()A . cos160 °B .- cos160 °C . ±cos160 °D . ±|cos160 | °2sin α-cos α3.若 tan α= 2,则的值为 ()sin α+ 2cos α35 A . 0B.4 C . 1D. 484.若 cos α=- 17,则 sin α= ________, tan α= ________.5,则 sin α等于 ()5.若 α是第四象限的角, tan α=-121 1 35A. 5B .- 5 C.15 D .- 136.若 α为第三象限角,则cos α + 2sin α 的值为 ()1- sin 2α1- cos 2α A . 3B .- 3C . 1D .-127、已知 A 是三角形的一个内角, sinA + cosA = 3 ,则这个三角形是 ( )A .锐角三角形B .钝角三角形C .不等腰直角三角形D .等腰直角三角形18、知 sin α cos α = 8 ,则 cos α- sin α 的值等于( )3333A .± 4B .± 2C . 2D .- 2、已知 是第三象限角,且 sin 4cos45 ,则sin cos()992 B .2 C . 1 D .1A .333310、如果角满足 sin cos2,那么 tan1的值是()tanA . 1B .2C . 1D . 2sin cos ,则 tan( )11、若22 sincosA .1B .-1C .3D .443112. A 为三角形 ABC 的一个内角,若sinA+ cosA=12,则这个三角形的形状为 () 25A .锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形13.已知 tanθ= 2,则 sin2θ+ sin θcosθ- 2cos2θ等于 () 4534 A.-3 B. 4 C.-4 D. 5 14. ( tan x1)cos2x= ()tan xA . tanx B. sinx C. cosx1 D.tan x15.使1-cosα cosα- 1)=sinα成立的α的范围是 (1+cosαA . { x|2kπ-π<α< 2kπ, k∈Z }B. { x|2kπ-π≤ α≤ 2kπ, k∈Z }3πC. { x|2kπ+π<α< 2kπ+2, k∈Z} D.只能是第三或第四象限的角16.计算17.已知1- 2sin40 ·°cos40 °2= ________.sin40 -° 1-sin 40°1- sinαcosαtanα=- 3,则2sinαcosα+cos2α=________.18、若tan3sin 3 2 cos3的值为 ________________ .,则32 cos3sinsin cos2,则 sin cos 的值为19、已知cossinsinα20.若角α的终边落在直线x+y= 0 上,则2+1-sin α21.求证: sinθ(1+ tanθ)+ cosθ·(1+1)=1+1.tanθ sinθ cosθ1-cos2α的值为 ________.cosα2部分答案1、解析: 选 A. ∵α为第二象限角,∴cos α=- 1- sin 2α=-1- 4 2=- 3,5 54∴tan α= sin α 5=- 4.=3cos α - 352、解析: 选 B. 1- sin 2160 °= cos 2160 °=- cos160 °.2sin α- cos α 2tan α- 1.3、解析: 选 B.= = 3sin α+ 2cos α tan α+ 2 48 4、解析: ∵ cos α=- 17<0,∴α是第二或第三象限角.若 α是第二象限角,则 sin α>0, tan α<0.∴sin α=215 , tan α= sin α 151- cos α==- 8.17cos α若 α是第三象限角,则sin α<0, tan α>0.∴ sin α=-215, tan α= sin α 15 .1- cos α=-17 =cos α 8 答案:15或-15- 15或1517 17 8 85、解析: 选 D. ∵tan α= sin α 5 2 2=- , sin α+ cos α= 1,cos α 12∴ sin α=±5,13又 α为第四象限角,∴sin α=- 135.6、解析: 选 B. ∵α为第三象限角,∴ sin α<0, cos α<0,∴cos α+2sin α=cos α 2sin α1- sin 2+=- 1-2=- 3.α1- cos 2α |cos α||sin α|127、解析: 选 B. ∵sinA + cosA = ,212 2 144∴ (sinA + cosA) = (25) = 625,即 1+2sinAcosA =144,∴ 2sinAcosA =-481625625<0,∴ sinA>0,cosA<0,∴ A 为钝角,∴△ ABC 为钝角三角形.13、解析: 选 D.sin 2θ+ sin θcos θ- 2cos 2θ322θ= sin θ+ sin θcos θ- 2cossin 2θ+cos 2θ= tan 2θ+ tan θ- 2tan 2θ+1= 4+ 2-2= 4.5 52sinx + cosx 214、解析: 选 D.(tan x + cotx) ·cos x =( cosx sinx ) ·cos x =sin 2x + cos 2x2cosx= cotx.sinx ·cosx ·cos x = sinx15、解析:选 A.1- cos α1- cos α2 1- cos α cos α- 1==|sin α|=,1+ cos α1- cos 2αsin α即 sin α< 0,故 { x|2k π-π< α< 2k π, k ∈ Z } .2cos40 °- sin40 °16、解析: 原式=sin40 -°cos40 °==- 1.sin40 -° cos 240° sin40 -°cos40 °答案: -11- sin αcos αsin 2α- sin αcos α+ cos 2α tan 2α- tan α+ 1 - 3 2- -3 +117、解析:2=2=2tan α+ 1 = =2sin αcos α+ cos α2sin αcos α+ cos α2× -3 +113 - 5 .答案: -13518、答案: 5/321、证明: 左边= sin θ(1+ sin θcos θ)+ cos θ·(1+)cos θsin θ2θ2θ= sin θ+sin+ cos θ+coscos θsin θ2θ2θ= (sin θ+ cossin+cos θ)sin θ)+ (cos θsin 2θ+ cos 2θ sin 2θ+ cos 2θ=+cos θsin θ=1+1=右边,sin θcos θ∴原式成立.4。

高考数学专题《同角三角函数的基本关系与诱导公式》习题含答案解析

高考数学专题《同角三角函数的基本关系与诱导公式》习题含答案解析

专题5.2 同角三角函数的基本关系与诱导公式1.(2021·北京二中高三其他模拟)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34,55⎛⎫⎪⎝⎭,则tan()πθ-的值为( )A .43B .34C .43-D .34-【答案】C 【解析】由题意可得角的正弦和余弦值,由同角三角函数的基本关系可求出角的正切值,结合诱导公式即可选出正确答案.【详解】解:由题意知,43sin ,cos 55θθ==,则sin 4tan cos 3θθθ==,所以4tan()tan 3πθθ-=-=-,故选:C.2.(2021·全国高三其他模拟(理))已知1tan ,2α=则()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=( )A .﹣12B .12C .2D .﹣2【答案】C 【解析】先用“奇变偶不变,符号看象限”将()cos cos 2παπα-⎛⎫+ ⎪⎝⎭化简为cos sin αα--,结合同角三角函数的基本关系来求解.【详解】因为1tan 2α=,所以()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=cos sin αα--=1tan α=2.故选:C练基础3.(2021·全国高一专题练习)已知3cos cos()2παπα⎛⎫-++= ⎪⎝⎭则1tan tan αα+=( )A .2B .-2C .13D .3【答案】A 【解析】用诱导公式化简,平方后求得sin cos αα,求值式切化弦后易得结论.【详解】3cos cos()sin cos 2παπααα⎛⎫-++=∴--= ⎪⎝⎭即21sin cos (sin cos )2,sin cos ,2αααααα+=∴+=∴=1sin cos 1tan 2tan cos sin sin cos αααααααα∴+=+==,故选:A .4.(2021·河南高三其他模拟(理))若1tan 2α=,则22sin sin cos ααα+=_______________________.【答案】45【解析】利用同角三角函数的基本关系式进行化简求值.【详解】因为12tan α=,所以222222224215sin sin cos tan tan sin sin cos sin cos tan ααααααααααα+++===++.故答案为:455.(2021·宁夏银川市·银川一中高三其他模拟(文))若3sin 2πθ⎛⎫+= ⎪⎝⎭[0,2)θπ∈,则θ=___________.【答案】116π【解析】根据三角函数的诱导公式,求得cos θ=[0,2)θπ∈,进而求得θ的值.【详解】由三角函数的诱导公式,可得3sin cos 2πθθ⎛⎫+=-= ⎪⎝⎭,即cos θ=,又因为[0,2)θπ∈,所以116πθ=.故答案为:116π.6.(2021·上海格致中学高三三模)已知α是第二象限角,且3sin 5α=,tan α=_________.【答案】34-【解析】根据角所在的象限,判断正切函数的正负,从而求得结果.【详解】由α是第二象限角,知4cos 5α===-,则sin 3tan cos 4ααα==-故答案为:34-7.(2021·上海高三二模)若sin cos k θθ=,则sin cos θθ⋅的值等于___________(用k 表示).【答案】21kk +【解析】由同角三角函数的关系得tan θk =,进而根据22sin cos sin cos sin cos θθθθθθ⋅⋅=+,结合齐次式求解即可.【详解】因为sin cos k θθ=,所以tan θk =,所以2222sin cos tan sin cos sin cos tan 11kk θθθθθθθθ⋅⋅===+++,故答案为:21k k +8.(2021·河北衡水市·高三其他模拟)函数log (3)2(0a y x a =-+>且a ≠1)的图象过定点Q ,且角a 的终边也过点Q ,则23sin α+2sin cos αα=___________.【答案】75【解析】首先可得点Q 的坐标,然后可得tan α,然后可求出答案.【详解】由题可知点Q (4,2),所以1tan ,2α=所以22223sin 2sin cos 3sin 2sin cos sin cos αααααααα++==+2211323tan 2tan 74211tan 514ααα⨯+⨯+==++故答案为:759.(2021·上海高三其他模拟)已知3sin 5x =,(,)2x ππ∈,则cos(π﹣x )=___________.【答案】45【解析】根据22sin cos 1x x += ,(,)2x ππ∈,求出cos x ,再用“奇变偶不变,符号看象限”求出cos(π﹣x ).【详解】解:因为3sin 5x =,(,)2x ππ∈,可得cos x =﹣=﹣45,所以cos(π﹣x )=﹣cos x =45.故答案为:45.10.(2020·全国高一课时练习)若2cos()3απ-=-,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.【答案】.【解析】利用诱导公式化简已知和结论,转化为给值求值的三角函数问题解决.【详解】原式=sin(2)sin(3)cos(3)cos (cos )cos παπαπαααα---+----=2sin sin cos cos cos ααααα--+=sin (1cos )cos (1cos )αααα---=-tan α,因为2cos()cos 3απα-=-=-,所以2cos 3α=,所以α为第一象限角或第四象限角.(1)当α为第一象限角时,sin α=所以sin tan cos ααα=,所以原式.(2)当α为第四象限角时,sin α=所以sin tan cos ααα=,所以原式.综上,原式=.1.(2021·全国高三其他模拟(理)(0)a a =>,则1tan 2=________(用含a 的式子表示).【解析】根据同角三角函数的相关公式,把根号下的式子变形为完全平方式,2111112sin cos sin cos 2222⎛⎫-=- ⎪⎝⎭,2111112sin cos sin cos 2222⎛⎫+=+ ⎪⎝⎭,再由11cos sin 022>>,开方即得1cos 22a =,再由22111tan 12cos 2+=即可得解.【详解】练提升=+=1111cos sin sin cos2222=-++12cos 2a ==,则1cos 22a =而22111tan 12cos 2+=,2214tan 12a∴=-又1tan 02>,1tan 2∴==.2.(2021·河北邯郸市·高三二模)当04x π<<时,函数22cos ()sin cos sin xf x x x x=-的最大值为______.【答案】-4【解析】化简函数得21()tan tan f x x x=-,再换元tan ,(0,1)t x t =∈,利用二次函数和复合函数求函数的最值.【详解】由题意得22222cos cos ()sin cos sin cos cos x x f x x x xx x =-所以21()tan tan f x x x =-,当04x π<<时,0tan 1x <<,设tan ,(0,1)t x t =∈所以2211()=11()24g t t t t =---,所以当12t =时,函数()g t 取最大值4-.所以()f x 的最大值为-4.故答案为:4-3.(2021·浙江高三其他模拟)已知πtan 34α⎛⎫+=- ⎪⎝⎭,则3πtan 4α⎛⎫-= ⎪⎝⎭______,sin cos αα=______.【答案】3 25【解析】由3ππtan tan 44αα⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭可求,由和的正切公式求出tan α,再建立齐次式即可求出.【详解】3πππtan tan πtan 3444ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,得tan 2α=,故222sin cos tan 2sin cos sin cos tan 15αααααααα===++.故答案为:3;254.(2021·全国高一专题练习)如图,单位圆与x 轴正半轴的交点为A ,M ,N 在单位圆上且分别在第一、第二象限内,OM ON ⊥.若四边形OAMN 的面积为34,则AOM ∠=___________;若三角形AMN 的面积为25,则sin AOM ∠=___________.【答案】6π 35【解析】根据四边形OAMN 的面积,列出关于M 点纵坐标M y 的方程,求出M y ;即可根据三角函数的定义求出sin AOM ∠,进而可得AOM ∠;根据三角形AMN 的面积为25,得到M y 与N y 之间关系,再结合三角函数的定义,得到1cos sin 5AOM AOM ∠-∠=,利用同角三角函数基本关系,即可求出结果.【详解】若四边形OAMN 的面积为34,则3111142222MON MOA M M S S OM ON OA y y =+=⨯⨯+⨯⨯=+V V ,解得12M y =,由三角函数的定义可得1sin 2M AOM y ∠==,因为M 为第一象限内的点,所以AOM ∠为锐角,因此6AOM π∠=;若三角形AMN 的面积为25,则21115222MON MOA AMN OAMN AON AON M N S S S S S S y y ==-=-=+-+V V V V V ,即51N M y y -=,由三角函数的定义可得,sin M AOM y ∠=,sin N AON y ∠=,又sin sin cos 2N y AON AOM AOM π⎛⎫=∠=∠+=∠ ⎪⎝⎭,所以1cos sin 5AOM AOM ∠-∠=,由221cos sin 5sin cos 1AOM AOM AOM AOM ⎧∠-∠=⎪⎨⎪∠+∠=⎩解得3in 5s AOM ∠=或4in 5s AOM ∠=-,又AOM ∠为锐角,所以3in 5s AOM ∠=.故答案为:6π;35.5.(2021·河南高一期中(文))(1)已知角α的终边经过点()43P ,-,化简并求值:221cos sin cos sin cos tan 1a ααααα-+---;(2的值.【答案】(1)15-(2)1.【解析】(1)利用三角函数定义得到3sin 5α=,4cos 5α=-,化简三角函数表达式代入即可得到结果;(2)利用同角基本关系式化简即可.【详解】(1)由题意知,3sin 5α=,4cos 5α=-.原式222sin sin cos sin sin cos 1cos ααααααα+=---2222sin sin cos sin cos sin cos cos αααααααα+=---()2222cos sin cos sin sin cos sin cos αααααααα+=---22sin cos sin cos sin cos αααααα=---22sin cos sin cos αααα-=-341sin cos 555αα=+=-=-;(2)原式=sin 40cos 40cos 40cos50︒-︒=︒-︒cos 40sin 401cos 40sin 40-==-︒︒︒︒.6.(2021·河南高一期中(文))已知sin 2cos 0αα+=.(1)求sin 2cos cos 5sin αααα--的值;(2)求33sin cos cos sin aααα+的值.【答案】(1)411-;(2)858-.【解析】(1)本题可根据sin 2cos 0αα+=得出tan 2α=-,然后根据同角三角函数关系即可得出结果;(2)本题可通过22sin cos 1αα+=求出2sin α、2cos α的值,然后通过同角三角函数关系即可得出结果.【详解】(1)因为sin 2cos 0αα+=,所以tan 2α=-,则sin 2cos tan 24cos 5sin 15tan 11αααααα--==---.(2)联立22sin 2cos 0sin cos 1αααα+=⎧⎨+=⎩,解得224sin 51cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,则3322sin cos tan 185cos sin cos sin tan 8a ααααααα+=+=-.7.(2020·武汉市新洲区第一中学高一期末)在平面直角坐标系xOy 中,以x 轴非负半轴为始边作角0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,它们的终边分别与单位圆相交于A ,B 两点,已知点A ,B,.(1)求23sin sin cos 1ααα-+的值;(2)化简并求cos 的值.【答案】(1)195;(2)1-+【解析】(1)由已知条件可知求得sin α,tan α,已知式变形为2222223sin sin cos 3tan tan 3sin sin cos 111sin cos tan 1ααααααααααα---+=+=+++,代入可得答案;(2)由已知得cos β,sin β=.【详解】解:(1)由已知条件可知:cos α=0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 0α>,sin α==,tan 7α=,2222223sin sin cos 3tan tan 3497193sin sin cos 1111sin cos tan 1505ααααααααααα--⨯--+=+=+=+=++,(2)cos β=,2πβπ⎛⎫∈ ⎪⎝⎭,所以sin 0β>,从而sin β==;1sin cos cos cos (1sin )1|cos |ββββ-===--=-+.8.(2021·全国高三专题练习(理))求函数sin cos sin cos y x x x x =+-(x ∈R )的值域.【答案】112⎡⎤-⎢⎥⎣⎦,【解析】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,根据二次函数的性质可求得值域.【详解】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,所以当t =24=-+x k ππ (k Z ∈)时,min y =12-;当1t =,即()114k x k ππ⎡⎤=++-⎣⎦(k Z ∈)时,max 1y =,因此函数y =sin cos sin cos y x x x x =+-的值域应为112⎡⎤-⎢⎥⎣⎦,.9.(2021·江苏高一月考)如图,锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点()11,A x y ,将射线OA 按逆时针方向旋转3π后与单位圆交于点()()2212,,B x y f x x α=+.(1)求()fα的取值范围;(2)若()fα=,求tan α的值.【答案】(1)32⎛⎫ ⎪ ⎪⎝⎭;(2【解析】(1)由三角函数的定义可得1cos x α=,2cos(3x πα=+,化简()f α6)πα+.根据2663πππα<+<,利用余弦函数的定义域和值域求得()f α的范围.(2)根据()f α=,求得3cos(654sin(65παπα⎧+=⎪⎪⎨⎪+=⎪⎩,再利用两角差的正弦余弦公式求出sin ,cos αα的值,从而得出结论.【详解】(1)由图知,3AOB π∠=,由三角函数的定义可得1cos x α=,2cos(3x πα=+,123()cos cos()cos cos cossin sincos 3332f x x πππαααααααα==+++-+=-=6)πα=+.角α为锐角,∴2663πππα<+<,∴1co 26s()πα-<+<∴623πα<+<,即()f α的范围是32⎛⎫⎪ ⎪⎝⎭.(2)因为()fα=,2663πππα<+<,6πα+=,3cos()65)46sin()65παπαπα⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩,431sin sin66552ππαα⎡⎤⎛⎫=+-=⨯=⎪⎢⎥⎝⎭⎣⎦341cos cos66552ππαα⎡⎤⎛⎫=+-=+⨯=⎪⎢⎥⎝⎭⎣⎦sintancosααα∴===10.(2021·河南省实验中学高一期中)(1)已知sin()cos()tan(3)()3cos2fπθπθπθθπθ-+-=⎛⎫-⎪⎝⎭,求73fπ⎛⎫- ⎪⎝⎭的值(2)已知1sin cos5αα+=-,2παπ<<,求sin(3)cos(2)sin()sin2παπαπαα--++⎛⎫-++⎪⎝⎭的值.【答案】(1(2)17.【解析】(1)利用诱导公式、同角三角函数基本关系化简()fθ,然后再代值计算即可.(2)利用同角三角函数间的关系,将1sin cos5αα+=-平方求出sin cosαα的值,从而求出cos sinαα-的值,再由诱导公式将所求式子化简,即可得出答案.【详解】(1)()()sin cos tansin()cos()tan(3)()sin3sincos2fθθθπθπθπθθθπθθ⋅-⋅--+-===--⎛⎫-⎪⎝⎭所以77sin sin2sin3333fπππππ⎛⎫⎛⎫⎛⎫-=--=+==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)由1sin cos 5αα+=-,则112sin cos 25αα+=,所以242sin cos 25αα=-由2παπ<<,则sin 0,cos 0αα><设cos sin 0t αα=-<,则2244912cos sin 12525t αα=-=+=由cos sin 0t αα=-<,所以7cos sin 5αα-=-1sin(3)cos(2)sin cos 157sin cos 7sin()sin 52παπαααπαααα---+++===-+⎛⎫--++ ⎪⎝⎭1.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .2.(2020·全国高考真题(理))已知π()0,α∈,且3cos28cos 5αα-=,则sin α=( )AB .23C .13D练真题【答案】A 【解析】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴== 故选:A.3.(2019·北京高考真题(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B 【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为+S △POB + S △POA =4β+.故选:B .APB ∠2222βππ⨯⨯1||sin()2OPOB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅4.(2017·北京高考真题(文))在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则_____.【答案】【解析】因为角与角的终边关于轴对称,所以,所以.5.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.6.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x +3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.xOy αβOx y 1sin 3α=sin β=13αβy 2,k k Z αβππ+=+∈()1sin sin 2sin 3k βππαα=+-==。

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。

《同角三角函数关系》典型例题

《同角三角函数关系》典型例题
原式=
学而优 · 教有方




= ( − ) ×


= .



+

=
=
(−)



.

+
(+)

=
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典例1-3
解析

[简单问题解决能力]化简
.

此题属于简单化简问题,掌握三角函数的基本关系即可求解.具体如下:
度所属的范围及象限.分析题意,要化简的式子带有根号,所以先将分母有理化,然
后开方计算化简.具体如下:
学而优 · 教有方
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典 例 1-2

[分析计算能力、推测解释能力]若


+
+
解析
学而优 · 教有方
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典 例 1-1
[ 分 析 计 算 能 力 、 推 测 解 释 能 力 ] 已 知 =

− ,求

+ 的值.
解析
已知角的某个三角函数值,求其余三角函数值时,可以利用 + = 解
典 例 1-1
[ 分 析 计 算 能 力 、 推 测 解 释 能 力 ] 已 知 =
+ 的值.

高中数学-同角三角函数的基本关系式练习

高中数学-同角三角函数的基本关系式练习

高中数学-同角三角函数的基本关系式练习34,选D. 答案:D5.已知θ∈(0,2π),且sin θ,cos θ是方程x 2-kx +k +1=0的两个实根,求k ,θ的值.解析:依题意有sin θ+cos θ=k ,① sin θcos θ=k +1,②又(sin θ+cos θ)2=1+2sin θcos θ, 所以k 2-2k -3=0,解得k =3或k =-1, 显然|sin θcos θ|=|k +1|≤1,因此k =-1,代入①②得⎩⎪⎨⎪⎧sin θ+cos θ=-1,sin θcos θ=0,从而⎩⎪⎨⎪⎧sin θ=0,cos θ=-1或⎩⎪⎨⎪⎧sin θ=-1,cos θ=0.又θ∈(0,2π),所以θ=π或3π2.(限时:30分钟)1.已知α是第四象限角,cos α=1213,则sin α等于( )A.513 B .-513 C.512 D .-512解析:∵α是第四象限角, ∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫12132=-513.答案:B2.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是( ) A.43 B .3 C .-43D .-3解析:2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1,将tan α=-12代入得: 2sin αcos αsin 2α-cos 2α=2×⎝ ⎛⎭⎪⎫-1214-1=43,故选A. 答案:A 3.化简⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)的结果是( )A .sin αB .cos αC .1+sin αD .1+cos α解析:原式=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1+cos α1-cos αsin α=sin 2αsin α=sin α. 答案:A4.已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为( )A.32 B .-32C.34 D .-34解析:∵(cos α-sin α)2=1-2sin αcos α=1-2×18=34,且π<α<5π4,∴cos α<sin α,∴cos α-sin α<0,∴cos α-sin α=-34=-32. 答案:B5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8解析:tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=1sin αcos α.∵sin α-cos α=-52,∴1-2sin αcos α=54, ∴sin αcos α=-18,∴1sin αcos α=-8.答案:C6.已知1+sin x cos x =-13,则cos xsin x -1的值等于( )。

完整版)同角三角函数的关系练习题

完整版)同角三角函数的关系练习题

完整版)同角三角函数的关系练习题同角三角函数的关系已知cosα=3/5,且α在第三象限,求cosα和tanα的值。

已知cosα=3/5,由于α在第三象限,所以sinα<0,根据勾股定理可得sinα=-4/5.再由于tanα=sinα/cosα,所以tanα=-4/3.已知cosα=1/5,且tanα<0,求sinα和tanα的值。

由于cos²α+sin²α=1,所以sinα=-√(1-cos²α)=-√(24/25)=-4/5.再由于tanα=sinα/cosα,所以tanα=-4.已知sinα=-5/13,且α是第四象限角,求sinα和cosα的值。

由于sin²α+cos²α=1,所以cosα=√(1-sin²α)=12/13.再由于tanα=sinα/cosα,所以tanα=-5/12.已知tanθ=2,求2sinθ-3cosθ,4sinθ-9cosθ,2sinθ-3sinθcosθ-4cosθ的值。

由于tanθ=sinθ/cosθ,所以sinθ=2cosθ。

将sinθ代入2sinθ-3cosθ和4sinθ-9cosθ中,可得它们的值分别为1和-2.再将sinθ代入2sinθ-3sinθcosθ-4cosθ中,可得其值为-4cosθ。

已知tanθ=2,求cosθ+sinθ,cosθ-sinθ,sinθ-sinθcosθ+2cos²θ的值。

由于tan²θ+1=sec²θ,所以cosθ=1/√5,sinθ=2/√5.将cosθ和sinθ代入cosθ+sinθ和cosθ-sinθ中,可得它们的值分别为√5/5和-√5/5.将cosθ和sinθ代入sinθ-sinθcosθ+2cos²θ中,可得其值为1/5.已知sinα=2cosα,求sinα-4cosα/(5sinα+2cosα),sinα+2sinαcosα和2sinαcosα。

高三数学同角三角函数的基本关系式和诱导公式试题答案及解析

高三数学同角三角函数的基本关系式和诱导公式试题答案及解析

高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,并且是第二象限的角,那么的值等于()A.B.C.D.【答案】A【解析】由,又为第二象限角,,则.故选A.【考点】三角函数的平方公式.2.己知a为锐角,且,,则sina的值是( ). A.B.C.D.【答案】C.【解析】根据诱导公式,已知条件的两个式子可化为如下关系:,解得,又本题要求的是,因此由前述可知有,解得(a为锐角).【考点】诱导公式,同角三角函数的基本关系.3.已知,则的值为.【答案】-11【解析】【考点】弦化切4.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.5.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】(1)根据诱导公式,将中的三角函数都转化为的三角函数,即可得到;(2)由,可得,又由条件是第三象限角及(1)中得到的的表达式,即可得到.(1);(2)由得,,因为是第三象限角,所以,∴.【考点】1.诱导公式;2.同角三角函数基本关系.6.已知 .【答案】【解析】∵,∴,∴原式=.【考点】1.诱导公式;2.同角三角函数基本关系.7.已知,则tanα的值是()A.±B.C.D.无法确定【答案】B【解析】∵,∴,即.【考点】同角三角函数的基本关系.8.( )A.B.C.D.【答案】D【解析】.【考点】同角三角函数基本关系.9.已知,则 ( )A.B.C.D.【答案】A【解析】由【考点】同角三角函数基本关系10. sin的值是()A.B.-C.D.-【答案】B【解析】.【考点】诱导公式,特殊角的三角函数值.11.已知,则的值为()A.B.C.D.【答案】A【解析】由条件,得,整理得:,即①,代入中,得,整理得:,即,解得(舍)或,把,代入①,得,所以,故选A.【考点】同角三角函数基本关系.12.若,的化简结果为()A.B.C.D.【答案】D【解析】,=.【考点】同角的基本关系.13.已知(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)因为,可得=−2,α为钝角且cosα<0.再由sin2α+cos2α=1,求得cosα的值.(2)原式=,把tanα=-2代入运算求得结果.试题解析:解:(1)因为,所以cosa=(2)原式=【考点】1.同角三角函数间的基本关系;2.三角函数的化简求值.14.若,则计算所得的结果为()A.B.C.D.【答案】A【解析】先根据诱导公式化简,原式=,再将代入即得答案为A.【考点】诱导公式.15.已知=,则的值等于( )A.B.-C.D.±【答案】A【解析】诱导公式,注意,,所以选A【考点】诱导公式16.已知,则的值是( )A.B.C.D.【答案】C【解析】由与可得,而,选C.【考点】同角三角函数的基本关系式.17.已知为第三象限角,.(1)化简;(2)若,求的值.【答案】(1);(2).【解析】(1)应用三角诱导公式进行化简即可得出答案;(2)根据同角三角函数的基本关系式求出,由求出,最后由正切的二倍角公式可计算得结果.试题解析:(1) 6分(结果为酌情给3分)(2)由,得. 又已知为第三象限角所以,所以 8分所以 10分故 12分.【考点】1.诱导公式;2.同角三角函数的基本关系式;3.二倍角公式.18.已知tanα,是关于x的方程x2-kx+k2-3=0的两实根,且3π<α<π,求cos(3π+α)-sin(π+α)的值.【解析】关于方程两根的问题可用韦达定理解决,,从而求出k =±2,再根据角的范围可知为正,从而求得。

同角三角函数的基本关系式与诱导公式 练习

同角三角函数的基本关系式与诱导公式 练习

学思堂教育个性化教程教案数学科教学设计教学过程【训练3】(1)已知sin⎝⎛⎭⎪⎫7π12+α=23,则cos⎝⎛⎭⎪⎫α-11π12=________;(2)若tan(π+α)=-12,则tan(3π-α)=________.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x=sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=tanπ4.课堂巩固一、填空题1.已知α和β的终边关于直线y=x对称,且β=-π3,则sin α=________.2.(2014·合肥模拟)sin 585°的值为________.3.(2014·郑州模拟)1-2sin(π+2)cos(π-2)=________.4.若3sin α+cos α=0,则1cos2α+sin 2α的值为________.5.若sin α是5x2-7x-6=0的根,则sin⎝⎛⎭⎪⎫-α-3π2sin⎝⎛⎭⎪⎫3π2-αtan2(2π-α)cos⎝⎛⎭⎪⎫π2-αcos⎝⎛⎭⎪⎫π2+αsin(π+α)=________.6.(2014·杭州模拟)如果sin(π+A)=12,那么cos⎝⎛⎭⎪⎫32π-A的值是________.教学效果分析。

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题1. [2014·滨州模拟]sin600°+tan240°的值等于()A.-B.C.-D.+【答案】B【解析】sin600°+tan240°=sin240°+tan60°=-sin60°+tan60°=,选B项.2.若,则 .【答案】【解析】.【考点】诱导公式.3.已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.【答案】(1)-(2)【解析】(1) ∵α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴sin(α-β)=-.(2) 由(1)可得,cos(α-β)=.∵α为锐角,sinα=,∴cosα=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.4.已知角θ的终边经过点P(-x,-6),且cosθ=-,则sinθ=____________,tanθ=____________.【答案】-,【解析】cosθ==-,解得x=sinθ==-,tanθ=5.已知α为锐角,cos α=,则tan=()A.-3B.-C.-D.-7【答案】B【解析】依题意得,sin α=,故tan α=2,tan 2α=,所以tan==-.6.已知sinα=,则cos(π-2α)=()A.-B.-C.D.【答案】B【解析】∵sinα=,∴cos(π-2α)=-cos2α=-(1-2sin2α)=-.故选B.7.设sin=,则sin 2θ=()A.-B.-C.D.【答案】A【解析】因为sin=,即sin θ+cos θ=,所以sin θ+cos θ=,两边平方得1+2sin θcos θ=,所以sin 2θ=-.8.已知sin 2α=,则cos2=()A.B.C.D.【答案】A【解析】法一:cos2==(1-sin 2α)=.法二:cos=cos α-sin α,所以cos2=(cos α-sin α)2=(1-2sin αcos α)= (1-sin 2α)=.9.已知向量a=(cos x,sin x),b=(,),a·b=,则cos=________.【答案】【解析】因为a·b=cos x+sin x=2cos=,所以cos=.10.已知α∈,cos α=-,tan 2α等于().A.B.-C.-2D.2【答案】B【解析】由于α∈,cos α=-,则sin α=-=-,那么tan α==2,则tan 2α==-.11.已知sin α=,则cos (π-2α)=().A.B.-C.D.【答案】B【解析】cos (π-2α)=-cos 2α=2sin2α-1=2×2-1=-.12.设α是第二象限角,tan α=-,且sin<cos,则cos=______.【答案】-【解析】∵α是第二象限角,tan α=-,∴2kπ+<α<2kπ+,∴kπ+<<kπ+,又sin <cos ,∴为第三象限角,∴cos<0.∵tan α=-,∴cos α=-,∴cos =-=-.13.已知则= .【答案】【解析】因为所以=,所以==.【考点】同角三角函数的基本关系.14.在△中,角、、所对的边分别为、、,且.(Ⅰ)若,求角;(Ⅱ)设,,试求的最大值.【答案】(Ⅰ) ;(Ⅱ)【解析】(Ⅰ)由题中所给,不难想到余弦定理,可求得 ,又由,变形成,从而求出,结合和,不难求出B; (Ⅱ)由已知可求出,又由向量的数量积公式可求出的形式,这样得到关于A 的一个三角函数式,运用二倍角公式化简得一个关于为整体的二次函数,即,又由的值推出的范围,进而得出的范围,从而求出的范围,即可求得最大值.试题解析:解:由,得,又, 3分(Ⅰ)由,,, 6分,又, 8分(Ⅱ)= 11分又中,,得,,的最大值为 14分【考点】1.解三角形;2.三角函数的性质;3.向量的数量积15.已知则= .【答案】【解析】已知则,于是.【考点】同角三角函数基本关系式.16.已知函数.(1)求的值;(2)若,求.【答案】(1);(2)【解析】(1)把代入解析式可得;(2)把表示出来并展开,得关于的式子,由,结合同角三角函数基本关系式,求得(注意的范围),代入上式即可. 试题解析:(1)=;(2)∵,且,∴, ==.【考点】1、同角三角函数基本关系式;2、差角的余弦公式.17.已知,则 .【答案】或【解析】由已知:.又.联立解方程组得:或.所以:或.【考点】1、诱导公式;2、同角三角函数关系式;3、解方程组.18.已知函数为偶函数,周期为2.(Ⅰ)求的解析式;(Ⅱ)若的值.【答案】(1).(2).【解析】(1)利用,可得,从而得到.再根据其为偶函数及,可得,得到.这是解答此类问题的一般方法.要特别注意这一限制条件.(2)∵根据角的范围及.进一步应用同角公式,确定.应用二倍角公式求解.试题解析:(1)由题意可得,解得,故函数.又此函数为偶函数,可得,结合,可得,故.(2)∵,∴.根据,∴.∴【考点】1、三角函数的图象和性质;2、同角公式;3、二倍角公式.19.已知,则()A.B.C.D.【答案】A【解析】,选.【考点】诱导公式.20.已知点是圆:内任意一点,点是圆上任意一点,则实数()A.一定是负数B.一定等于0C.一定是正数D.可能为正数也可能为负数【答案】A【解析】令,,又因为小于1,所以必定是负数.【考点】1.三角函数式的化简;2.三角函数最值.21.已知函数,.其图象的最高点与相邻对称中心的距离为,且过点.(Ⅰ)求函数的达式;(Ⅱ)在△中.、、分别是角、、的对边,,,角C为锐角。

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.已知△ABC中,cos(-A)+cos(π+A)=-.(1)判断△ABC是锐角三角形还是钝角三角形;(2)求tanA的值.【答案】(1)△ABC是钝角三角形(2)-【解析】解:(1)由已知得,-sinA-cosA=-.∴sinA+cosA=.①①式平方得,1+2sinAcosA=,∴sinAcosA=-<0,又∵0<A<π,∴sinA>0,cosA<0.∴A为钝角,故△ABC是钝角三角形.(2)∵(sinA-cosA)2=1-2sinAcosA=1+=.又∵sinA>0,cosA<0,∴sinA-cosA>0,∴sinA-cosA=,又由已知得sinA+cosA=,故sinA=,cosA=-,∴tanA==-.3.已知,是以原点为圆心的单位圆上的两点,(为钝角).若,则的值为.【答案】【解析】因为,所以,因为,所以【考点】同角三角函数关系,向量数量积4.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( ) A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形5.已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.【答案】(1)-(2)【解析】(1) ∵α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴sin(α-β)=-.(2) 由(1)可得,cos(α-β)=.∵α为锐角,sinα=,∴cosα=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.6.已知cos=,且-π<α<-,则cos=________.【答案】-【解析】cos=cos[-]=sin.又-π<α<-,所以-π<+α<-.所以sin=-,所以cos=-.7.已知tanθ=2,则=__________.【答案】-2【解析】==-2.8.已知角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.【答案】【解析】因为r=|OP|=,所以由cosα=,得=,解得x=0或x=±.当x=0时,sinα=-1,tanα不存在;当x=时,sinα=-,tanα=-;当x=-时,sinα=-,tanα=.9.已知sin 2α=,则cos2=( )A.B.C.D.【答案】A【解析】∵sin 2α=,∴cos2==10.已知sinα=,则cos(π-2α)=()A.-B.-C.D.【答案】B【解析】∵sinα=,∴cos(π-2α)=-cos2α=-(1-2sin2α)=-.故选B.11.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.12.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.13.在中,若,则=()A.B.C.D.【答案】A【解析】由已知, 知为钝角,,,解得,故选A.【考点】同角基本关系式14.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算15.在△ABC中,a=15,b=10,A=60o,则cosB= 。

高中数学:三角函数练习题--同角三角函数的基本关系式

高中数学:三角函数练习题--同角三角函数的基本关系式

数学:三角函数练习题--同角三角函数的基本关系式一、选择题:1.),0(,54cos παα∈=,则αcot 的值等于( )A .34B .43C .34±D . 43±2.若1cot 1sin tan 1cos 22-=+++θθθθ,则θ角在()A .第一象限B .第二象限C .第三象限D .第四象限 3.若21cos sin =⋅θθ,则下列结论中一定成立的是 ()A .22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ4.若2cos sin 2cos sin =-+αααα,则=αtan( )A .1B . - 1C .43D .34-5.化简1cos 1tan 2tan 1cos 12-++αααα后可能取值的集合中元素的个数是( )A .1个B .2个C .3个D .4个二、填空题: 6.若2tan =α,则ααααcos sin cos sin -+的值为________________.7.已知524cos ,53sin +-=+-=m mm m θθ,则m=________________. 8.若α是第四象限角,化简ααtan 2sec 2-=________________.9.______.__________89cot 2cot 1cot 89cot 2cot 1cot =+⋯⋯++⋯⋯⋅oooo o o10.已知θ为锐角,则=|sin log |sec )(sec θθθ________________.三、解答题:11.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.12.已知sin α=m ,(|m|≤1),求tan α的值.参考答案同角三角函数的基本关系式一、选择题:1.B2.C3.D4.A5.D 二、填空题: 6. 37.0或88.1-tan α9.892 10.csc θ三、解答题:11.解:由51cos sin =+x x ,得x x cos 51sin -= 代入sin 2x+cos 2x=1得:(5cosx-4)(5cosx+3)=0∴54cos =x 或53cos -=x 当54cos =x 时,得53sin -=x又∵π<<x 0,∴sinx>0,故这组解舍去当53cos -=x 时,54sin =x ,34tan -=x (2)∵51cos sin =+x x∴(sinx+cosx )2= sin 2x+cos 2x+2sinxcosx =251 ∴2512cos sin -=x x 又π<<x 0,sinx>0,∴cosx<0(sinx-cosx)2=1-2sinxcosx=254925241=+又∵sinx – cosx>0∴sinx – cosx =57sin 3x – cos 3x = (sinx-cosx)(sin 2x+sinxcosx+cos 2x)=12591)25121(57=-⨯ 12.解:当m=0时,0cos sin tan ==ααα;当m=±1时,α的终边在y 轴上,tan α无意义。

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题

高三数学同角三角函数的基本关系式和诱导公式试题1.△ABC是锐角三角形,若角θ终边上一点P的坐标为(sinA-cosB,cosA-sinC),则++的值是()A.1 B.-1 C.3 D.4【答案】B【解析】因为△ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sinA>sin(90°-B)=cosB,sinA-cosB>0,同理cosA-sinC<0,所以点P在第四象限,++=-1+1-1=-1,故选B.2.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.3.已知,则= .【答案】【解析】.【考点】三角函数同角公式,二倍角的正弦公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).(1)求的值;(2)求m的值;(3)求方程的两根及此时θ的值.【答案】(1)(2)(3)θ=或【解析】(1)由韦达定理可知而==sinθ+cosθ=.(2)由①两边平方得1+2sinθcosθ=,将②代入得m=.(3)当m=时,原方程变为2x2-(1+)x+=0,解得x1=,x2=,∴或∵θ∈(0,2π),∴θ=或6.已知α为锐角,cos α=,则tan=()A.-3B.-C.-D.-7【答案】B【解析】依题意得,sin α=,故tan α=2,tan 2α=,所以tan==-.7.在△ABC中,sin(-A)=3sin(π-A),且cosA=-cos(π-B),则C等于()(A) (B) (C) (D)【答案】C【解析】【思路点拨】将已知条件利用诱导公式化简后可得角A,角B,进而得角C.解:由已知化简得cosA=3sinA.①cosA=cosB.②由①得tanA=,又∵0<A<π,∴A=,由②得cosB=·cos=,又∵0<B<π,∴B=,∴C=π-A-B=.8.已知α是第三象限角,且cos(85°+α)=,则sin(α-95°)=.【答案】【解析】∵α是第三象限角,cos(85°+α)=>0,∴85°+α是第四象限角,∴sin(85°+α)=-,sin(α-95°)=sin[(85°+α)-180°]=-sin(85°+α)=.9.已知,,则的值等于()A.B.C.D.【答案】D【解析】,, ,【考点】正弦和差角公式诱导公式10.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.11.若sin=,则sin=______.【答案】-【解析】sin=-cos=-cos=2sin2-1=-. 12.已知sin α=,则cos (π-2α)=().A.B.-C.D.【答案】B【解析】cos (π-2α)=-cos 2α=2sin2α-1=2×2-1=-.13.化简:=________.【答案】-tana【解析】.【考点】三角函数同角关系式及诱导公式.14.在中,BC=,AC=2,的面积为4,则AB的长为 .【答案】或【解析】由已知,∴,故,在中,当,当时,4,当时.【考点】1、三角形的面积;2、同角三角函数基本关系式;3、余弦定理.15.若α∈,且,则的值等于()A.B.C.D.【解析】因为,α∈,且,所以,,=,选D.【考点】三角函数倍角公式、同角公式16.设为锐角,若,则的值为___________.【答案】【解析】,所以=,因为,且,所以=,∴=,=,所以=.【考点】1、两角差的正弦公式;2、正弦和余弦的二倍角公式.17.已知函数,函数与函数图像关于轴对称.(1)当时,求的值域及单调递减区间;(2)若,求值.【答案】(1)当时,的值域为,单调递减区间为;(2).【解析】(1)先将函数的解析式进行化简,化简为,利用计算出的取值范围,再结合正弦曲线确定函数的值域,对于函数在区间上的单调区间的求解,先求出函数在上的单调递减区间,然后和定义域取交集即得到函数在区间上的单调递减区间;(2)利用等式计算得出的值,然后利用差角公式将角凑成的形式,结合两角差的正弦公式进行计算,但是在求解的时候计算时,利用同角三角函数的基本关系时需要考虑角的取值范围.试题解析:(1)2分又与图像关于轴对称,得当时,得,得即 4分单调递减区间满足,得取,得,又,单调递减区间为 7分(2)由(1)知得,由于 8分而10分13分【考点】1.诱导公式;2.同角三角函数的基本关系;3.两角差的正弦公式18.已知且(1)求的值;(2)求的值;【答案】(1);(2)【解析】⑴根据已知条件先判断角所在的象限,然后求出角的余弦值,那么正弦值就很容易得到了;⑵先化简所给的式子,然后分子分母同时除以,然后将代入即可.试题解析:⑴∵,∴在第四象限 2分∴, 4分∴; 6分(2). ..12分【考点】同角三角函数间的关系,三角函数的诱导公式及应用.19.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.【答案】-【解析】由θ为第二象限角且tan(θ+)=,则为第三象限角,于是,所以.【考点】三角函数计算20.已知,,则.【答案】【解析】由,得,,.【考点】同角三角函数的关系、两角和的正切公式.21.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.22.已知,且,则的值等于()A.B.C.D.7【答案】C【解析】由倍角公式得又由平方关系得最后由两角和正切公式得【考点】考查三角恒等变换,知值求值类问题.23.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值24.若,且,则 ( )A.B.C.D.【答案】D【解析】因为,且,所以,故选D。

三角函数复习(同角三角函数基本关系与诱导公式)

三角函数复习(同角三角函数基本关系与诱导公式)

三角函数复习(同角三角函数基本关系与诱导公式). (2)商数关系:sin αcos α=tan α.1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1(3)倒数关系:tan α=co 1t∝2.六组诱导公式(1)诱导公式的记忆口诀:奇变偶不变,符号看象限. (2)同角三角函数基本关系式的常用变形:(sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 二、课前自测1. tan 等于 ( ) A. √B. √C.√D.√2. 若 α=1,α ./,则 tanα 等于 ( )A.√B.√C. √D. √3. 已知 tanα= 1,且 α 为第二象限角,则 nα 的值为 ( )A. 1B. 11C.1D.14. .1 / n.1/= .5. 已知 tanα= ,则的值为 .三、典型例题1. 已知 α 是三角形的内角,且 nα α=1.Ⅰ求tanα的值;Ⅱ把1用tanα表示出来,并求其值;Ⅲ求:的值;Ⅳ求 nα nα α的值.2. (1) n()() n()=;(2)已知 .α/=√,则 .α/ n.α/的值为.(3)已知 n.1 α/=,则 .α111/=.(4)若 .α/=1,则 n.α/=.3. (1)已知=()()(),则的值构成的集合是()A. *+B. *+C. *+D. *+(2)()() . /()()=.(3)已知α为第三象限角,(α)= . / . / ()()().Ⅰ化简(α);Ⅱ若 .α/=1,求(α)的值.同角三角函数基本关系式与诱导公式答案课前自测 1. D 2. C 3. C4. √5. 1典型例题1. (1) 解法一: 联立 { nα α=1n αα=由 得 α=1nα, 将其代入 ,整理得 n α nα = . 因为 α 是三角形的内角, 所以 nα=,所以 α=, 所以 tanα=. 解法二:因为 nα α=1,所以 ( nα α)=.1 /,则 nα α=1,所以 nα α=,所以 ( nα α) = nα α==. 因为 nα α= 1且 α , 所以 nα , α , 所以 nα α . 所以 nα α= .由 { nα α=1nα α=得 { nα=α=所以 tanα= .(2)1 === 11因为tanα=,所以α nα=tanαtanα=. /. /=(3)tanα=,则:==. /=.(4)nα nα α==1=1=2. (1);(2)√(3)(4). 13. (1)C 【解析】当为偶数时,==;当为奇数时,==.所以的值构成的集合是*+.(2).【解析】原式=0 ./1 ( ), ( )-=./( ) =( ) ===(3)(α)= . / ./ ( ) ( ) ( )=( ) ( )( )= α(4) 因为 .α/=1, 所以 nα=1,从而 nα= 1. 又 α 为第三象限角, 所以 α= √ n α= √,所以 (α)= √.同角三角函数基本关系式与诱导公式课堂练习与作业一、选择题(共7小题;共35分) 1. n 的值为 ( ) A. 1B. √C.D. √2. 已知 ./=√,且,则 tan = ( )A. √B. √C. √D. √3. 若 α 是第三象限角,且 tanα=1,则 α= ( )A. √11B.√11C.√11D. √114. 在 中,若 tan = 则 = ( )A. √B. √C. √D. √5. 已知 n ( )= n./ 则 n = ( )A.B.C. 或D. 16. 已知 (α)=( ) ( )( ),则 .1/ 的值为 ( )A. 1B. 1C. 1D. 17. 已知函数 ( )= n ( α) ( ),且 ( )= ,则 ( ) 的值为 ( )A. B. C. D.二、填空题(共1小题;共5分)8. 已知α为锐角,且 tan(α) . /=,tan(α) n()=,则 nα的值是.三、解答题(共2小题;共26分)9. 已知 n(α)= n.α/,求下列各式的值:(1);(2) nα nα α.10. 已知 n(α)(α)=√.α /,求下列各式的值.(1) nα α;(2) n.α/.α/.答案第一部分1. A【解析】 n = n ( ) ( )= n ( )= n =1 1=12. D 【解析】 ./= n =√,又,则 =1,所以 tan =√ .3. C【解析】因为 α 是第三象限角,且 tanα= =1, n α α= ,所以 α= √1 1.4. B【解析】在 中,当 tan = 时, ./,所以 =√1=√= √. 5. B【解析】由已知等式得 n = , 所以 n = = ,所以 =1,故 n = =. 6. C【解析】因为 (α)== α,所以 . 1/= .1/= ./== 1.7. c【解析】因为 ( )= n ( α) ( )= nα = ,所以( )= n ( α) ( )= n (α) ( )=第二部分 8. √1 1【解析】由已知可得 tanα n = ,tanα n = , 解得 tanα= , 又 α 为锐角,故 nα= √11. 第三部分9. (1) 解法一:由 n ( α)= n.α/ 得 tanα= .原式=== 1.解法二:由已知得 nα= α.原式==1.(2)解法一:原式==1=.解法二:原式===.10. (1)由 n(α)(α)=√,得 nα α=√.将两边平方,得 nα α=,故 nα α=.又α,所以 nα, α.( nα α)= nα α= . /=1 ,所以 nα α=.(2) n.α/.α/=α nα=( α nα)(α α nα nα)= .1/=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同角三角函数的基本关系式 练习题1.若sin α=45,且α是第二象限角,则tan α的值等于( )A .-43 B.34 C .±34 D .±432.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°|3.若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34 C .1 D.544.若cos α=-817,则sin α=________,tan α=________.5.若α是第四象限的角,tan α=-512,则sin α等于( )A.15 B .-15 C.315 D .-5136.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-17、已知A 是三角形的一个内角,sin A +cos A = 23 ,则这个三角形是 ( )A .锐角三角形B .钝角三角形C .不等腰直角三角形D .等腰直角三角形 8、已知sin αcos α = 18,则cos α-sin α的值等于 ( )A .±34 B .±23 C .23 D .-239、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ( ) A .32 B . 32- C . 31 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( )A .1-B .2-C .1D .211、若2cos sin 2cos sin =-+αααα,则=αtan()A .1B .- 1C .43D .34-12.A 为三角形ABC 的一个内角,若sin A +cos A =1225,则这个三角形的形状为( )A .锐角三角形B .钝角三角形C .等腰直角三角形D .等腰三角形 13.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C.-34 D.4514.(tan x +cot x )cos 2x =( )A .tan xB .sin xC .cos xD .cot x15.使 1-cos α1+cos α=cos α-1sin α成立的α的范围是( )A .{x |2k π-π<α<2k π,k ∈Z }B .{x |2k π-π≤α≤2k π,k ∈Z }C .{x |2k π+π<α<2k π+3π2,k ∈Z }D .只能是第三或第四象限的角16.计算1-2sin40°·cos40°sin40°-1-sin 240°=________.17.已知tan α=-3,则1-sin αcos α2sin αcos α+cos 2α=________.18、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________. 19、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为.20.若角α的终边落在直线x +y =0上,则sin α1-sin 2α+1-cos 2αcos α的值为________.21.求证:sin θ(1+tan θ)+cos θ·(1+1tan θ)=1sin θ+1cos θ.1、解析:选A.∵α为第二象限角,∴cos α=-1-sin 2α=-1-(45)2=-35,∴tan α=sin αcos α=45-35=-43.2、解析:选B.1-sin 2160°=cos 2160°=-cos160°.3、解析:选B.2sin α-cos αsin α+2cos α=2tan α-1tan α+2=34.4、解析:∵cos α=-817<0,∴α是第二或第三象限角.若α是第二象限角,则sin α>0,tan α<0.∴sin α=1-cos 2α=1517,tan α=sin αcos α=-158.若α是第三象限角,则sin α<0,tan α>0.∴sin α=-1-cos 2α=-1517,tan α=sin αcos α=158.答案:1517或-1517 -158或1585、解析:选D.∵tan α=sin αcos α=-512,sin 2α+cos 2α=1,∴sin α=±513,又α为第四象限角,∴sin α=-513.6、解析:选B.∵α为第三象限角,∴sin α<0,cos α<0,∴cos α1-sin 2α+2sin α1-cos 2α=cos α|cos α|+2sin α|sin α|=-1-2=-3.7、解析:选B.∵sin A +cos A =1225,∴(sin A +cos A )2=(1225)2=144625,即1+2sin A cos A =144625,∴2sin A cos A =-481625<0,∴sin A >0,cos A <0,∴A 为钝角,∴△ABC 为钝角三角形. 8、解析:选D.sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-25=45.9、解析:选D.(tan x +cot x )·cos 2x =(sin x cos x +cos x sin x )·cos 2x =sin 2x +cos 2x sin x ·cos x ·cos 2x =cos x sin x=cot x .10、解析:选A . 1-cos α1+cos α= (1-cos α)21-cos 2α=1-cos α|sin α| =cos α-1sin α,即sin α<0,故{x |2k π-π<α<2k π,k ∈Z }.11、解析:原式=(sin40°-cos40°)2sin40°-cos 240°=cos40°-sin40°sin40°-cos40°=-1.答案:-112、解析:1-sin αcos α2sin αcos α+cos 2α=sin 2α-sin αcos α+cos 2α2sin αcos α+cos 2α=tan 2α-tan α+12tan α+1=(-3)2-(-3)+12×(-3)+1=-135. 答案:-13513、答案:014、证明:左边=sin θ(1+sin θcos θ)+cos θ·(1+cos θsin θ)=sin θ+sin 2θcos θ+cos θ+cos 2θsin θ=(sin θ+cos 2θsin θ)+(sin 2θcos θ+cos θ)=sin 2θ+cos 2θsin θ+sin 2θ+cos 2θcos θ=1sin θ+1cos θ=右边, ∴原式成立.15、解:∵sin A +cos A =22,①∴(sin A +cos A )2=12,即1+2sin A cos A =12,∴2sin A cos A =-12.∵0°<A <180°,∴sin A >0,cos A <0. ∴sin A -cos A >0.∵(sin A -cos A )2=1-2sin A cos A =32,∴sin A -cos A =62.②①+②,得sin A =2+64.①-②,得cos A =2-64.∴tan A =sin A cos A =2+64×42-6=-2- 3.16、解:设这两个锐角为A ,B ,∵A +B =90°,∴sin B =cos A ,所以sin A ,cos A 为8x 2+6kx +2k +1=0的两个根.所以⎩⎨⎧ sin A +cos A =-3k4sin A cos A =2k +18①②②代入①2,得9k 2-8k -20=0,解得k 1=2,k 2=-109,当k =2时,原方程变为8x 2+12x +5=0,Δ<0方程无解;将k =-109代入②,得sin A cos A =-1172<0,所以A 是钝角,与已知直角三角形矛盾.所以不存在满足已知条件的k .。

相关文档
最新文档