最短路径题目

合集下载

初二数学最短路径练习题及答案

初二数学最短路径练习题及答案

初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。

该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。

对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。

本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。

练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。

要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。

解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。

以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。

将A、B、C、D顶点分别标记为1、2、3、4。

村庄A到村庄B的距离为5,即A-5-B。

村庄A到村庄C的距离为3,即A-3-C。

村庄B到村庄C的距离为2,即B-2-C。

村庄B到村庄D的距离为6,即B-6-D。

村庄C到村庄D的距离为4,即C-4-D。

2. 接下来,我们使用迪杰斯特拉算法求解最短路径。

a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。

b) 然后,我们选择距离最短的顶点,并将其标记为已访问。

c) 然后,我们更新与该顶点相邻的顶点的距离。

如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。

d) 重复上述步骤,直到找到最短路径为止。

3. 经过计算,最短路径为A-3-C-4-D,距离为7。

练习题二:某城市有6个地点,它们之间的交通图如下所示。

请你计算从地点A到地点F的最短路径,并给出最短路径的长度。

解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。

以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。

将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。

地点A到地点B的距离为4,即A-4-B。

最短路径经典练习题

最短路径经典练习题

最短路径经典练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。

2. 什么是贝尔曼福特(BellmanFord)算法?它适用于哪些类型的图?3. 请解释A搜索算法中启发式函数的作用。

4. 如何判断一个图中是否存在负权环?5. 简述弗洛伊德(Floyd)算法的基本步骤。

二、单选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 初始化距离表B. 选择当前距离最小的顶点C. 更新相邻顶点的距离D. 重复步骤B和C,直到所有顶点都被访问A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 启发式函数B. 起始节点C. 目标节点D. 图的规模三、多选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 深度优先搜索算法D. 广度优先搜索算法A. 初始化距离矩阵B. 更新距离矩阵C. 查找负权环D. 输出最短路径A. 图的存储结构B. 顶点的数量C. 边的数量D. 起始顶点四、计算题A (3)>B (2)> D\ | ^ \ | | \(2)\ | (1)/C \|(4)A (1)>B (2)> D\ ^ |\(2)\ | (3)/C \ |(1)A (2)>B (3)> D\ | ^\(3)\ | (1)/C \ |(2)五、应用题1. 假设你是一名地图软件的开发者,请简述如何利用最短路径算法为用户提供导航服务。

2. 在一个网络游戏中,玩家需要从起点到达终点,途中会遇到各种障碍。

请设计一种算法,帮助玩家找到最佳路径。

六、判断题1. 迪杰斯特拉算法只能用于无向图的最短路径问题。

()2. 贝尔曼福特算法可以检测图中是否存在负权环。

()3. 在A搜索算法中,如果启发式函数h(n)始终为0,则算法退化为Dijkstra算法。

()4. 弗洛伊德算法的时间复杂度与图中顶点的数量无关。

()七、填空题1. 迪杰斯特拉算法中,用来存储顶点到源点最短距离的数组称为______。

最短路径练习题

最短路径练习题

最短路径练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。

2. 什么是贝尔曼福特(BellmanFord)算法?它与迪杰斯特拉算法有什么区别?3. 请解释弗洛伊德(Floyd)算法的核心思想。

4. A算法是如何工作的?它相较于其他最短路径算法有什么优势?5. 请列举几种常见的最短路径问题应用场景。

二、单项选择题A. 初始化距离表,将起点到其他点的距离设置为无穷大B. 每次从距离表中找出未确定最短路径的点中距离最小的点C. 更新距离表时,可以出现负权边D. 确定起点到所有点的最短路径后,算法结束A. 图中存在负权边B. 图中存在负权环C. 图中不存在负权环D. 图中存在多条边3. 在弗洛伊德算法中,path[i][j]表示的是?A. 从点i到点j的最短路径长度B. 从点i到点j的最短路径C. 从点j到点i的最短路径长度D. 从点j到点i的最短路径A. 当前点到终点的直线距离B. 当前点到终点的实际路径长度C. 当前点的邻接点数量D. 当前点的父节点三、填空题1. 在迪杰斯特拉算法中,用来存储起点到各点最短距离的数据结构是______。

2. 贝尔曼福特算法的时间复杂度为______。

3. 弗洛伊德算法的核心三重循环分别对应三个变量:______、______和______。

4. A算法的启发式函数f(n) = g(n) + h(n),其中g(n)表示______,h(n)表示______。

四、应用题A 6 B| \ |1 2 3| \ |D 4 CA >B (2)^ || vC <D (1)A >B (4)^ || vC >D (2)4. 请简述如何使用A算法解决迷宫问题,并给出一个示例。

五、编程题1. 编写一个迪杰斯特拉算法的实现,输入为一个带权无向图和起点,输出为起点到其他各顶点的最短路径长度。

2. 编写一个贝尔曼福特算法的实现,输入为一个带权有向图和起点,输出为起点到其他各顶点的最短路径长度及是否存在负权环。

10个节点最短路径算法题

10个节点最短路径算法题

10个节点最短路径算法题最短路径算法是图论中的一种重要算法,用于计算两个节点之间的最短路径。

在以下内容中,将介绍并讨论10个与最短路径算法相关的题目,并给出相关参考内容,以加深对该算法的理解。

1. Dijkstra算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径。

参考内容:《算法导论》(Introduction to Algorithms)一书中第24章,提供了关于Dijkstra算法原理和实现的详细解释。

2. Bellman-Ford算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径,其中图中可能存在负权边。

参考内容:《算法导论》第24章,提供了Bellman-Ford算法的详细解释和实现。

3. Floyd-Warshall算法题目:给定一个有向图,请找出任意两个节点之间的最短路径。

参考内容:《算法导论》第25章,提供了Floyd-Warshall算法的详细解释和实现。

4. A*算法题目:给定一个加权有向图、一个源节点和一个目标节点,请找出从源节点到目标节点的最短路径。

参考内容:《人工智能:一种现代方法》(ArtificialIntelligence: A Modern Approach)一书中第3章,提供了A*算法的详细解释和实现。

5. Johnson算法题目:给定一个加权有向图,请找出任意两个节点之间的最短路径,其中图中可能存在负权边。

参考内容:《算法导论》第25章,提供了Johnson算法的详细解释和实现。

6. SPFA算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径。

参考内容:各种算法教材、博客文章和论文中提供了SPFA算法的详细解释和实现,如《算法导论》第24章。

7. Yen's算法题目:给定一个加权有向图、一个源节点和一个目标节点,请找出从源节点到目标节点的K条最短路径。

参考内容:论文《Finding the K Shortest Loopless Paths in a Network》中提供了Yen's算法的详细解释和实现。

人教八年级数学上册最短路径问题

人教八年级数学上册最短路径问题

如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得
AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直
线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方
法是( )
A.转化思想 B.三角形两边之和大于第三边
∙B A∙
C.两点之间,线段最短
l
∙B
题转化为“两点之间,线段最短”来解决,该
A∙
过程用到了“转化思想”,“两点之间,线段
l
C
最短”,验证是否为最短距离时利用了三角形
两边之和大于第三边.
B′
随堂练习 2
两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在 地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的 位置.
1、直线异侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l异侧的两个点,在直线l上找一点C使得AC+BC的值最 小,此时点C就是线段AB与直线l的交点.
A∙
C l
∙B
新知探究
知识点2
2、直线同侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l同侧的两个点,在直线l上找一点C使得AC+BC的值 最小,这时先作点B关于直线l的对称点的B′,连接AB′交直线l于点C(也可以作 点A关于直线l的对称点A′,连接A′B交直线l于点C),此时点C就是所求作的点.
C
∵A′C=AC=BD,
在△A′CE和△BDE中, ∠A′CE=∠B′C=BD,
则△A′CE≌△BDE(AAS),CE=DE,A′E=BE.

中国计算机应用技术大赛全国算法精英大赛题解

中国计算机应用技术大赛全国算法精英大赛题解

我国计算机应用技术大赛全国算法精英大赛是一项旨在挖掘和培养计算机算法领域人才的赛事,也是我国计算机领域最具权威性和影响力的赛事之一。

本届比赛共吸引了来自全国各地的上千名算法精英参赛,他们在比赛过程中展现出了高超的算法实力和丰富的计算机知识,为整个赛事增添了无限的精彩和激烈竞争。

通过参与本次大赛的比赛内容和过程观察,我们对比赛中的一些典型题目进行了深入分析和解题思路总结。

我们希望通过本文,向广大计算机算法爱好者和参与者们介绍一些本次大赛的精彩题目,并提供一些解题思路和算法分析,帮助大家更好地了解和掌握这些优秀的算法应用。

以下是我们对本次大赛某些典型题目的解题思路总结和分析:1. 题目一:最短路径问题这是一个典型的图论问题,要求在一个有向加权图中求解从起点到终点的最短路径。

常见的解决方法是使用Dijkstra算法或者Floyd算法,通过编程实现对图的遍历和动态规划,找出最短路径的权值和路径节点。

在实际编程过程中,需要考虑如何有效地存储图结构和权值,以及如何高效地搜索和更新最短路径信息。

2. 题目二:动态规划问题动态规划是一类重要的算法设计思想,本次比赛中也出现了相关的动态规划问题。

这类问题通常要求在满足一定约束条件下,求解某种最优解或者最大值。

动态规划算法通过状态转移和递推的方式,逐步逼近最优解。

在解决动态规划问题时,需要注意如何定义状态和状态转移方程,以及如何设计合适的算法逻辑和辅助数据结构,以实现高效的动态规划求解。

3. 题目三:字符串匹配与查找问题字符串匹配与查找是计算机算法领域中一个经典且常见的问题。

在本次比赛中,也出现了相关的字符串匹配和查找题目。

常见的解决方法包括暴力法、KMP算法、Boyer-Moore算法等。

这些方法都在字符串匹配效率、空间复杂度和实际应用场景上有不同的特点和优劣势。

在解决字符串匹配和查找问题时,需要根据具体情况选择合适的方法,并且要考虑相关算法的实现细节和优化技巧。

专地的题目训练蚂蚁爬行地最短路径(含答案详解)

专地的题目训练蚂蚁爬行地最短路径(含答案详解)

蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线.AB = 51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。

解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短,MD =MC +CD =1+2=3,MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。

最短路径问题的求解PPT精选文档

最短路径问题的求解PPT精选文档
这种算法最关键的问题就是如何确定估价函数,估价函数越准,则能 越快找到答案。这种算法实现起来并不难,只不过难在找准估价函数,大 家可以自已找相关资料学习和思考。
.
3
最短路径问题的求解
三、等代价搜索法 等代价搜索法也是在宽度优先搜索的基础上进行了部分优化的一种算法,它与
启发式搜索的相似之处都是每次只展开某一个结点(不是展开所有结点),不同之 处在于:它不需要去另找专门的估价函数,而是以该结点到A点的距离作为估价值, 也就是说,等代价搜索法是启发式搜索的一种简化版本。它的大体思路是:
.
2
最短路径问题的求解
二、 启发式搜索 在宽度优先搜索算法的基础上,每次并不是把所有可展开的结点展开,
而是对所有没有展开的结点,利用一个自己确定的估价函数对所有没展开 的结点进行估价,从而找出最应该被展开的结点(也就是说我们要找的答 案最有可能是从该结点展开),而把该结点展开,直到找到目标结点为止。
.
12
最短路径问题的求解
八、Dijkstra算法(从一个顶点到其余各顶点的最短路径,单源最短路径) 例3、如下图,假设C1,C2,C3,C4,C5,C6是六座城市,他们之间的连线表示两 城市间有道路相通,连线旁的数字表示路程。请编写一程序,找出C1到Ci 的最短路径(2≤i≤6),输出路径序列及最短路径的路程长度。
3、由数轴可见,A与A'点相比,A点离原点近,因而保留A点,删除A'点,相应的,B、B'点保留B点, D、D'保留D',E、E'保留E',得到下图:
.
11
最短路径问题的求解
4、此时再以离原点最近的未展开的点B联接的所有点,处理后,再展开离原点最近未展开的D点, 处理后得到如下图的最终结果:

13.4最短路径问题(第一课时)课件人教版

13.4最短路径问题(第一课时)课件人教版

距离最短,在图中画出该点的位置.
C
在AB上求作一点P,
使得PC+PD最短.
D
A
B
初中数学
在AB上求作一点P,使得PC+PD最短.
C
作法:
D
(1)作点C关于AB的对称点C′;
A
PB
(2)连接DC′交AB于点P;
(3)则点P即为所求的点.
C′
初中数学
初中数学
练习
有两棵树位置如图,树的底部分别为A,B,地上 有一只昆虫沿着A—B的路径在地面上爬行.小树 顶D处一只小鸟想飞下来抓住小虫后,再飞到大 树的树顶C处.问小鸟飞至AB之间何处时,飞行 距离最短,在图中画出该点的位置.
总结:① 将实际问题抽象成数学 ①分析题目中的定点和动点,转化为我们熟悉的最短路径问题.
有两棵树位பைடு நூலகம்如图,树的底部分别为A,B,地上有一只昆虫沿着A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处.问小鸟飞至AB之间何
处时,飞行距离最短,在图中画出该点的位置.
问题,用数学语言表达. (2)连接CD′交AB于点P;
如图,已知点D,点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为__________.
如图,在直线 l 上求作一点C,使得CA+CB最短.
③ 用符号语言证明结论. 有两棵树位置如图,树的底部分别为A,B,地上有一只昆虫沿着A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处.问小鸟飞至AB之间何
一点M,使PM+MQ最短. 有两棵树位置如图,树的底部分别为A,B,地上有一只昆虫沿着A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处.问小鸟飞至AB之间何

等腰三角形 最短路径(含例题)

等腰三角形 最短路径(含例题)

1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;(2)等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.4.等边三角形的判定判定等边三角形的方法:(1)定义法:三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的__________三角形是等边三角形.5.含30°角的直角三角形的性质一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的__________.【注意】(1)该性质是含30°角的特殊直角三角形的性质,一般的直角三角形或非直角三角形没有这个性质,更不能应用.(2)这个性质主要应用于计算或证明线段的倍分关系.(3)该性质的证明出自于等边三角形,所以它与等边三角形联系密切.(4)在有些题目中,若给出的角是15°时,往往运用一个外角等于和它不相邻的两个内角的和将15°的角转化后,再利用这个性质解决问题.6.最短路径问题1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.K知识参考答案:1.相等,重合2.相等,等边3.等边,60°4.等腰5.一半K—重点等腰三角形的判定和性质,等边三角形的判定和性质K—难点等腰三角形中的分类讨论问题K—易错等腰三角形“三线合一”性质的应用一、等腰三角形的性质和判定1.应用“三线合一”性质的前提条件是在等腰三角形中,且必须是底边上的中线、底边上的高和顶角平分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【答案】D【解析】因为AD⊥BC,D是BC的中点,所以△ABD与△ACD关于直线AD对称,由轴对称的性质可知△ABD ≌△ACD,∠B=∠C,△ABC是等腰三角形,但不能得到△ABC是等边三角形,故选D.【例2】已知等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角是A.30︒B.60︒C.150︒D.30︒或150︒【答案】D【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.【答案】5【解析】已知∠AON=60°,当OP=OA=5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm【答案】C四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择. 【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【解析】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.。

最短路径问题专项练习题

最短路径问题专项练习题

AB最短路径问题专项练习共13页,全面复习与联系最短路径问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化)1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区 利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂? (2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?分析:(1)到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB 的垂直平分线,与EF 的交点即为符合条件的点.(2)要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,作A (或B )点关于EF 的对称点,连接对称点与B 点,与EF 的交点即为所求.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如图所示,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B =C′A′-C′B<A′B,所以C′A′-C′B<CA-C B.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种BC ABLCD方法.三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。

初二数学 课题学习 最短路径问题试题

初二数学 课题学习 最短路径问题试题

初二数学课题学习最短路径问题试题1.(2014•绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.【答案】B【解析】按照题意要求,动手操作一下,可得到正确的答案.解:由题意要求知,展开铺平后的图形是B.故选:B.点评:此题主要考查了剪纸问题,此类问题应亲自动手折一折,剪一剪看看,可以培养空间想象能力.2.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4C.D.5【答案】C【解析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD 是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出=AB•CM=AC•BC,得出CM的值,即PC+PQ的最小值.AB,再运用S△ABC解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S=AB•CM=AC•BC,△ABC∴CM===,即PC+PQ的最小值为.故选:C.点评:本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.3.(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.4.(2014•舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A.2cm B.2cm C.4cm D.4cm【答案】B【解析】先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选:B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.5.(2014•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5D.5【答案】A【解析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)【答案】A【解析】首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M 的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.7.(2014•甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C 重合,若BC=5,CD=3,则BD的长为()A.1B.2C.3D.4【答案】D【解析】由翻折的性质可得:△ABD≌△CBD,得出∠ADB=∠CDB=90°,进一步在Rt△BCD 中利用勾股定理求得BD的长即可.解:∵将△ABC沿BD翻折后,点A恰好与点C重合,∴△ABD≌△CBD,∴∠ADB=∠CDB=90°,在Rt△BCD中,BD===4.故选:D.点评:本题考查了翻折的性质:翻折是一种对称变换,它属于轴对称,根据轴对称的性质,翻折前后图形的形状和大小不变,位置变化,对应边和对应角相等;以及勾股定理的运用.8.(2014•济南)如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A.(,3)B.(,)C.(2,2)D.(2,4)【答案】A【解析】作O′M⊥y轴,交y于点M,O′N⊥x轴,交x于点N,由直线y=﹣x+2与x轴、y轴分别交于A、B两点,求出A(0,2),B(2,0)和∠BAO=30°,运用直角三角形求出MB 和MO′,再求出点O′的坐标.解:如图,作O′M⊥y轴,交y于点M,O′N⊥x轴,交x于点N,∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴A(0,2),B(2,0),∴∠BAO=30°,由折叠的特性得,O′B=OB=2,∠ABO=∠ABO′=60°,∴MB=1,MO′=,∴OM=3,ON=O′M=,∴O′(,3),故选:A.点评:本题主要考查了折叠问题及一次函数问题,解题的关键是运用折叠的特性得出相等的角与线段.9.(2014•黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCE C.EB=ED D.∠ABE一定等于30°【答案】D【解析】根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.10.(2014•牡丹江)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50°D.60°【答案】A【解析】根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案.解:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵CD⊥AB,∴∠B+∠BCD=90°,∵∠A+∠B=90°,∴∠A=∠BCD,∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.。

最短路径问题专项练习题

最短路径问题专项练习题

最短路径问题专项练习题最短路径问题专项练,包括蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题以及线段最短问题。

原理是两点之间,线段最短;垂线段最短,可以通过构建“对称模型”实现转化。

最短路径问题指的是在给定的图中,找到从一个起点到达一个终点的最短路径。

其中,线段最短问题可以分为同侧和异侧两种情况。

对于异侧的情况,只需要连接这两点,与直线的交点即为所求;对于同侧的情况,需要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求。

证明时可以利用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题。

解决最值问题时,利用轴对称的性质和三角形的三边关系是常用的方法。

但在应用中,要注意审题,不要只关注图形,而忽略题意要求,以免答非所问。

选址问题的关键是将各条线段转化为一条线段。

根据三角形的三边关系,如果两点在一条直线的同侧,则过两点的直线与原直线的交点处构成线段的差最大;如果两点在一条直线的异侧,则过两点的直线与原直线的交点处构成的线段的和最小。

根据最大值或最小值的情况,可以选择其中一个点的对称点来解决问题。

解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题。

因此,在解决最短路径问题时,可以利用轴对称、平移等变换将不在一条直线上的两条线段转化为一条直线上,从而解决问题。

例2中,要使厂部到A、B两点距离相等,可以作AB的垂直平分线与EF的交点。

要使厂部到A、B两村的水管最短,可以作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求。

例3中,要使从A到B的路程最短,只要AM+BN最短。

因此,可以将MN平移至AC,使两线段在同一平行方向上,连接BC的线段即为最短的,此时点N即为建桥位置,XXX即为所建的桥。

精品资料整理范文范例研究参考1.桥的建造如图2所示,建造一座桥,过点A作AC垂直于河岸,使AC等于河宽。

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键

初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键 -初二数学轴对称这一章节中,课题研究中的最短路径问题,是中考的热门考点,在初二的考试中也是经常会出现。

最短路径问题中,初中阶段主要涉及三方面的内容,“将军饮马”、“造桥选址”和“费马点”,涉及到的知识点主要有“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”等,需要同学们根据题目给定的条件,做出最短路径问题,而这类题目的解题思路就是找对称点实现“折”转“直”,这是最为关键的,从而找到最短路径的点,解决出最短路径的问题,我们先来学习一个比较简单的“将军饮马”类型,最短路径的求解,通过四种题型,详解解释作图方法。

希望同学们能够认真总结,将这类题目掌握。

以“将军饮马”为原型常见的四种类型的题目分别是:(1)、A,B两点位于L的同侧,求出直线上一点P,使得PA+PB最小;(2)、A,B两点位于L的两侧,求出直线上一点P,使得PA+PB最小;(3)、在两条相交直线L1,L2内一点P,在两条直线上分别求出M,N,使△PMN的周长最小;(4)、在直线L1、L2上分别求点M、N,使四边形PQMN的周长最小。

例1:作图题.如图,小河边有两个村庄A、B,要在河边建一自来水厂P,向A村B村供水.(1)若要使厂部到A、B两村的距离相等,则厂部P应选在哪里?在图①中画出;(2)若要使厂部到A、B两村的输水管长度之和最小,则厂部P应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)本题关键是掌握在直线L上的同侧有两个点A、B,在直线L 上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.例2:尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.本题不仅考察了最短路径的作图方法,还要求根据题意明确点P还在角COD的角平分线上。

dijkstra最短路径经典例题 java

dijkstra最短路径经典例题 java

题目:Dijkstra算法解决最短路径问题一、介绍Dijkstra算法Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。

它采用了贪心法的思想,即每次都选择当前最短的路径去更新相邻节点的距离,直到所有节点的最短路径都被更新为止。

Dijkstra算法的时间复杂度为O(V^2),其中V表示图中节点的个数,因此适用于节点数较少的情况。

二、Dijkstra算法的基本步骤1. 初始化:将起始节点的距离设置为0,其他节点的距离设置为无穷大。

2. 确定当前最短距离节点:从未标记节点中选择距离最短的节点作为当前节点。

3. 更新相邻节点的距离:计算当前节点到相邻节点的距离,若小于原距离,则更新距离。

4. 标记当前节点:将当前节点标记为已访问。

5. 重复步骤2-4,直到所有节点都被标记为已访问或者没有可更新的节点。

三、经典例题:求解最短路径假设有一个带权有向图,节点表示城市,边表示城市之间的道路并标有权值,即两个城市之间的距离。

现要求从起始城市A到目标城市B的最短路径。

四、Java代码实现Dijkstra算法```javaimport java.util.Arrays;public class DijkstraAlgorithm {private static final int INF = Integer.MAX_VALUE; // 无穷大表示两节点不直接相连public int[] dijkstra(int[][] graph, int start) {int n = graph.length;int[] distance = new int[n]; // 存储起始节点到各节点的最短距离boolean[] visited = new boolean[n]; // 记录节点是否已被访问// 初始化distance数组Arrays.fill(distance, INF);distance[start] = 0;// 循环更新最短距离for (int i = 0; i < n - 1; i++) {int minIndex = findMinIndex(distance, visited); // 找到未被访问且距禃最短的节点visited[minIndex] = true;for (int j = 0; j < n; j++) {if (!visited[j] graph[minIndex][j] != INFdistance[minIndex] + graph[minIndex][j] < distance[j]) {distance[j] = distance[minIndex] +graph[minIndex][j];}}}return distance;}private int findMinIndex(int[] distance, boolean[] visited) { int minDist = INF, minIndex = -1;for (int i = 0; i < distance.length; i++) {if (!visited[i] distance[i] < minDist) {minDist = distance[i];minIndex = i;}}return minIndex;}public static void m本人n(String[] args) {int[][] graph = {{0, 6, 3, INF, INF},{INF, 0, INF, 1, INF},{INF, 2, 0, 1, 1},{INF, INF, INF, 0, 3},{INF, INF, INF, INF, 0}};DijkstraAlgorithm dijkstra = new DijkstraAlgorithm();int[] distance = dijkstra.dijkstra(graph, 0);for (int i = 0; i < distance.length; i++) {System.out.println("节点0到节点" + i + "的最短距禿:" + (distance[i] == INF ? "不可达" : distance[i]));}}}```五、代码解析1. 首先定义了一个常量INF表示无穷大,在实际应用中可以根据具体情况设置为合适的数值。

最短路径问题【范本模板】

最短路径问题【范本模板】

最短路径问题 姓名 类型一、一条直线外两个定点到直线上一动点距离之和最小的问题:1. 一条直线异侧两个定点到直线上一动点距离之和最小,确定动点的位置。

作法:连接两个定点,交直线于一点,交点即为所求。

例1、如图,在直线l 上求一点P ,使PA +PB 值最小.作法:连接AB ,交直线l 于点P ,点P 即为所求。

说明:∵连接A 、B 两点的线中,线段最短。

∴连接AB ,交直线l 于点P ,此时PA+PB 最小=AB2. 一条直线同侧两个定点到直线上一动点距离之和最小,确定动点的位置。

方法:利用轴对称变换将直线同侧两个定点转化为直线异侧两个定点,然后根据“两点之间线段最短”,用例1的方法确定动点的位置。

例2、 如图,在直线l 上求一点P ,使PA +PB 值最小. 作法:①作点A 关于直线l 的对称点A ’;②连接A ’B,交直线l 于点P,点P 即为所求。

说明:连接AP 、AA ’,∵点A 和点A ’关于直线l 对称, ∴直线l 是AA ’的垂直平分线,∴PA=PA ’,∵两点之间,线段最短。

∴此时PA+PB 最小=PA ’+PB=AB 。

类型二、一条直线外两个定点到直线上一动点距离之差最大的问题: 1.一条直线同侧两个定点到直线上一动点距离之差最大,确定动点的位置。

例3、在直线l 上求一点P ,使PB PA -的值最大.作法:连接AB,并延长交直线l 于点P ,点P 即为所求.证明:在直线l 上另取一点P ’,连接P'A 和P ’B , ∵三角形的两边之差大于第三边, ∴AB B P A P <''-; 而连接AB ,并延长交直线l 于点P,此时AB PB PA =-,AB PB PA =-∴最大此时 2.一条直线异侧两个定点到直线上一动点距离之差最大,确定动点的位置。

方法:利用轴对称变换将直线异侧两个定点转化为直线同侧两个定点,然后根据“三角形的两边之差大于第三边”,用例3的方法确定动点的位置。

初中奥数辅导《最短路径问题》典型例题

初中奥数辅导《最短路径问题》典型例题

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。

解:连接AB,线段AB 与直线L 的交点P ,就是所求。

(根据:两点之间线段最短.)二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

A· BMNE证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②令P(v11)=14,计算结束。v1-v11最短路径长度为21。
2.求从结点V1到各个结点的最短路径。
v2 9 v1 1 v4 2 1 5 1 3 v3 2 9 v6 9 v7 v5 2 1 6 3 1 1 v10 7 v9
v8 6
10 9 v11
3
8
解:开始,P(v1)=0,T(vj)=+∞,(j=2,3,…,11)。
②在所有的T标号中,T(v2)最小,于是令P(v2)=9。
第三步: S=3,I=2,T={3,5,6,7,8,9,10,11} ①v2刚得到P标号,故考察v2。(v2,v5)∈A且v5是T 标号点,则修改为:
10 T (v5 ) min T (v5 ), P(v6 ) W65 min ,9 1
10 T (v5 ) min T (v5 ), P(v6 ) W65 min ,9 1
②在所有的T标号中,T(v5)最小,于是令P(v5)=10。
第四步: S=4,I=5,T={3,6,7,8,9,10,11} ①v5刚得到P标号,故考察v5。 (v5,v9)∈A且v9是T标号点,则修改为:
②在所有的T标号中,T(v10)最小,于是令P(v10)=15。
第七步: S=7,I=10,T={6,8,11} ①v10刚得到P标号,故考察v10。(v10,v11)∈A且v11是T标号 点,则修改为:
T (v11) min T (v11), P(v10) W 1011 min 21 ,15 9 21
②在所有的T标号中,T(v8)最小,于是令P(v8)=18。
第九步: S=9,I=8,T={11} ①v8刚得到P标号,故考察v8。(v8,v11)∈A且v11是T标
T (v11) minT (v11), P(v8) W 811 min21,18 6 21
号点,则修改为:
例:求图中V1-V7的最短有向路径及其长度
开始,P(v1)=0,T(vj)=+∞,(j=2,3,…,7)。
第一步:S=1,I=1,T={2,3,4,5,6,7,8,9,10,11}
①(v1,v2),(v1,v4)∈A 且v2、v4是T标号点,
9 v2 5 v3 2 v4 4 3 v6 5 3 11 9 v5 6
②在所有的T标号中,T(v5)最小,于是令P(v5)=10。
第四步: S=4,I=5,T={3,6,7,8,9,10,11} ①v5刚得到P标号,故考察v5。 (v5,v9)∈A且v9是T标号点,则修改为:
11 T (v9) min T (v9), P(v5) W 59 min ,10 1
②在所有的T标号中,1)种中T(v7)最小,而1)和2)种进行 比较得,T(v7)最小,于是令P(v7)=14。
第六步: S=6,I=7,T={6,8,10,11} ①v7刚得到P标号,故考察v7。(v7,v10)∈A且v10是T标号点, 则修改为:
15 T (v10) min T (v10), P(v7) W 710 min ,14 1
2)v9刚得到P标号,故考察v9。(v9,v6),(v9,v7), (v9,v8),(v9,v11)∈A且v6,v7,v8,v11是T标号, 则修改为:
T (v6) minT (v6), P(v9) W 96 min,11 6 17 T (v7) minT (v7), P(v9) W 97 min,11 3 14 T (v8) minT (v8), P(v9) W 98 min,11 7 18 T (v11) minT (v11), P(v9) W 911 min,11 10 21
②在所有的T标号中,1)种中T(v7)最小,而1)和2)种进行 比较得,T(v7)最小,于是令P(v7)=14。
第六步: S=6,I=7,T={6,8,10,11} ①v7刚得到P标号,故考察v7。(v7,v10)∈A且v10是T标号点, 则修改为:
15 T (v10) min T (v10), P(v7) W 710 min ,14 1
11 T (v9) min T (v9), P(v5) W 59 min ,10 1
②在所有的T标号中,T(v3)与T(v9)最小,于是令
P(v3)=P(v9)=11。
第五步: S=5,I=3或9,T={6,7,8,10,11} ①1)v3刚得到P标号,故考察v3。(v3,v7)∈A且v7是T标号 点,则修改为:
②在所有的T标号中,T(v8)最小,于是令P(v8)=18。
第九步: S=9,I=8,T={11} ①v8刚得到P标号,故考察v8。(v8,v11)∈A且v11是T标
T (v11) minT (v11), P(v8) W 811 min21,18 6 21
号点,则修改为:
②在所有的T标号中,T(v4)最小,于是令P(v4)=8。
第二步: S=2,I=4,T={2,3,5,6,7,8,9,10,11} ①v4刚得到P标号,故考察v4。(v4,v3)∈A 且v3是T标号点,则修改其T标号为:
T (v3 ) min T (v3 ), P(v4 ) W43 min ,8 3 11
第一步:S=1,I=1,T={2,3,4,5,6,7,8,9,10,11}
①(v1,v2),(v1,v4)∈A 且v2、v4是T标号点,
则修改其T标号为:
T (v2 ) min T (v2 ), P(v1 ) W12 min ,0 9 9
,0 9 9 T (v2 ) min T (v2 ), P(v1 ) W 12 min
②在所有的T标号中,T(v10)最小,于是令P(v10)=15。
第七步: S=7,I=10,T={6,8,11} ①v10刚得到P标号,故考察v10。(v10,v11)∈A且v11是T标号 点,则修改为:
T (v11) min T (v11), P(v10) W 1011 min 21 ,15 9 21
②在所有的T标号中,T(v3)与T(v9)最小,于是令
P(v3)=P(v9)=11。
第五步: S=5,I=3或9,T={6,7,8,10,11} ①1)v3刚得到P标号,故考察v3。(v3,v7)∈A且v7是T标号 点,则修改为:
T (v7) min T (v7), P(v3) W 37 min ,11 9 20
T (v3 ) min T (v3 ), P(v4 ) W43 min ,8 3 11
②在所有的T标号中,T(v2)最小,于是令P(v2)=9。
第三步: S=3,I=2,T={3,5,6,7,8,9,10,11} ①v2刚得到P标号,故考察v2。(v2,v5)∈A且v5是T 标号点,则修改为:
②令P(v11)=14,计算结束。v1-v11最短路径长度为21。
②在所有的T标号中,T(v16)最小,于是令P(v6)=17。
第八步: S=8,I=6,T={8,11} ①v6刚得到P标号,故考察v6。vj无。
T (v8) minT (v8), P(v9) W 98 min,11 7 18
T (v11) minT (v11), P(v9) W 911 min,11 10 21
则修改其T标号为:
v1
2
7
v7
T (v2 ) min T (v2 ), P(v1 ) W12 min ,0 9 9
,0 9 9 T (v2 ) min T (vபைடு நூலகம் ), P(v1 ) W 12 min
T (v4 ) min T (v4 ), P(v1 ) W14 min ,0 8 8
T (v7) min T (v7), P(v3) W 37 min ,11 9 20
2)v9刚得到P标号,故考察v9。(v9,v6),(v9,v7), (v9,v8),(v9,v11)∈A且v6,v7,v8,v11是T标号, 则修改为:
T (v6) minT (v6), P(v9) W 96 min,11 6 17 T (v7) minT (v7), P(v9) W 97 min,11 3 14 T (v8) minT (v8), P(v9) W 98 min,11 7 18 T (v11) minT (v11), P(v9) W 911 min,11 10 21
②在所有的T标号中,T(v16)最小,于是令P(v6)=17。
第八步: S=8,I=6,T={8,11} ①v6刚得到P标号,故考察v6。vj无。
T (v8) minT (v8), P(v9) W 98 min,11 7 18
T (v11) minT (v11), P(v9) W 911 min,11 10 21
T (v4 ) min T (v4 ), P(v1 ) W14 min ,0 8 8
②在所有的T标号中,T(v4)最小,于是令P(v4)=8。
第二步: S=2,I=4,T={2,3,5,6,7,8,9,10,11} ①v4刚得到P标号,故考察v4。(v4,v3)∈A 且v3是T标号点,则修改其T标号为:
相关文档
最新文档