初中数学人教版 一次函数27 人教版

合集下载

人教版初中数学《一次函数》(完整版)课件

人教版初中数学《一次函数》(完整版)课件

人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
八年级数学下册(RJ)
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )
人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 ) 人教版初中数学《一次函数》教学实 用课件 (PPT优 秀课件 )

人教版初中数学《一次函数》_精美课件

人教版初中数学《一次函数》_精美课件
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
小结
注意一次函数的定义,并且正确理解 它和正比例函数的关系,一次函数y=kx+b 中必须满足的条件是k≠0.当b=0时,一次函 数也为正比例函数.
运行时间t(h)的函数吗?它们之间的数量关系
是: y=1318-300t
(0 t 659) 150
.(注意:实际问题要给
出自变量的范围)
(3)由(2)中的关系式求出奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
0.4 .(保留一位小数)
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
例:(补充) 下列函数中是一次函数的有哪 些?并说出 k 和b的值.
1 y 3 x;2 y 1 2;3 y 5x2 3;
8
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载
2011年开始运营的京沪高速铁路
学习新知
全长1318 km,设列车的平均速度为300 km/h.
(1) 列车从始发站北京南站到终点站上海虹桥站,约
需 4.4 小时.(结果保留一位小数)
(2)列车从北京南站出发,离终点站的距离y(单位:km)是
;当
【获奖课件ppt】人教版初中数学《一 次函数 》_精 美课件1 -课件 分析下 载

人教版初中数学第十九章第2节《一次函数》提高训练 (26)(含答案解析)

人教版初中数学第十九章第2节《一次函数》提高训练 (26)(含答案解析)

第十九章第2节《一次函数》提高训练 (26)一、单选题1.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x kg ,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元, y1,y2与x 之间的函数图象如图所示,则下列说法中错误的是( )A .甲园的门票费用是60元B .草莓优惠前的销售价格是40元/kgC .乙园超过5 kg 后,超过的部分价格优惠是打五折D .若顾客采摘12 kg 草莓,那么到甲园或乙园的总费用相同2.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n -1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)3.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <4.如图,直线335y x =-+与 y 轴相交于点 A ,与 x 轴相交于点 B ,点 C 为 AB 的中点,则直线 OC 的解析式为( )A .53y x =B .35y x =-C .35y x =D .53=-y x 5.已知点A (-2,1),B (2,3),若要在x 轴上找一点P ,使AP +BP 最短,由此得点P 的坐标为( ) A .(-4,0)B .(-32,0) C .(-1,0) D .(1,0)6.已知一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =3B .x =1.5C .x =-3D .x =-1.5二、填空题7.若以二元一次方程x +3y =b 的解为坐标的点(x ,y )都在直线y =﹣13x +b ﹣1上,则常数b 的值为_____.8.已知一次函数y ax b =+的图象如图,根据图中信息请写出不等式0ax b +≥的解集为___________.9.正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,按如图所示的方式放置在平面直角坐标系中,若点1A 、2A 、3A 和1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2020B 的坐标是__________.10.某个函数具有性质:当x<0时,y 随x 的增大而减小,这个函数的表达式可以是_____________(只要写出一个符合题意的答案即可).11.直线y =﹣2x +b 过点(3,1),将它向下平移4个单位后所得直线的解析式是_____.12.若一次函数()23y k x k =-+-的图象经过第一,二,三象限,则k 的取值范围是_________;若一次函数()23y k x k =-+-的图象不经过第四象限,则k 的取值范围是___________. 13.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.14.如图放置112223334,,,A B A A B A A B A ∆∆∆都是全等的等边三角形,边11A B 在y 轴上, 点2A 在x 轴上,点123,,,A A A 都在直线1y x =-上,则点2020B 的坐标是_____.15.已知一次函数y=kx+b 的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______. 16.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.17.如图,直线1y x m =+和22y x n =-的交点是A ,过点A 分别作x 轴y 轴的垂线,则不等式2x m x n +>-的解集为________.18.已知1(2)23k y k x k -=-+-是关于x 的一次函数,则这个函数的解析式是_______. 19.在平面直角坐标系中,直线l :y =x+1与y 轴交于点A 1,如图所示,依次作正方形OA 1B 1C 1,正方形C 1A 2B 2C 2,正方形C 2A 3B 3C 3,正方形C 3A 4B 4C 4,…,点A 1,A 2,A 3,A 4,…在直线l 上,点C 1,C 2,C 3,C 4,…在x 轴正半轴上,则B n 的坐标是_____.三、解答题20.某快递公司有甲、乙两辆货车沿同一路线从A地到B地配送货物.某天两车同时从A地出发,驶向B地,途中乙车由于出现故障,停车修理了一段时间,修理完毕后,乙车加快了速度匀速驶向B地;甲车从A地到B地速度始终保持不变.如图所示是甲、乙两车之间的距离y(km)与两车出发时间x(h)的函数图象.根据相关信息解答下列问题:(1)点M的坐标表示的实际意义是什么?(2)求出MN所表示的关系式,并写出乙故障后的速度;(3)求故障前两车的速度以及a的值.21.甲、乙两个批发店销售同一种苹果.在甲批发店,不论购买数量是多少,价格均为6元/千克,在乙批发店,购买数量不越过50千克时,价格为7元千克;购买数超过50千克时,超出部分的价x>.格为5元千克.假设小王在某批发店购买苹果的数为x千克()0(1)根据题意填表:(2)假设在甲批发店购买苹果的费用为y元,求y与x之间的关系式;(3)根据题意填空①若小王在甲、乙两个批发店购买的苹果的数量相同.且花费也相同,则他购买的苹果的数量为________千克;①若小王计划购买的苹果的数量为120千克,则他去________批发店购买时的花费少; ①若小王购买苹果时花费了360元,则他去_______批发店购买的数量多. 22.已知一次函数y kx b =+(,k b 是常数,且0k≠)的图象过()A 3,5与()2,5B --两点.(1)求一次函数的解析式;(2)若点()3,a a --在该一次函数图象上,求a 的值;(3)把y kx b =+的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.23.如图1,A (0,10),B (m ,﹣2),且S ①AOB =40. (1)求m 的值;(2)如图2,直线CD 与x ,y 轴分别交于C 、D 两点,①OCD =45°,第四象限的点P (a ,b )在直线CD 上,且ab =﹣8,求OP 2﹣OC 2值;(3)如图3,点D (2,0),求①DAO+①BAO 的度数.24.请你用学习“一次函数和二次根式”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数|1|y x =-的图象: ①列表填空:①描点、连线,画出|1|y x =-的图象;(2)结合所画函数图象,写出|1|y x =-两条不同类型的性质;(31102x -=的解. 25.如图,直线22y x =-+与x 轴、y 轴分别交于A 、B 两点,直线112y x =+与x 轴、y 轴分别交于D 、C 两点,与直线AB 交于点M .(1)填空:点B 的坐标是(________,________),点D 的坐标是(________,________); (2)直线AB 与直线CD 的位置关系________; (3)线段DM 的长为________;(4)在第一象限是否存在点P ,使得ABP ∆是等腰直角三角形,请直接写出所有满足条件的点P 的坐标________.26.一次函数y =kx +b 的图象经过点(3,﹣2)和点(﹣1,6).(1)求出该一次函数的解析式;(2)求该图象与x 轴的交点A 的坐标,与y 轴的交点B 的坐标,并画出函数的图象; (3)该一次函数与正比例函数y =﹣x 的图象交于点C ,求①OAC 的面积. 27.已知:一次函数4y kx =+的图象经过点(3,2)--. (1)求这个函数的解析式;(2)若直线分别交坐标轴于A 、B 两点,O 为坐标原点,求AOB ∆的面积. 28.画出直线y =﹣2x +3的图象,根据图象解决下列问题: (1)直线上找出横坐标是+2的点的坐标; (2)写出y >0时,x 的取值范围;(3)写出直线上到x 轴的距离等于4的点的坐标.29.不论k 为何值,一次函数y =2kx -k +2的图象恒过一定点,求这个定点; 30.如图,过点A 的一次函数的图象与正比例函数y =2x 图象相交于点B . (1)求该一次函数的解析式;(2)如果点C (m ,-2)在该一次函数的图象上,请求m 的值; (3)若该一次函数的图象与x 轴交于D 点,求①BOD 的面积.【答案与解析】1.D 【解析】根据函数的图象逐一分析即可得出答案.A . 从图象可以看出,当0x =时,60y =,所以甲园的门票费用是60元,正确,故该选项不符合题意;B . 200540÷=,所以草莓优惠前的销售价格是40元/kg ,正确,故该选项不符合题意;C . 乙园超过5 kg 后,超过的部分销售价格是(400200)(155)20-÷-=元/kg ,是打五折,正确,故该选项不符合题意;D . 若顾客采摘12 kg 草莓,甲园的花费是6012400.6348+⨯⨯=(元),乙园的花费是200(125)20340+-⨯=(元),所以总费用不相同,错误,故该选项符合题意;故选:D .本题主要考查一次函数的应用,能够从图象中获取信息是解题的关键. 2.B 【解析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标. ①1(1,0)A ①11OA =①过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ①()11,2B ①2(2,0)A ①22OA =①过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ①()12,4B①点3A 与点O 关于直线22A B 对称①()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键. 3.C 【解析】根据函数图象可以直接判断本题的答案. 解:结合图象,当3x >时,函数1y kx b =+在函数2y x a =+的下方, 即不等式kx b x a ++<的解集是3x >; 故选:C .本题考查了一次函数与一元一次不等式:从函数图象的角度看,一元一次不等式的解集就是确定直线=+y kx b 在另一条直线(或者x 轴)上(或下)方部分所有点的横坐标的集合;这是数形结合的典型考查. 4.C 【解析】由直线解析式求出A 、B 两点坐标,根据两点中点坐标公式可求出C 点坐标,然后再利用待定系数法即可求出OC 直线解析式. 解:①直线335y x =-+与 y 轴相交于点 A ,与 x 轴相交于点 B , 令x=0,解得y=3,即A (0,3);令y=0,解得x=5,即B (5,0) 又C 为AB 的中点, ①C (52,32) 设OC 解析式为y=kx ,把点C 坐标代入解析式得:52k=32解得k=35, ①OC :y=35x ,故选:C .本题主要考查了求函数图像与坐标轴交点坐标,两点中点坐标,待定系数法求函数解析式,解题关键在于求出C 点坐标,利用待定系数法求OC 解析式.5.C【解析】作点A关于x轴的对称点A',则A'坐标为(-2,-1)连接B A',交x轴于点P,此时AP+BP最短.求出直线BA'解析式,进而求出点P坐标即可.解:如图,作点A关于x轴的对称点A',则A'坐标为(-2,-1),连接B A',交x轴于点P,此时AP +BP最短.设直线BA'解析式为y=kx+b,①点B、A'坐标分别为(2,3)(-2,-1),①2321 k bk b+=⎧⎨-+=-⎩,解得11 kb=⎧⎨=⎩,①直线BA'解析式为y=x+1,把y=0代入得x=-1,①点P坐标为(-1,0).故选:C本题考查了将军饮马问题,待定系数法等知识,作出点A的对称点A',求出直线BA'解析式是解题关键.6.B【解析】根据一次函数与一元一次方程的关系,结合图象即可求解.解:①关于x的方程kx+b=0可以看做求一次函数y=kx+b的图象与x轴的交点的横坐标,由图象得直线与x轴的交点为(1.5,0),①关于x的方程kx+b=0的解为x=1.5.故选:B本题考查了一次函数与一元一次方程的关系,会用函数的观点理解方程是解题的关键.7.32【解析】直线解析式乘以3后和方程联立解答即可.解:因为以二元一次方程x +3y =b 的解为坐标的点(x ,y)都在直线y =﹣13x +b ﹣1上, 直线解析式乘以3得3y =﹣x +3b ﹣3,变形为:x +3y =3b ﹣3,所以b =3b ﹣3, 解得:b =32, 故答案为:32. 本题考查了一次函数与二元一次方程问题,关键是直线解析式乘以3后和方程联立解答. 8.1x ≥-【解析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.20202019201921,2()B ﹣【解析】根据直线解析式先求出OA 1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n 个正方形的边长,从而求得点B n 的坐标,即可求得点B 2020的坐标. 解:①直线y=x+1,当x=0时,y=1,当y=0时,x=-1,①OA 1=1,①B 1(1,1),①OA 1=1,OA=1,①①OAA 1=45°,①①A 2A 1B 1=45°,①A 2B 1=A 1B 1=1,①A 2C 1=2=21,①B 2(3,2)同理得:A 3C 2=4=22,…,①B 3(7,4);B 4(24-1,24-1),即B (15,8),①B n (2n -1,2n -1),①B (22020-1,22019)故答案为(22020-1,22019).本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解题的关键.10.y x =-【解析】根据一次函数的性质、反比例函数的性质、二次函数的性质写出一个满足条件的函数即可. 某个函数具有性质:当x<0时,y 随x 的增大而减小,这个函数的表达式可以是:y x =-,故答案为:y x =- (答案不唯一).本题考查了函数的性质,熟练掌握一次函数的性质、函数的增减性是解本题的关键.11.y =﹣2x +3【解析】将(3,1)代入y =﹣2x +b ,即可求得b ,然后根据“上加下减”的平移规律求解即可.解:将(3,1)代入y =﹣2x +b ,得:1=﹣6+b ,解得:b =7,①y =﹣2x +7,将直线y =﹣2x +7向下平移4个单位后所得直线的解析式是y =﹣2x +7﹣4,即y =﹣2x +3.故答案为:y =﹣2x +3.本题主要考查利用待定系数法确定函数关系式,一次函数图象的平移,解此题的关键在于熟练掌握其知识点.12.23k << 23k <≤【解析】根据函数图象确定关于k 的不等式组,解不等式组即可.解:①一次函数()23y k x k =-+-的图象经过第一,二,三象限,①k -2>0,3-k >0,①23k <<,①一次函数()23y k x k =-+-的图象不经过第四象限,①k -2>0,3-k≥0,①23k <≤.故答案为:23k <<;23k <≤.本题考查了一次函数的图象,能根据函数图象经过的象限判断出一次函数比例系数和常数的取值是解题关键.13.(197,0); 【解析】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题. 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =,∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫ ⎪⎝⎭. 本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.14.2020)【解析】利用一次函数图象上点的坐标特征可分别求出点1A 、2A 的坐标,利用点的坐标的变化可找出点n A的坐标为-2)n -,结合等边三角形的边长,即可得出点n B 的坐标为-,)n ,再代入2020n =即可求出点2020B 的坐标.解:当0x =时,011y -=-, ∴点1A 的坐标为(0,1)-;当0y =10-=,解得:x =∴点2A 的坐标为0).∴点n A 的坐标为-2)n -.11122A B OA ==,∴点n B 的坐标为-)n ,∴点2020B 的坐标2020).故答案为:,2020).本题考查了一次函数图象上点的坐标特征、等边三角形的性质、全等三角形的性质以及点的坐标的变化,利用全等三角形的性质及点的坐标的变化,找出点n A 的坐标为,2)n -是解题的关键.15.y=2x+2【解析】根据一次函数解析式y=kx+b ,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k 和b 的值,即得到解析式.因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b ,所以0=-x+b ,2=b ,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.16.12- 【解析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x +2y =2,再代入x=3即可求出y 的值.解:从图象可以得到,20x y =⎧⎨=⎩和01x y =⎧⎨=⎩是二元一次方程ax +by =c 的两组解, ①2a =c ,b =c ,①x +2y =2,当x =3时,y =12-, 故答案为12-. 本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17.2x <【解析】根据两直线的交点坐标结合函数的图象直接写出答案即可.①直线1y x m =+和22y x n =-的交点是A (2,3),当2x <时,直线1y x m =+在直线22y x n =-的上方,①不等式2x m x n +>-的解集为2x <,故答案为:2x <.本题考查了一次函数与一元一次不等式的知识,解题的关键是能够根据交点坐标确定不等式的解集.18.y =-4x -7【解析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.解:①1(2)23k y k x k -=-+-是关于x 的一次函数,①1120k k ⎧-=⎨-≠⎩, 解得:2k =-(负值已舍去);①这个函数的解析式是:47y x =--;故答案为:47y x =--.本题考查了一次函数的定义,解题的关键是正确求出k 的值.19.(2n ﹣1,2n ﹣1)【解析】由已知分别求出B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),…,再求点的坐标特点,可得到B n (2n ﹣1,2n ﹣1). 解:①y =x+1与y 轴交于点A 1,①A 1(0,1),①正方形OA 1B 1C 1,①OC 1=B 1C 1=1,①C 1(1,0),B 1(1,1),①A 2(1,2),①正方形C 1A 2B 2C 2,①C 1A 2=C 1C 2=2,①C 2(3,0),B 2(3,2),同理,C 3(7,0),B 3(7,4),C 4(15,0),B 4(15,8),…,①B n (2n ﹣1,2n ﹣1),故答案为(2n ﹣1,2n ﹣1).本题考查在平行直角坐标系内找点坐标的规律,解题的关键是根据一次函数图象的性质和正方形的性质求出点坐标,找到坐标的变化规律.20.(1) 当行驶4小时时,甲车到达B 地(终点),乙车距离终点还有90千米;(2) y =﹣60x +330;60千米/小时;(3) 甲车速度为70千米/小时,乙为50千米/小时,a 的值为75【解析】(1)观察图象结合题意分析可得答案;(2)设MN 所表示的关系式为y =kx +b ,用待定系数法求解得解析式;再用路程除以相应的时间可得速度;(3)设出发时甲的速度为v 千米/小时,乙速度为(v ﹣20)千米/小时,根据乙车出现故障后的(2.5﹣2)小时甲车行驶的路程加上乙车故障排除后甲乙两车所产生的距离等于90千米减去40千米,列出关于v 的方程,解得v 的值,则乙车速度也可求得,然后用40+70×0.5计算即可得出a 的值.解:(1)答:点M 的坐标表示的实际意义是:当行驶4小时时,甲车到达B 地(终点),乙车距离终点还有90千米;(2)设MN 所表示的关系式为y =kx +b ,将M (4,90),N (5.5,0)代入得:4905.50k b k b +=⎧⎨+=⎩, 解得:60330k b =-⎧⎨=⎩, ①MN 所表示的关系式为y =﹣60x +330;故障排除后乙车速度为:90÷(5.5﹣4)=60千米/小时;(3)①40÷2=20千米/小时,①设出发时甲的速度为v 千米/小时,乙速度为(v ﹣20)千米/小时,则有:(2.5﹣2)v +(4﹣2.5)(v ﹣60)=90﹣40,解得:v =70,①甲车速度为70千米/小时,乙为50千米/小时,①a 的值为40+70×0.5=75.本题主要考查从函数图象获取信息,一次函数,解此题的关键在于根据题意准确理解每段函数图象的意义,利用待定系数法确定函数关系式.21.(1)填表见解析;(2)6y x =;(3)①100;①乙;①甲.【解析】(1)根据甲、乙两批发店的价格列出式子进行计算即可得;(2)根据题意可得y 与x 之间的关系式为正比例函数,再利用待定系数法即可得;(3)①分050x <≤和50x >两种情况,根据题意分别建立方程,然后解一元一次方程即可得; ①分别求出甲、乙两批发店的费用,再比较大小即可得;①分别求出甲、乙两批发店可购买的数量,再比较大小即可得.(1)由题意,甲批发店:购买30千克的费用为306180⨯=(元),购买150千克的费用为1506900⨯=(元),乙批发店:购买30千克的费用为307210⨯=(元),购买150千克的费用为507(15050)5850⨯+-⨯=(元),则填表如下:(2)由题意得:y 与x 之间的函数关系式为正比例函数,设y kx =,将点(30,180)代入得:30180k =,解得6k =,故y 与x 之间的函数关系式为6y x =;(3)①由题意,分以下两种情况:当050x <≤时,则67x x =,解得0x =(不符题意,舍去),当50x >时,则()6750550x x =⨯+-,解得100x =,故答案为:100;①在甲批发店购买的费用为1206720⨯=(元),在乙批发店购买的费用为()507120505700⨯+-⨯=(元),因为700720<,所以他去乙批发店购买时的花费少,故答案为:乙;①在甲批发店可购买的数量为360660÷=(千克),在乙批发店可购买的数量为()50360507552+-⨯÷=(千克),因为6052>,所以他去甲批发店购买的数量多,故答案为:甲.本题考查了利用待定系数法求正比例函数的解析式、一元一次方程的实际应用等知识点,依据题意,正确建立方程和各运算式子是解题关键.22.(1)21y x =-;(2)73;(3)24y x =-,所画图像详见解析 【解析】(1)已知直线上的两点坐标,可用待定系数法把两点坐标代入一次函数y kx b =+(,k b 是常数,且0k ≠),组成二元一次方程组,可求出21k b =⎧⎨=-⎩,代入y kx b =+即可得该一次函数解析式;(2)点()3,a a --在该一次函数图象上,把该点代入(1)求得的一次函数解析式,即可求得a 的值;(3)根据图像平移规律,可知向下平移3个单位,应该是原解析式 -3,即213y x =--,整理得24y x =-;图像利用描特殊点法作出即可.证明:(1)①一次函数y kx b =+(,k b 是常数,0k ≠)的图象过()A 3,5,()2,5B --两点, ①3525k b k b +=⎧⎨-+=-⎩,得21k b =⎧⎨=-⎩, 即该一次函数的表达式是21y x =-;(2)点()3,a a --在该一次函数32y x =+的图象上,①()231a a -=--, 解得,73a =,即a 的值是73; (3)把21y x =-向下平移3个单位后可得:24y x =-;图象如下:本题主要考查了待定系数法求一次函数解析式;利用点在一次函数上的性质,确定字母的值;图形平移性质及一次函数图像的画法等知识.23.(1)8;(2)16;(3)45°.【解析】(1)S①AOB=12×AO×x B=12×10×m=40,即可求解;(2)P在直线CD上,故b=t﹣a,即点P(a,t﹣a),而ab=﹣8,即a(a﹣t)=8,即a2﹣at=8,则OP2﹣OC2=a2+(t﹣a)2﹣t2=2(a2﹣at)=16;(3)作点D关于y轴的对称点G,根据勾股定理分别计算①AGB三边的平方,根据勾股定理的逆定理可知①AGB是等腰直角三角形,可得结论.(1)S①AOB=12×AO×x B=12×10×m=40,解得m=8;(2)设点D(0,t),①①OCD=45°,则CO=DO=t,故点C(t,0),设直线CD的表达式为y=kx+b,则0kt bb t=+⎧⎨=⎩,解得1kb t=-⎧⎨=⎩,故直线CD的表达式为y=﹣x+t,①P在直线CD上,故b=t﹣a,即点P(a,t﹣a),①ab=﹣8,即a(a﹣t)=8,即a2﹣at=8,①OP2﹣OC2=a2+(t﹣a)2﹣t2=2(a2﹣at)=16;(3)如下图,作点D关于y轴的对称点G,连接GB、GA,①点D (2,0),则G (﹣2,0), ①A (0,10),B (8,﹣2),①AG 2=102+22=104,BG 2=102+22=104, ①AB 2=64+144=208, ①AG =BG ,AG 2+BG 2=AB 2, ①①AGB =90°,①①BAG =①OAG+①BAO =45°, ①①DAO =①GAO , ①①DAO+①BAO =45°.故答案为(1)8;(2)16;(3)45°.本题考查了勾股定理的逆定理,待定系数法求函数解析式,本题第(3)问的关键是做出D 关于y 轴的对称点,将①DAO 和①BAO 转化为一个角,然后在求和.24.(1)①3,2,1,0,1,2,3;①画图见解析;(2)①增减性:1x <时,y 随着x 的增大而减小,1x >时,y 随着x 的增大而增大,①对称性:图象关于1x =轴对称,①函数的最小值为0;(3)0x =和43x =. 【解析】(1)①把x 的值代入解析式计算即可;①分别以自变量及函数值为点的横、纵坐标,描出各点,即可绘制函数图象; (2)可从函数的增减性、对称性、最值等方面分析; (3)根据函数图象得出方程的解即可. 解:(1)①填表:故答案为:3,2,1,0,1,2,3;①画函数图象如图:(2)①增减性:1x <时,y 随着x 的增大而减小,1x >时,y 随着x 的增大而增大;①对称性:图象关于1x =轴对称; ①函数的最小值为0;(311101122x x x -==>-=-+,即求两函数|1|y x =-,112y x =-+交点的横坐标,由图象可得:两函数有两个交点,1102x -=有两个解,分别为0x =和43x =.也可使用分类讨论得到:0x =和43x =.此题考查的是描点法绘制函数图象及根据函数的图象描述函数的性质,函数图象交点,掌握描点法绘制函数图象注意自变量及函数的对应关系.25.(1)0,2,-2,0;(2)垂直;(3)5;(4)33,22⎛⎫ ⎪⎝⎭或()3,1或()2,3【解析】(1)令22y x =-+中0x =即可得出点B 的坐标,然后令112y x =+中0y =可得出点D 的坐标;(2)通过证明AOB COD ≅△△,然后利用全等三角形的性质和等量代换即可得出结论; (3)将两直线的解析式联立,求出交点M 的坐标,然后利用勾股定理即可求解;(4)假设存在点P (x ,y ),分两种情况:若AB 边为斜边,或者AB 边为直角边,分情况利用全等三角形的判定及性质求解即可.(1)令0x =,222y x =-+=,令0y =,则220y x =-+=,解得1x =, ①()(),1,0,20A B ; 令0x =,1112y x =+=,令0y =,则1102y x =+=,解得2x =-, ①()()0,1,2,0C D -;(2)直线AB 与直线CD 垂直,理由如下:①()()1,0,0,2,A B ()()0,1,2,0C D -,1,2OA OC OB OD ∴====.在AOB 和COD △中,90OA OCAOB COD OB OD =⎧⎪∠=∠=︒⎨⎪=⎩()AOB COD SAS ∴≅,ABO CDO ∴∠=∠.,90DCO BCM CDO DCO ∠=∠∠+∠=︒,90ABO BCM ∴∠+∠=︒, 90BMC ∴∠=︒,AB DM ∴⊥,①直线AB 与直线CD 垂直;(3)22112y x y x =-+⎧⎪⎨=+⎪⎩解得2565x y ⎧=⎪⎪⎨⎪=⎪⎩, ①点M 的坐标为26,55⎛⎫⎪⎝⎭, ①线段DM5=; (4)假设存在点P ,使得ABP △是等腰直角三角形,若AB 为斜边,过点P 分别作x 轴和y 轴的垂线,分别交x 轴于点E ,y 轴于点F ,①ABP △是等腰直角三角形,,90BP AP BPA ∴=∠=︒.90,90BPF FPA APE FPA ∠=︒-∠∠=︒-∠,BPF APE ∴∠=∠.在BFP △和PEA 中,90BFP AEP BPF APEBP AP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()BFP PEA AAS ∴≅,FP PE ∴=.设点P 的坐标为(),x y , 则x y =.AP BP =()()222212x y x y ∴-+=+-,解得3232x y ⎧=⎪⎪⎨⎪=⎪⎩此时点P 的坐标为33,22P ⎛⎫⎪⎝⎭; 若AB 边为直角边,①过点P 作PG x ⊥轴交x 轴于点G ,①ABP △是等腰直角三角形,,90AB AP BAP ∴=∠=︒.90,90OBA OAB OAB PAG ∠+∠=︒∠+∠=︒,OBA PAG ∴∠=∠.在AOB 和PGA 中,90AOB PGA OBA PAGAB AP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()AOB PGA AAS ∴≅, ,OA PG OB AG ∴==. 1,2OA OB ==, 1,2PG AG ∴==,3OG OA AG ∴=+=,①此时P 的坐标为()3,1,①过点P 作PH y ⊥轴交y 轴于点H ,①ABP △是等腰直角三角形,,90AB BP ABP ∴=∠=︒.90,90OBA OAB OBA PBH ∠+∠=︒∠+∠=︒,OAB PBH ∴∠=∠.在AOB 和PHB △中,90AOB PHB OAB PBHAB BP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ()AOB PHB AAS ∴≅, ,OA BH OB PH ∴==. 1,2OA OB ==, 1,2BH PH ∴==,3OH OB BH ∴=+=,①此时P 的坐标为()2,3, 综上所述,点P 的坐标为33,22P ⎛⎫⎪⎝⎭或()3,1或()2,3. 本题主要考查几何综合,掌握一次函数的图象及性质,全等三角形的判定及性质,勾股定理并分情况讨论是解题的关键.26.(1)y =﹣2x +4;(2)A (2,0),B (0,4),画出函数的图象见解析;(3)S ①AOC =4. 【解析】(1)根据待定系数法设出解析式为y =kx +b ,代入A 、B 点坐标即可求解;(2)当x=0时求出y 的值获得B 点坐标,当y=0时求出x 的值获得A 点坐标,然后根据解析式画出函数图像即可;(3)①OAC 的底为OA ,高为C 点纵坐标的绝对值,因此联立两条直线解析式求得C 点坐标代入即可.(1)设一次函数的解析式为y =kx +b ,则有326k b k b +=⎧⎨-+=⎩,解得24k b =-⎧⎨=⎩,①一次函数的解析式为y =﹣2x +4.(2)对于直线y =﹣2x +4,令x =0,得到y =4,令y =0得到x =2, ①A (2,0),B (0,4), 画出函数的图象如图所示;(3)由24y x y x =-+⎧⎨=-⎩,解得44x y =⎧⎨=-⎩,①C (4,﹣4), ①S ①AOC =12×2×4=4. 故答案为(1)y =﹣2x +4;(2)A (2,0),B (0,4),画出函数的图象如上图所示;(3)S ①AOC =4. 本题考查了待定系数法求一次函数解析式,一次函数的图像,掌握数形结合思想是解决本题的关键. 27.(1)y =2x +4;(2)4∆=AOB S . 【解析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点A 、B 的坐标,然后得到OA 和OB 的长度,即可求出面积.解:(1)①一次函数4y kx =+的图象经过点(3,2)--, ①234k -=-+, ①2k =,①解析式为:24y x =+; (2)①24y x =+, 令x=0,则y=4; 令y=0,x=2-, ①OA=4,OB=2, ①14242AOB S ∆=⨯⨯=; 本题考查了一次函数的性质,待定系数法求一次函数的解析式,解题的关键是熟练掌握一次函数的性质进行解题.28.(1)(2,﹣1);(2)x <1.5;(3)(﹣0.5,4)或(3.5,﹣4). 【解析】根据两点确定一条直线,写出直线y =−2x +3的图象与x 轴和y 轴的交点坐标,即可画出相应的函数图象;(1)将x =2代入函数解析式,即可得到直线上横坐标是+2的点的坐标; (2)根据函数图象,可以直接写出y >0时,x 的取值范围;(3)根据直线上到x 轴的距离等于4的点,可知这个点的纵坐标是4或−4,然后将y =4和y =−4代入函数解析式,求得相应的x 的值,即可得到直线上到x 轴的距离等于4的点的坐标. 解:直线y =﹣2x +3过点(0,3)、(1.5,0), 函数图象如图所示:(1)当x =2时,y =﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1); (2)由图象可得,y >0时,x 的取值范围是x <1.5;(3)当y =4时,4=﹣2x +3,解得,x =﹣0.5, 当y =﹣4时,﹣4=﹣2x +3,解得,x =3.5,即直线上到x 轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.29.122⎛⎫ ⎪⎝⎭,【解析】由题意易得()212y k x =-+,一次函数恒过一个定点,则需210x -=即可,进而求解问题即可. 解:由题意得:()212y k x =-+,∴当210x -=时,函数图像恒过一个定点, ∴1,22x y ==, ∴定点坐标为122⎛⎫ ⎪⎝⎭,.本题主要考查一次函数,关键是根据题意得到一次函数图像恒过定点的情况,然后进行求解即可. 30.(1)3y x =-+;(2)m =5;(3)S ①BOD =3. 【解析】(1)首先求得B 的坐标,然后利用待定系数法即可求得函数的解析式; (2)把C 的坐标代入一次函数的解析式即可求出m 的值; (3)首先求得D 的坐标,然后利用三角形的面积公式求解. 解:(1)在y =2x 中,令x =1,解得y =2,则B 的坐标是(1,2), 设一次函数的解析式是y =kx +b ,根据题意,得:32b k b =⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩. 所以一次函数的解析式是y =﹣x +3;(2)当y =﹣2时,﹣m +3=﹣2,解得:m =5;(3)一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是(3,0).①S①BOD=12OD×2=12×3×2=3.本题考查了一次函数图象上点的坐标特征、利用待定系数法求一次函数的解析式以及求一次函数与坐标轴的交点等知识,属于基本题型,熟练掌握一次函数的基本知识是解题的关键.。

人教版初中数学八年级下册19.2《一次函数的图像和性质》教案

人教版初中数学八年级下册19.2《一次函数的图像和性质》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的函数,其中k是斜率,b是截距。它描述了两个变量之间的线性关系,非常重要,广泛应用于物理学、经济学等领域。
2.案例分析:接下来,我们来看一个具体的案例。以物体的匀速直线运动为例,展示一次函数在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版初中数学八年级下册19.2《一次函数的图像和性质》教案
一、教学内容
人教版初中数学八年级下册第19.2节《一次函数的图像和性质》教案:
1.理解一次函数的图像特点;
2.掌握一次函数的性质,包括斜率k和截距b的含义;
3.学会通过给定的一次函数解析式绘制其图像;
4.能够利用一次函数的性质解决实际问题;
4.增强学生的逻辑推理和数学抽象能力,通过对一次函数性质的探究,培养其从特殊到一般的思维方式;

初中数学人教版 一次函数y=kx+b的性质 人教版

初中数学人教版  一次函数y=kx+b的性质 人教版
现在,我的母亲为了赚钱养家,我与母亲一个星期只能通一次电话,在电话中,母亲总是对我嘘寒问暖,十分关心我的学习与成长。她对我说,她很想念我,牵挂我,希望我能学业有成,回家看她。其实我也一样,十分想念与牵挂我的母亲,恨不得现在就飞回家,看看母亲现在过得怎么样。 母爱,能感化一切。 母爱,是真挚无私的。
让我们时刻怀着一颗感恩的心,让我们一起成为懂得感恩的人,感谢我们的父母,感谢所有爱我们的人。的尾气;故乡那承载我童年苦乐与希望的田埂,便渐渐从我的生活中消失;不过,田埂情节却始终萦绕在我的心头,夜深人静之时,我常常飘然回到梦境般的故乡田野,站在蜿蜒起伏的田埂上,去等候蓑衣人、等候白鹭、等候老牛…… 老家所在的村庄,静卧在藕池河的东岸。站在老家门口,展现在我眼前的便是那绵长而温润的田埂。过完年,大人们在田埂的两旁撒下蚕豆、绿豆或烟苗,这些种子一接触泥土,似乎就在跟春天赛跑,用不了几天时间,翠绿的嫩芽便冒出地面。“野火烧不尽,春风吹又生”的小草,也探头探脑地从土里钻出来,争先恐后的在田埂上摇头晃脑,以灿烂而甜美的笑容装饰着田埂,打扮着乡村。烟苗在阳光雨露的滋润下,疯狂地生长,几场春雨下来,一棵棵长得枝繁叶茂的烟叶便傲立于田埂之上,阔大的叶片横七竖八的舒展开来,让一条条田埂呈现出一片盎然的绿意。
一次函数 y=kx+b的性质
学习目标:
[1]熟练的掌握一次函数 有关性质;
[2]培养学生数形结合的 意识和能力。
合作探究
y=-x
▪6 (0,6)
▪ 5
(1,5)
4
y=-x+6
3
(-3,0)
2 1
▪ -5 -4 -3 -2 -1 ▪
▪ -1
1 23 (1,-1)
4
56
y=2x+6 y=5x

人教版初中数学一次函数知识点总复习含解析

人教版初中数学一次函数知识点总复习含解析

人教版初中数学一次函数知识点总复习含解析一、选择题1.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( )A .﹣12 B .﹣2 C .﹣1 D .1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可.【详解】解:∵正比例函数y =kx 的图象经过第二、四象限,∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ),∴2km 12k m =⎧⎨=⎩, 解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去). 故选:A .【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.4.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( )A .B .C .D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52,则直线y2═−2x+m与x轴的交点坐标为(52,0),∴不等式0<y2<y1的解集是1<x<5 2故选:D【点睛】本题考查了一次函数与一元一次不等式,会观察一次函数图象.7.已知点(k,b)为第二象限内的点,则一次函数y kx b=-+的图象大致是( ) A.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.8.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.7【答案】C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得201k bb-+=⎧⎨=⎩,解得121kb⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1,再将A(3,m)代入,得m=12×3+1=52.故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.10.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.13.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.故选B .14.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >-2时,一次函数y=3x+b 的图象在函数y=ax-3的图象的上方,∴不等式3x+b >ax-3的解集为:x >-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.15.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A.12B.1 C.32D.52【答案】D【解析】【分析】先根据反比例函数解析式求出A,B的坐标,然后连接AB并延长AB交x轴于点P',当P 在P'位置时,PA PB AB-=,即此时AP BP-的值最大,利用待定系数法求出直线AB的解析式,从而求出P'的坐标,进而利用面积公式求面积即可.【详解】当12x=时,2y=,当2x=时,12y=,∴11(,2),(2,)22A B.连接AB并延长AB交x轴于点P',当P在P'位置时,PA PB AB-=,即此时AP BP-的值最大.设直线AB的解析式为y kx b=+,将11(,2),(2,)22A B代入解析式中得122122k bk b⎧+=⎪⎪⎨⎪+=⎪⎩解得152kb=-⎧⎪⎨=⎪⎩,∴直线AB解析式为52y x=-+.当0y =时,52x = ,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=V . 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.16.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】 由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A .①②正确,③错误B .①③正确,②错误C .②③正确,①错误D .①②③都正确 【答案】D【解析】【分析】画图,找出G 2的临界点,以及G 1的临界直线,分析出G 1过定点,根据k 的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y 2=2x+3(﹣1<x <2)的函数值随x 的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

人教版初中数学函数概念大全

人教版初中数学函数概念大全

函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

一次函数和正比例函数1、一次函数的概念:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数、正比例函数的图像 所有一次函数的图像都是一条直线一次函数y =kx +b (k ≠0)的图像是经过点(0,b )的直线(b 是直线与y 轴的交点的纵坐标,即一次函数在y 轴上的截距);正比例函数kx y =的图像是经过原点(0,0)的直线。

3、斜率:1212tan x x y y k --==α①直线的斜截式方程,简称斜截式: y =kx +b (k ≠0) ②由直线上两点确定的直线的两点式方程,简称两点式:111212)()(tan y x x x x x y y b x b kx y +---=+=+=α③由直线在x 轴和y④设两条直线分别为,1l :11y k x b =+l 若12//l l ,则有1212//l l k k ⇔=且1b ⑤点P (x 0,y 0)到直线y=kx+b(即:4寻求解题方法)如图:点A 坐标为(x 1,y 1)点B 则AB 间的距离,即线段AB5、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

人教版初中数学八年级下册 第十九章 一次函数复习:一次函数与面积问题课件(28张PPT)

人教版初中数学八年级下册 第十九章 一次函数复习:一次函数与面积问题课件(28张PPT)

(3)如图,过点A作AC⊥x轴于C,AC=1
令y=0,则 x﹣4=0,解得 x=.
∴点B的坐标为 (,0),则OB=
∴S△AOB=OB⋅AC=××1=
∴这两个函数的图象与x轴围成的三角形的面积为.
若三角形的底边落在坐标轴上,则高是两条直线的交点到坐标车轴的距离,即交点的纵坐标或横坐标的绝对值 运用数形结合思 想是求解此类问题的关键.
所以一次函数解析式为y=﹣3x﹣5,
图象如图:
(2)由直线y=﹣x﹣5可知与y轴相交于C(0,﹣5),所以S△AOB=×5×3﹣×5×1 =5.
如果三角形的三条运边都不在坐标轴上(如典例3中△AOB),那么应应设法把所求三角形的面积转化为两个底边落在坐标轴上的三角形的面积的和或差.
(3)△OPA的面积不能大于24.理由如下:
∵S=﹣3x+24,﹣3<0;
∴S随x的增大而减小,
又∵x=0时,S=24,
∴当0<x<8,S<24.
即△OPA的面积不能大于24.
本题考查了一次函数的图象与性质及三角形的面积,难度一般,解答本题的关键是正确地求出S与x的关系,另外作图的时候要运用两点作图法,并且注意自变量的取值范围.
∴×AC×h=×BC×h,
∴AC=5BC,
∴AB=4BC,
∴BC=×6=,
过点C作CD⊥x轴于点D,
∵∠DBC=∠ABO=45°,
∴C(﹣7.5,﹣1.5);
当点C在线段AB上时,C(﹣5,1);
综上所述,点C的坐标为(﹣7.5,﹣1.5)或(﹣5,1).
本题考查了一次函数的性质,体现了分类讨论的思想,一次函数图象上点的坐标特征,根据S△OAC=5S△OBC,得到AC=5BC是解题的关键.

人教版初中数学章节汇总

人教版初中数学章节汇总

人教版·初中数学知识章节七年级上七年级下第 1 章有理数第 5 章相交线与平行线1.1 正数和负数 5.1 相交线1.2 有理数 5.2 平行线及其判定1.3 有理数的加减法 5.3 平行线的性质1.4 有理数的乘除法 5.4 平移1.5 有理数的乘方第 6 章实数第 2 章整式的加减 6.1 平方根2.1 整式 6.2 立方根2.2 整式的加减 6.3 实数第 3 章一元一次方程第 7 章平面直角坐标系3.1 从算式到方程7.1 平面直角坐标系3.2 解一元一次方程(一)——合并同类项与移项7.2 坐标方法的简单应用3.3 解一元一次方程(二)——去括号与去分母第 8 章二元一次方程组3.4 实际问题与一元一次方程8.1 二元一次方程组第 4 章几何图形初步8.2 消元4.1 几何图形8.3 再探实际问题与二元一次方程组4.2 直线、射线、线段8.4 三元一次方程组的解法4.3 角第 9 章不等式和不等式组4.4 课题学习--设计制作长方体形状的包装纸盒9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组9.4 课题学习--利用不等关系分析比赛第 10 章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上八年级下第 11 章三角形第 16 章二次根式11.1 与三角形有关的线段16.1 二次根式11.2 与三角形有关的角16.2 二次根式的乘除11.3 多边形及其内角和16.3 二次根式的加减第 12 章全等三角形第 17 章勾股定理12.1 全等三角形17.1 勾股定理12.2 三角形全等的判定17.2 勾股定理的逆定理12.3 角的平分线的性质第 18 章平行四边形第 13 章轴对称18.1 平行四边形13.1 轴对称18.2 特殊的平行四边形13.2 画轴对称图形第 19 章一次函数13.3 等腰三角形19.1 函数13.4 课题学习最短路径问题19.2 一次函数第 14 章整式的乘除与因式分解19.3 课题学习--选择方案14.1 整式的乘法第 20 章数据的分析14.2 乘法公式20.1 数据的集中趋势14.3 因式分解20.2 数据的波动程度第 15 章分式20.3 课题学习--体质健康测试中的数据分析15.1 分式15.2 分式的运算15.3 分式方程九年级上九年级下第 21 章一元二次方程第 26 章反比例函数21.1 一元二次方程26.1 反比例函数21.2 降次──解一元二次方程26.2 实际问题与反比例函数21.3 实际问题与一元二次方程第 27 章相似第 22 章二次函数27.1 图形的相似22.1 二次函数的图象和性质27.2 相似三角形22.2 二次函数与一元二次方程27.3 位似22.3 实际问题与二次函数第 28 章锐角三角函数第 23 章旋转28.1 锐角三角函数23.1 图形的旋转28.2 解直角三角形及其应用23.2 中心对称第 29 章视图与投影23.3 课题学习--图案设计29.1 投影第 24 章圆29.2 三视图24.1 圆的有关性质29.3 课题学习--制作立体模型24.2 与圆有关的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第 25 章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 利用频率估计概率25.4 课题学习--键盘上字母的排列规律。

人教版数学七年级上册《一次函数与一元一次不等式》教案

人教版数学七年级上册《一次函数与一元一次不等式》教案

人教版数学七年级上册《一次函数与一元一次不等式》教案一. 教材分析人教版数学七年级上册的《一次函数与一元一次不等式》是初中数学的基础知识,主要介绍了函数与不等式的概念、性质和应用。

这部分内容为学生以后学习更高级的数学知识奠定了基础。

本节课的内容包括一次函数的定义、图象、性质以及一元一次不等式的解法、应用等。

通过本节课的学习,学生能够理解一次函数与一元一次不等式的基本概念,掌握它们的性质和应用方法。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但对于函数和不等式这类抽象的概念还是初次接触,可能存在一定的困难。

因此,在教学过程中,教师需要注重引导学生从具体的事物中抽象出函数和不等式的概念,并通过大量的实例让学生加深对这两个概念的理解。

同时,七年级学生的学习积极性较高,对新鲜事物充满好奇,教师应充分利用这一点,激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解一次函数的定义、图象、性质,掌握一元一次不等式的解法,并能应用于实际问题。

2.过程与方法:通过观察、分析、归纳等方法,让学生掌握一次函数与一元一次不等式的基本性质,培养学生的逻辑思维能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的自主学习能力,使学生感受数学在生活中的应用。

四. 教学重难点1.重点:一次函数的定义、图象、性质,一元一次不等式的解法。

2.难点:一次函数与一元一次不等式的综合应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数和不等式,让学生感受数学与实际的联系。

2.启发式教学法:引导学生从具体的事物中抽象出函数和不等式的概念,培养学生的抽象思维能力。

3.案例教学法:通过分析具体案例,使学生掌握一次函数与一元一次不等式的性质和应用。

4.小组合作学习:鼓励学生相互讨论、交流,提高学生的合作能力和口头表达能力。

六. 教学准备1.教具:黑板、粉笔、多媒体课件。

2.学具:练习本、笔。

人教版初中数学第二十七章第3节《位似》单元测试题 (17)(含答案解析)

人教版初中数学第二十七章第3节《位似》单元测试题 (17)(含答案解析)

第二十七章第3节《位似》单元测试题 (17)一、单选题1.如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO 关于点A 的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为( )A .(8,﹣12)B .(﹣8,12)C .(8,﹣12)或(﹣8,12)D .(5,﹣12)2.1. 下列说法不正确的是 ( )A .位似图形一定是相似图形B .相似图形不一定是位似图形C .位似图形上任意一对对应点到位似中心的距离之比等于位似比D .位似图形中每组对应点所在的直线必相互平行3.将OAB ∆以点O 为位似中心放大为原来的2倍,得到OA B ''∆,则:OAB OA B S S ''∆∆等于( ) A .1:2 B .1:3 C .1:4 D .1:84. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 5.平面直角坐标系中,有一条鱼,它有六个顶点,则( )A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横,纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以12,得到的鱼与原来的鱼位似6.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.128.在下列图形中,不是位似图形的是()A.B.C.D.9.如图,在平面直角坐标系中,以原点O为位似中心,在第一象限内,按照位似比2:3将OAB放大得到OCD,且A点坐标为(2,3),B点坐标为(3,3),则线段CD长为()A .13B .2C .23D .32二、解答题10.如图,△ABC 的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A 1B 1C 1 ,使11AB A B =12,并写出△A 1B 1C 1 各顶点的坐标.11.已知O 是坐标原点,A 、B 的坐标分别为(3,1),(2,﹣1):(1)画出△OAB 绕点O 顺时针旋转90°后得到的△OA 1B 1;(2)以O 为位似中心,相似比为2,在y 轴左侧将△OAB 放大,得到△OA 2B 2,在网格中画出△OA 2B 2并直接写出A 2、B 2两点坐标.12.如图,在边长为1个单位长度的正方形网格中,有一个格点△ABC (各个顶点都是正方形网格的格点).(1)画出△ABC 关于直线l 对称的格点△111A B C ;A B C;(2)画出以点O为位似中心,在网格内把△ABC放大到原来的2倍的△222A B C.(3)画出△ABC绕点O逆时针旋转90°后得到的△33313.如图,在平面直角坐标系中,点A,B,E,D,F的坐标分别是A(4,3),B(4,0),E(5,0),D(13,6),F(13,0),△DEF 是由△AOB经过位似变换得到的,求位似中心的坐标.14.如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.(1)在图中画出△DEF;(2)点E是否在直线OA上?为什么?(3)△OAB与△DEF______位似图形(填“是”或“不是”)15.如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(-1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.16.如图,已知在平面直角坐标系中,A(2,1),B(3,3),C(5,2).(1)画图:以A点为位似中心向右侧放大两倍;(2)△ABC内有一点p(a,b)求放大后对应点的坐标.17.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是.(2)探究:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG ⊥BE .(3)应用:在(2)情况下,连结GE (点E 在AB 上方),若GE ∥AB ,且AB AE =1,则线段DG 是多少?(直接写出结论)18.如图,以O 为位似中心,在网格内作出四边形ABCD 的位似图形,使新图形与原图形的相似比为2:1,并以O 为原点,写出新图形各点的坐标.19.图①、图②、图③都是66⨯的网格,每个小正方形的顶点称为格点.ABC 顶点A 、B 、C 均在格点上,在图①、图②、图③给定网格中按要求作图,并保留作图痕迹.(1)在图①中画出ABC 中BC 边上的中线AD ;(2)在图②中确定一点E ,使得点E 在AC 边上,且满足BE AC ⊥;(3)在图③中画出BMN △,使得BMN △与BCA 是位似图形,且点B 为位似中心,点M 、N 分别在BC 、AB 边上,位似比为13.20.如图,直线13y x b =-+与x 轴,y 轴分别交于,A B 两点,与反比例函数()0k y x x=<交于点,C 点A 的坐标为()3,0,CD x ⊥轴于点D .(1)点B 的坐标为 ;(2)若点B 为AC 的中点,求反比例函数()0k y x x=<的解析式; (3)在(2)条件下,以CD 为边向右作正方形,CDEF EF 交AC 于点,G 直接写出CGF △的周长与ABO 的周长的比.21.ABC ∆在边长为1的正方形网格中如图所示.(1)以点C 为位似中心,作出ABC ∆的位似图形111A B C ∆,使其位似比为1:2.且111A B C ∆位于点C 的异侧,并表示出1A 的坐标;(2)作出ABC ∆绕点C 顺时针旋转90︒后的图形222A B C ∆.三、填空题22.已知:△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以O为位似中心画△A1B1C1,使得△A1B1C1与△ABC位似,且相似比是3,则点C的对应顶点C1的坐标是_________.23.已知ABC与DEF是位似图形,以x轴上的一点为位似中心,点(1,1)A-的对应点D的坐标为(1,2),则(2,2)B-的对应点E的坐标为_______.24.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是_____________.25.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是_______.26.如图,正方形OABC 与正方形ODEF是位似图,点O为位似中心,位似比为2:3 ,点A 的坐标为(0,2),则点E的坐标是____.27.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为12,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′_____,B′_____;点A到原点O的距离是______.28.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3∶4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是______.29.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD =27,则S△EFC等于_____.【答案与解析】1.D【解析】过点B作BC⊥OA于点C,过点B′作B′D⊥AO于点D,利用位似图形的性质可求出B′D的长,可得B′的纵坐标,利用待定系数法可得直线AB的解析式,把B′纵坐标代入即可得B′的横坐标,即可得答案.过点B作BC⊥OA于点C,过点B′作B′D⊥AO于点D,∴BC、B′D分别是△ABO和△AB′O′的高,∵A(9,0)、B(6,﹣9),O′(-3,0),∴AO=9,AO′=12,BC=9,∵△AB′O′是△ABO关于点A的位似图形,∴AOAO'=BCB D',即912=9DB',解得:B′D=12,∴点B′的纵坐标为-12,设直线AB的解析式为:y=kx+b,∴9069 k bk b+=⎧⎨+=-⎩,解得:k3b27=⎧⎨=-⎩,∴直线AB的解析式为:y=3x﹣27,当y=﹣12时,﹣12=3x﹣27,解得:x=5,故B′点坐标为:(5,﹣12),故选D.此题主要考查了位似图形的性质以及相似三角形的性质,熟练掌握相似三角形的对应高的比等于相似比是解题关键.2.D【解析】本题主要考查了位似图形的定义.如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,因而A,B,C正确,D错误.解:根据位似图形的定义可知,B,C正确,似图形中每组对应点所在的直线相交于一点,D错误.故选D.3.C【解析】根据位似图形都是相似图形,再直接利用相似图形的性质:面积比等于相似比的平方计算可得.)∵将△OAB放大到原来的2倍后得到△OA′B′,∴S△OAB:S△OA′B′=1:4.故选:C.本题考查位似图形的性质,解题关键是首先掌握位似图形都是相似图形.4.D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形.把一个图形变换成与之位似的图形是位似变换.因此,∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC.∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴位似比为:12.∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3).故选D.5.C【解析】解:平面直角坐标系中图形的各个顶点,如果横纵坐标同时乘以同一个非0的实数k,得到的图形与原图形关于原点成位似图形,位似比是|k|.若乘的不是同一个数,得到的图形一定不会与原图形关于原点对称.故选C.6.A试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.考点:位似变换;坐标与图形性质.7.D【解析】利用位似图形的面积比等于位似比的平方,进而得出答案.解:根据位似比可得:△ABC的面积:△A′B′C′的面积=1:4,则△A′B′C′的面积=12.故选:D此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.8.D【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选:D.此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.9.D【解析】先求出AB的长,再根据位似图形的性质即可求解.∵A点坐标为(2,3),B点坐标为(3,3),∴AB=1∵按照位似比2:3将OAB放大得到OCD,∴23 AB CD故CD=32故选D .此题主要考查位似的求解,解题的关键是熟知位似图形的性质10.画图见解析;点A 1(-2,-6),B 1(-8,-4),C1(-4,-2).【解析】 根据题意利用画位似图形的作图技巧以原点为位似中心,以12为位似比作图并结合图像写出△A 1B 1C 1 各顶点的坐标. 解:利用画位似图形的作图技巧以原点为位似中心,以12为位似比作图: 因为11AB A B =12,△A 1B 1C 1 各顶点的坐标为原坐标A(1,3)、B(4,2)、C(2,1),横纵坐标互为相反数的2倍,即A 1(-2,-6),B 1(-8,-4),C 1(-4,-2).本题考查位似图形的作图,熟练掌握并利用画位似图形的作图技巧以及位似比进行作图分析是解题的关键.11.(1)见解析;(2)A 2(﹣6,﹣2)、B 2(﹣4,2)【解析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案.(1)如图所示:△OA 1B 1,即为所求;(2)如图所示:△OA 2B 2,即为所求,A 2(﹣6,﹣2)、B 2(﹣4,2).考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.12.(1)见解析(2)见解析(3)见解析【解析】(1)利用对称的性质分别作出A、B、C关于直线l的对称点A1、B1、C1即可得到△A1B1C1;(2)延长AO到A2使A2O=2OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2、C2,从而得到△A2B2C2为所作;(3)根据网格特点和旋转的性质画出A、B、C对称点A3、B3、C3,从而得到△A3B3C3.(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,△A3B3C3为所作..【知识点】本题考查了位似变换以及轴对称变换以及旋转变换,根据题意得出对应点位置是解题关键.13.位似中心的坐标为P(-5,0).【解析】利用已知坐标得出位似比,进而求出位似中心的坐标.解:连接DA,并延长交x轴于点P,因为A(4,3),B(4,0),E(5,0),D(13,6),F(13,0),△DEF是由△AOB经过位似变换得到,所以相似比为3162=,则12PBPF=,即41132POPO+=+,解得PO=5.故位似中心的坐标为P(-5,0).此题考查位似变换以及坐标与图形的性质,解题关键是得出位似比.14.(1)见解析;(2)点E在直线OA上;(3)是.【解析】(1)根据题意将各点坐标扩大2倍得出答案;(2)求出直线OA的解析式,进而判断E点是否在直线上;(3)利用位似图形的定义得出△OAB与△DEF的关系.解:(1)如图所示:△DEF,即为所求;(2)点E在直线OA上,理由:设直线OA的解析式为:y=kx,将A(3,2)代入得:2=3k,解得:k=23,故直线OA的解析式为:y=23x,当x=6时,y=23×6=4,故点E在直线OA上;(3)△OAB与△DEF是位似图形.故答案为是.本题考查的知识点是作图-位似变换,解题的关键是熟练的掌握作图-位似变换. 15.(1)作图见解析(2)作图见解析,点A2的坐标为:(1,-5)【解析】(1)根据旋转的意义,分别连接OA、OB、OC,将它们绕点O分别逆时针旋转90°即可.(2)根据相似的性质,得出两图形的相似比,相似比即为位似比,然后根据位似的作图方法进行位似作图即可.通过观察图形即可确定A 2的坐标.解:(1)分别连接OA 、OB 、OC将OA 、OB 、OC 分别以点O 为旋转中心,逆时针旋转90°,到111OA OB OC 、、,连接111A B C 、、,如图所示:△A 1B 1C 1,即为所求;(2)根据相似的性质,面积之比等于相似比的平方,可知变换后的图形与三角形ABC 相似,且相似比为21:,位似比等于相似比,连接AP 并延长AP 到2A ,使2PA =2AP,连接CP 并延长CP 到2C ,使2PC =2CP,连接BP,并延长BP 至2B ,使22PB BP ,连接222A B C 、、如图所示:△A 2B 2C 2,即为所求,由图可知:点A 2的坐标为:(1,-5).本题考查了旋转作图和位似作图,解决本题的关键是熟练掌握旋转和位似的意义以及它们的作图方法.16.(1)如图,△AB ′C ′为所作;见解析;(2)(2a ﹣2,2b ﹣1).【解析】(1)作AB BB '=,AC CC '=,连接B C ''即可;(2)先平移到原点,再根据为似图形求解即可;(1)如图,△AB ′C ′为所作;(2)把A 点向左平移2个单位,向下平移1个单位与原点重合,点P (a ,b )向左平移2个单位,向下平移1个单位的对应点P 1的坐标为(a ﹣2,b ﹣1), 点P 1(a ﹣2,b ﹣1)以原点为位似中心向右侧放大两倍的对应点P 2的坐标为(2a ﹣4,2b ﹣2), 把点P 2(2a ﹣4,2b ﹣2)向右平移2个单位,向上平移1个单位的对应点P ′的坐标为(2a ﹣2,2b ﹣1).故答案为(2a ﹣2,2b ﹣1).本题主要考查了坐标系中位似图形的知识点,准确分析作图是解题的关键.17.(1)BE =DG ,BE ⊥DG ;(2)证明见解析;(3)4【解析】(1)先判断出△ABE ≌△ADG ,进而得出BE=DG ,∠ABE=∠ADG ,再利用等角的余角相等即可得出结论;(2)先利用两边对应成比例夹角相等判断出△ABE ∽△ADG ,得出∠ABE=∠ADG ,再利用等角的余角相等即可得出结论;(3)先求出BE ,进而得出BE=AB ,即可得出四边形ABEG 是平行四边形,进而得出∠AEB=90°,求出BE ,借助(2)得出的相似,即可得出结论.(1)①∵四边形ABCD 和四边形AEFG 是正方形,∴AE=AG ,AB=AD ,∠BAD=∠EAG=90°,∴∠BAE=∠DAG ,在△ABE 和△ADG 中,AB AD BAE DAG AE AG ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ADG (SAS ),∴BE=DG ;②如图2,延长BE 交AD 于G ,交DG 于H ,由①知,△ABE ≌△ADG ,∴∠ABE=∠ADG ,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH ,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE ⊥DG(2)∵四边形ABCD 与四边形AEFG 都为矩形,∴∠BAD=∠DAG ,∴∠BAE=∠DAG ,∵AD=2AB ,AG=2AE , ∴12AB AE AD AG ==, ∴△ABE ∽△ADG ,∴∠ABE=∠ADG ,∵∠AGB+∠ABE=90°,∴∠AGB+∠ADG=90°,∵∠AGB=∠DGH ,∴∠DGH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得,∵∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,,由(3)知,△ABE∽△ADG,∴12 BE ABDG AD=,∴212 DG=,∴DG=4.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,旋转的性质,判断出△ABE≌△ADG或△ABE∽△ADG是解本题的关键.18.作图详见解析;A′(2,4),B′(4,8),C′(8,10),D′(6,2).【解析】以O为位似中心,作四边形ABCD的位似图形,使各边都扩大2倍,再根据O为原点,写出新图形各点的坐标即可.解:如图所示,新图形为四边形A′B′C′D′,新图形各点坐标分别为A′(2,4),B′(4,8),C′(8,10),D′(6,2).本题考查作图——位似变换.19.(1)见解析;(2)见解析;(3)见解析【解析】(1)根据中线的定义,取BC中点D,连接AD即可;(2)将AC所在的2×4的长方形逆时针旋转90°即可确定点E;(3)将AC向左平移4个单位后,分别与BC、AB交于点M、N即可得出答案.解:(1)如图①所示,AD即为所求;(2)如图②所示,点E即为所求;(3)如图③所示,△BMN即为所求.本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质及平行线分线段成比例定理.20.(1)()0,1;(2)6y x =-;(3)23【解析】(1)将点A 代入一次函数,从而得出一次函数的解析式,然后再求B 点的坐标;(2)根据题意,OB 是△ACD 的中位线,利用中位线的性质可得点C 的坐标,代入反比例函数可得解析式;(3)先证△CFG ∽△AOB ,在根据点的坐标,可求得CD 、AO 的长,根据相似三角形线段比即为周长比解得.(1)∵一次函数过点A ()3,0,代入得: 1033b =-⋅+ 解得:b=1∴一次函数为:113y x =-+ 令x=0,则y=1∴B(0,1)(2),//.AB BC OB CD =,2OA OD CD OB ∴==()()()3,0,0,1,3,2A B C -.点C 在k y x=上 2,k x∴= 6y ∴=-∴反比函数解析式为6y x =-. (3)()()()3,0,D 3,0,3,2A C --∴CD=2,AO=3∵四边形CFED 是正方形,∴CF=CD=2,CF ∥AO ,∠F=90°∴∠FCG=∠BAO∵∠BOA=∠F=90°∴△CFG ∽△AOB∴CGF △的周长与ABO 的周长的比为:CF AO =23本题考查正方形的性质、求一次函数和反比例函数的解析式、相似的应用,解题关键是利用函数解析式,得出各个点的坐标,从而得出线段长度,进而开展推导过程.21.(1)图见解析,A 1的坐标为(3,-3);(2)图见解析.【解析】(1)延长AC 到A 1使A 1C=2AC ,延长BC 到B 1使B 1C=2BC ,则△A 1B 1C 满足条件,再写出A 1坐标即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C .解:(1)如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3);(2)如图,△A 2B 2C 为所作;本题考查了作图——位似变换和作图——旋转变换.(1)中画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.(2)作旋转图形时,需明确旋转中心,旋转方向和旋转角度.22.()6,3或()6,3--【解析】根据位似图形的特点可知将对应点坐标乘以±3故可求解. 解:∵以O 为位似中心画△A 1B 1C 1,使得△A 1B 1C 1与△ABC 位似,且相似比是3,∴对应点坐标乘以±3,∵C (2,1),∴点C 1的坐标为:(6,3)或(﹣6,﹣3).故答案为:(6,3)或(﹣6,﹣3).此题主要考查坐标与图形性质、位似变换,解题的关键是熟知位似的特点.23.(7,4)-【解析】根据位似性质,先画出对应边AB 和DE ,作AF ⊥x 轴,DG ⊥x 轴,根据对应点的纵坐标求出位似比,根据位似比的意义求出位似中心坐标和点E 的纵坐标,再根据位似性质进一步求出E 的横坐标.如图,画出对应边AB和DE,则AB∥DE,作AF⊥x轴,DG⊥x轴,由已知可设位似中心P(x,0),E (a,b)因为AF⊥x轴,DG⊥x轴,所以AF∥DG所以AF PADG PD==PBPE=ABDE因为点A(-1,1)的对应点D的坐标为(1,2),所以,AB AF PADE DG PD===12,所以,212 PA PBPD PE b-===所以,根据位似性质,1121,122xx b---==-,分别解得x=-3,b=-4所以PBPE=()()23132a--=--,解得a=7所以E(7,-4)故答案为(7,-4)考核知识点:坐标与位似图形.根据题意画出图形,求出位似比是关键. 24.1:4【解析】由题意可知:△DEF∽△ABC,且相似比为1:2,∴△DEF与△ABC的面积比为:1:4.故答案为1:4.25.(52,-1)或(-52,1).【解析】试题解析:∵以原点O 为位似中心,位似比为1:2,把△ABO 缩小,B (5,-2),∴点B 的对应点B′的坐标是:(52,-1)或(-52,1). 考点:1.位似变换;2.坐标与图形性质.26.(3,3)【解析】根据位似图形的比求出OD 的长即可解题.解:∵正方形OABC 与正方形ODEF 是位似图,位似比为 2:3 ,∴OA:OD=2:3,∵点A 的坐标为(0,2),即OA=2,∴OD=3,DE=EF=3,故点E 的坐标是(3,3).本题考查了位似图形,属于简单题,根据位似图形的性质求出对应边长是解题关键.27.(12m ,12m ) (n ,12n ) m .【解析】根据位似图形的性质得出即可.∵点A (m ,m ),B (2n ,n ),以原点O 为位似中心,相似比为1:2把线段AB 缩小,∴A ,B 对应点都乘以12或即可得出答案, 则点A 的对应点坐标为:(12m ,12m ),点B 的对应点坐标为:(n ,12n ).由勾股定理得,=故答案为(12m ,12m );(n ,12n ); m .此题主要考查了位似变换的性质,注意要分在位似中心的同侧与异侧两种情况求解.28.(2,【解析】根据题意得出D 点坐标,再解直角三角形进而得出答案.分别过A 、C 作AE ⊥OB ,CF ⊥OB ,∵∠OCD =90°,∠AOB =60°,∴∠ABO =∠CDO =30°,∠OCF =30°,∵△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为3:4,点B 的坐标是(6,0),∴D(8,0),则DO=8,故OC=4,则FO=2,CF=CO•cos30°=4×2=故点C的坐标是:(2,.故答案为:(2,.此题主要考查了位似变换,运用位似图形的性质正确解直角三角形是解题关键.29.12【解析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的面积比等于相似比的平方即可求解.解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,CE=2EB,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=(32)2,而S△AFD=27,∴S△EFC=12.故答案为12.本题考查相似三角形的判定与性质,解题关键是首先利用平行四边形的对边平行且相等构造相似三角形的相似条件,然后利用其性质即可求解.。

人教版初中数学八年级下册《19.2.2一次函数的概念》

人教版初中数学八年级下册《19.2.2一次函数的概念》
正比例函数: 一般地,形如y=kx(k是常数, k≠0)的函数,叫做正比例函数,其中k叫做比例 系数.
根据实际问题写函数解析式的步骤
1:分清实际问题中的常量和变量; 2:找出自变量和因变量; 3:分析变量之间的函数关系式、写出函数解析式。
合作交流、探索新知
合作交流、探索新知
问题1 某登山队大本营所在地 的气温为5 ℃,海拔每升高1 km 气温 下降6 ℃.登山队员由大本营向上登 高x km 时,他们所处位置的气温是 y ℃. 试用函数解析式表示 y 与 x 的关 系.
(4) y 2 x
x (5) y = 2 -1
课堂练习
1、下列函数中哪些是一次函数,哪些又是正 比例函数?
x -3 2 ( 8) y = . (x- 4); (6)y = -13 ; (7)y = 2 2 x
课堂练习
2、函数 y 2 x m3 2 是一次函数,求m的值。
课堂练习
3、函数 y (k 2) x k 是一次函数,求k的取值范围。
课堂练习
练习2 请写出若干个变量 y 与 x 之间的函数解析 式,让同桌判断是否是一次函数;如果是,请说出其一 次项系数与常数项.
课堂练习
请同学们用自己组织语言给同桌讲一次函数的 概念。并自己写出两个函数解析式个同桌判断是否 是一次函数。
课堂小结
通过本节课的学习,你有什么收获?还有什么疑惑?
课后作业
一般地,形如y =kx +b(k,b 为常数,k ≠0)的函 数叫一次函数. 思考 当b=0 时,y=kx+b是什么函数?
合作交流、探索新知
一般地,形如y =kx +b(k,b 为常数,k ≠0)的函 数叫一次函数. 思考 当b=0 时,y=kx+b是什么函数? 当b=0时,y=kx+b为 y=kx,正比例函数是 特殊的一次函数.

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从5.已知A BB地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地6.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.7.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .8.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .59.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.18.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.21.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB 有最小值时,P 点的坐标为________.22.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.23.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.24.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.25.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.28.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.29.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF 的函数表达式;(2)若点A 的坐标为(-6,0),点P (m ,n )在线段EF 上(不与点E 重合) ①求△OPA 的面积S 与m 的函数表达式; ②求当△OPA 的面积为9时,点P 的坐标;③求当△OPA 的面积与△OPF 的面积相等时,点P 的坐标.参考答案。

人教版数学八年级上册14.1.0《一次函数与二元一次方程》教学设计

人教版数学八年级上册14.1.0《一次函数与二元一次方程》教学设计

人教版数学八年级上册14.1.0《一次函数与二元一次方程》教学设计一. 教材分析人教版数学八年级上册14.1.0《一次函数与二元一次方程》是学生在学习了初中数学基础知识后,进一步深入研究函数与方程的知识。

本节内容主要介绍一次函数与二元一次方程的概念、性质及其关系,通过实例让学生理解一次函数与二元一次方程在实际问题中的应用。

教材内容由浅入深,逐步引导学生掌握一次函数与二元一次方程的知识,为后续学习打下基础。

二. 学情分析学生在学习本节内容前,已掌握了初中数学的基本知识,具备一定的逻辑思维能力和问题解决能力。

但部分学生对函数与方程的概念理解尚不清晰,对实际问题中函数与方程的运用还不够熟练。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行引导和讲解,提高学生对一次函数与二元一次方程的理解和应用能力。

三. 教学目标1.了解一次函数与二元一次方程的概念、性质及其关系;2.能够运用一次函数与二元一次方程解决实际问题;3.培养学生的逻辑思维能力、问题解决能力和合作交流能力。

四. 教学重难点1.一次函数与二元一次方程的概念及其性质;2.一次函数与二元一次方程在实际问题中的运用;3.引导学生掌握解二元一次方程组的方法。

五. 教学方法1.讲授法:讲解一次函数与二元一次方程的概念、性质及其关系;2.案例分析法:分析实际问题,引导学生运用一次函数与二元一次方程解决问题;3.小组讨论法:分组讨论,培养学生的合作交流能力;4.练习法:布置课后作业,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示一次函数与二元一次方程的图片、案例等;2.教学案例:收集与一次函数与二元一次方程相关的实际问题;3.课后作业:布置具有代表性的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一次函数与二元一次方程的图片,引导学生关注一次函数与二元一次方程在实际生活中的应用。

提问:“你们在生活中遇到过哪些与一次函数与二元一次方程相关的问题?”让学生分享实例,激发学生的学习兴趣。

人教版初中数学八年级下册19.2.2《一次函数的概念》教案

人教版初中数学八年级下册19.2.2《一次函数的概念》教案
三、教学难点与重点
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。

人教版数学七年级上册《一次函数与一元一次不等式》教学设计

人教版数学七年级上册《一次函数与一元一次不等式》教学设计

人教版数学七年级上册《一次函数与一元一次不等式》教学设计一. 教材分析人教版数学七年级上册《一次函数与一元一次不等式》是学生在学习了初中数学的一些基础知识后,进一步学习函数与不等式的内容。

这一章节的内容包括一次函数的定义、性质、图象,以及一元一次不等式的解法、性质和应用。

本章内容是学生初步接触函数和不等式的重要阶段,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在七年级之前已经学习了实数、代数式等基础知识,具备一定的逻辑思维能力。

但部分学生可能对函数和不等式的概念理解不够深入,需要通过实例和练习来进一步巩固。

同时,学生对于图象的观察和分析能力有待提高,教学中应注重培养学生的直观想象能力。

三. 教学目标1.了解一次函数的定义、性质和图象,能够运用一次函数解决实际问题。

2.掌握一元一次不等式的解法、性质和应用,能够解决简单的不等式问题。

3.培养学生的观察、分析、解决问题的能力,提高学生的逻辑思维水平。

四. 教学重难点1.一次函数的定义、性质和图象。

2.一元一次不等式的解法、性质和应用。

3.函数和不等式在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究一次函数和一元一次不等式的知识。

2.利用数形结合的方法,让学生直观地理解函数和不等式的关系。

3.注重练习和实例分析,提高学生解决问题的能力。

4.鼓励学生小组合作,培养学生的团队精神和交流能力。

六. 教学准备1.准备相关教学PPT,包括一次函数和一元一次不等式的定义、性质、图象和实例。

2.准备练习题和测试题,用于巩固和评估学生的学习效果。

3.准备黑板和粉笔,用于板书和讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引入一次函数和不等式的概念,激发学生的兴趣。

例如,假设某商品的售价为80元,商家希望提高售价,但不超过100元,问售价应为多少?2.呈现(15分钟)讲解一次函数的定义、性质和图象,通过PPT和板书进行展示。

人教版初中数学八年级下册说课稿《一次函数》

人教版初中数学八年级下册说课稿《一次函数》

人教版初中数学八年级下册说课稿《一次函数》一. 教材分析《一次函数》是人教版初中数学八年级下册第十章的内容,本节内容是在学生已经掌握了函数的概念和性质的基础上进行学习的。

一次函数是数学中的一种基本函数,它的一般形式为y=kx+b(k≠0,b为常数)。

本节内容主要让学生了解一次函数的定义,掌握一次函数的性质,以及会求一次函数的图像和解析式。

二. 学情分析学生在学习本节内容时,已经具备了一定的函数知识,但对一次函数的概念和性质可能还比较模糊。

因此,在教学过程中,需要引导学生通过观察、思考、探索等活动,加深对一次函数的理解。

同时,学生需要通过练习,掌握一次函数的性质,并能够运用一次函数解决实际问题。

三. 说教学目标1.知识与技能目标:让学生掌握一次函数的定义,了解一次函数的性质,学会求一次函数的图像和解析式。

2.过程与方法目标:通过观察、思考、探索等活动,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.教学重点:一次函数的定义,一次函数的性质,一次函数的图像和解析式的求法。

2.教学难点:一次函数的性质的理解和运用,一次函数图像的绘制。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、教学挂图、教学模型等辅助教学。

六. 说教学过程1.导入:通过复习函数的概念和性质,引出一次函数的概念。

2.新课导入:讲解一次函数的定义,通过示例让学生理解一次函数的概念。

3.知识拓展:讲解一次函数的性质,让学生通过观察、思考、探索等活动,理解一次函数的性质。

4.实践操作:让学生通过绘制一次函数的图像,加深对一次函数的理解。

5.课堂练习:布置一些练习题,让学生巩固所学知识。

6.课堂小结:对本节课的内容进行总结,让学生明确一次函数的定义和性质。

七. 说板书设计板书设计要简洁明了,突出一次函数的定义和性质。

最新人教版初中八年级下册数学【第十九章 一次函数 待定系数法与实际问题】教学课件

最新人教版初中八年级下册数学【第十九章 一次函数 待定系数法与实际问题】教学课件

(2)若岩层的温度为475℃,求相应的深度是多少?
y为475
解:(1)设y与x函数关系式为y = kx+b,
由列表可得函数上的两个点(1,55),(2,90).
将(1,55),(2,90)代入y = kx+b中,
则: 55=k+b
解得 k=35
90=2k+b
b=20
∴y与x函数关系式为y =35x + 20.
(2)该函数的图象向上平移6个单位后的解析式为y = x + 2. 当y = 0时,x = -2,
∴平移后的图象与x轴的交点为(-2,0).
1.利用表格信息确定函数解析式
例2:地表以下岩层的温度y随着所处深度x变化而变化,在某个地点y与x 之间满足一次函数关系.
1
2
55
90
(1)求y与x之间的关系式
(2)当y = 475 ℃时,即 475 = 35x + 20
解得 x = 13, 所以若岩层的温度为475℃, 则相应的深度是13km.
2.利用图象信息确定函数解析式
例3:某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间 内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示. (1)根据图象求y与x的函数关系式; (2)当销售价格为60元/千克时,商店的利润是多少?
(2)若用户月用电62度时,即 x=62, 则y=0.65×62=40.3,
所以该用户应缴费40.3元.
y(元)
89
65 ?
0
62 100 130
x(度)
2.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户 居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图 所示),根据图象解下列问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:是一条经过原点的直线
4.正比例函数y= kx(K≠0)中,K的
正负对函数的图象有什么影响?
答:K﹥0,直线y= kx经过三、一象限; K﹤0,直线y= kx经过二、四象限。
探究(一)、画一次函数的图像y x1
当x=0时,y=__-_1__; (0,-1)
当x=1时,y=___0__; (1,0 ) 当x=2时,y=___1__; (2, 1 )
-2
探究(二)画出函数y=2x+4,y=2x,
y=2x-2的图象,你有什么发现?
填表:
x 12345… y=2x+4 6 8 10 12 14 …
y=2x 2 4 6 8 10 … y=2x-2 0 2 4 6 8 …
y y=2x+4
4
y=2x
3
2
1
三观个察函三数个K函的数值的相解同析,式-3 -2
2
随堂练习3
一次函数y=kx+b,如b增加2个单位, 则它的图象( )B
A.向右平移两个单位. B.向上平移两个单位. C.向下平移两个单位. D.向左平移两个单位.
随堂练习4
一次函数y=kx+b中,kb>0,且y随x的 增大而减小,则它的图象大致为(C )
y 0x
A
y
y
0
x 2x3
3
0x
B
C
y=2x+4 y
分析: (0, 4 ) (-2 ,0)
B▪ 4
3
24
-4
-3 A-▪2 2-1
O
1 -11
-2
-3
-4
234
三角形AOB的面 积=
x 1 OA OB 2 1 24 2
2
y y=2x+4
4
y=2x
3
y=-2x y
4
3
2
2
y=2x-2
1
1
y=-2x+4
-3 -2 -1 0 -1
黄河中学 王世江
知识回顾
1.若两个变量x ,y间的关系式可以表 示成_y_=__k_x_+_b__(k,b为_常__数__且k
____0_)形式,则称y是x的一次函数(x
为_自__变__量__,y为_因__变__量__)特别地,当 b=_0__时,称y是x的正比例函数.
3.正比例函数的图象是什么样的?
大家一起来
当x=-1时,y=__-2___; (-1,-2) 当x=-2时,y=__-3___. (-2,-3 )
y
y x1
2
1 ▪(2,1)
-2 -1 ▪(-01 ,1▪1()1,20)
x
(-1,-2)▪ -2
(-2,-3)▪
-3
画出函数y=2x+4, y=2x,y=2x-2的图

填表:
x 12345… y=2x+4 6 8 10 12 14 … y=2x+0 2 4 6 8 10 … y=2x-2 0 2 4 6 8 …
1x
-2 -1 0 1 2 x
-1
-2
-2
y=-2x-2
请大家观察上面的图象,你有什么发现?
(3)直线y=2x+6与y=-x+6的位置关系如何?
y
(相交)
7 6 5 4
y=2x+6 3
2 1
y=-x+6
-3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
2x3 3
⑸当k_____时,它的图象经过二、三、 四象限.
3、已知直线y= (k+1)x+1-2k,若直线与y轴交于
(0,-1),则k=__1___;若直线与x轴交于点(3,
0),则k=_-_4___。
4、直线y=-3x+4与x轴的交点坐标是
_(_43__,_0_)__,
与y轴的交点坐标是___(_0_,_4_)_.
y=2x+1,y=-2x+1 的图象
列表: 描点
x
01
连线 Y=-2x+1 1 -1
y=-2x+1
y=2x+1 1 3 y y=2x+1 y=x+1 1 2
y=-x+1
4
y=-x+1 1 0
3
2
y=x+1
1
-3 -2 -1 0 -1
-2
1x
一次函数y=kx+b的性质:
⑴当k>0时,从左到右看函数的图 象是上升的; y随x的增大而增大, ⑵当k<0时,从左到右看函数的图 象是_下__降. y随x的增大而减__小_,
y y=2x+4
4
y=2x+0
3
2
1
-3 -2 -1 0 1 x
-1 y=2x-2
-2
结论:
一次函数y=kx+b(k,b为常数,K≠0)的 图象都是一条直线。
一次函数y=kx+b(k,b为常数,K≠0)图象,
习惯上也称为直线y=kx+b
由此结论可知做一次函数图象的另一方
法:
两点法
例题3:画出函数y=2x-1, y=-0.5x+1的
y
0
x
D
◆怎样画一次函数图象
◆一次函数y=k x +b (k,b为常数 k≠0) y=k x(k为常数,k≠0)的图象 有哪些联系?
◆一次函数有哪些性质?
作业:
教材P120页习题 14.2第4、5题
◆待定系数法求一 次函数的解析式.
练习
1看一次函数y=2x-4的图象,回答下
列问题
y
3
⑴当y=-4时,x的
思考 y y=2x+4
4
y=2x
3
y=-2x y
4
3
2
2
y=2x-2
1
1
y=-2x+4
-3 -2 -1 0 -1
1x
-2 -1 0 1 2 x
-1
-2
-2
y=-2x-2
一次函数y=kx+b的经过的象限与k、
b有何关系?b变化对图象有何影响?
知识总结
图象特征
从左到右呈上升状态,
b>0 .与Y轴交点在y轴上方
2
1
值是多少?
-2 -1 0 1 2 3 x
-1
⑵当x为何值时,y>0? -2
-3
y=0? y<0?
-4
2.已知一次函数y = (2k-1)x+3k+2. ⑴当k=_____时,直线经过原点. ⑵当k___时,直线与x轴交于点(-1,0).
⑶当k______时,y随x的增大而增大. ⑷当k__时,与y轴的交点在x轴的下方.
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。
第一重境界,是出得来,而进不去;第二重境界,是进得去,而出不来;第三重境界,才是进退自如、来去随意。放得下,是因为看透了、超脱了,所以随缘。 跟道家学想得开 。道家是追求超世、讲究自然的,要求心明大道、眼观天地、冷眼看破。概括为三个字,就是“想得开”。什么是“想得开”?且看这个“道”字——一个“走”字旁加一个“首”字,也就是脑袋走或者走脑袋。脑袋走就是动脑子,尽量透彻;走脑袋就是依胸中透彻而行,尽量顺应规律。合起来,就是要明道,并依道而行。这种智慧,就是想得开。
做才能成的,成越大的事业,需要越大的努力和付出,甚至要经受越大的磨难和困苦。这个世间,从来都是“艰难困苦,玉汝于成”;所以无论如何,都要“天行健,君子”。这说的是历经磨难而逐渐成熟、成长,最终豁然贯通、水到渠成。这其中蕴含一个重要道理,就是苏东坡所说的“厚积而薄发”。只有厚积才能薄发,人要做的,就是不断厚积,等待薄发。这就是拿得起的完整路径,也是事业成功的完整过程。 跟佛家学放得下 。佛家是追求出世、讲究清净的,要求能看到《金刚经》所言的“一切有为法,如梦幻泡影”,做到《心经》所言的“照见五蕴皆空”。概括为三个字,就是“放得下”。 什么是“放得下”?且看这个“佛”字——左边一个“人”,右边一个“弗”,弗的意思是“不”,合起来就是“不人”和“人不”。不人就是无人,也就是放下自我,摆脱私心的困缚;人不就是懂得拒绝,也就是放下欲望,超脱对外物的追逐。这两点能做到,就是放得下。
相关文档
最新文档