吉林省吉林市2019年中考数学模拟试卷(有答案)
2019年吉林省中考数学试卷含答案
吉林省 2019 年初中毕业生学业水平考试
数学答案解析
一、单项选择题 1.【答案】D 【解析】蝴蝶在原点的左边,应为负数,所以,选项中,只有 1 有可能,选 D.
【考点】数轴的定义 2.【答案】D 【解析】从上面往下看,能看到一排四个正方形,D 符合.
【考点】三视图 3.【答案】B
________(结果保留 ).
三、解答题(每小题 5 分,共 20 分)
15.先化简,再求值: a 12 a a 2 ,其中 a 2 .
17.已知 y 是 x 的反比例函数,并且当 x 2 时, y 6 . (1)求 y 关于 x 的函数解析式; (2)当 x 4 时,求 y 的值.
BAC 70 , CED 50 ,则 B
°.
数学试卷 第 2页(共 16页)
12.如图,在四边形 ABCD 中, AB 10 , BD AD .若将 △BCD 沿 BD 折叠,点 C 与边 AB
的中点 E 恰好重合,则四边形 BCDE 的周长为
.
16.甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有 红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇 子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢 都是红色的概率.
余 7 根竹签.这些竹签有多少根?山楂有多少个?
答
题
反思归纳
现有 a 根竹签, b 个山楂.若每根竹签串 c 个山楂,还剩余 d 个山楂,则下列等式成立
的是________(填写序号).
(1) bc d a ; 无
(3) ac d b .
(2) ac d b ;
2019年吉林省吉林市中考二模数学试卷(解析版)
2019年吉林省吉林市中考二模数学试卷一、单项选择题(每小题2分,共12分)1.在0,﹣1,,π中,属于无理数的有()A.1个B.2个C.3个D.4个2.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a2+a3=a5B.a2•a4=a8C.a2÷a=a D.(a2b)3=a5b34.一元二次方程2x2﹣6x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根5.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为9m,那么花圃的面积为()A.54πm2B.27πm2C.18πm2D.9πm26.如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.二、填空题(每小题3分,共24分)7.=.8.不等式3x+1>﹣2的解集为.9.某微商平台有一商品,标价为a元,按标价5折再降价30元销售,则该商品售价为元.10.元代《算学启蒙》里有这样一道题:“良马日行二百四十里,弩马日行一百五十里,弩马先行十二日,问良马几何追及之?”设良马x天能追上弩马,可列方程为.11.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.12.如图,等边△ABC中,点F,E分别在AB,BC上,把△BEF沿直线EF翻折,使点B 的对应点D恰好落在AC上.若∠AFD=90°,CD=1.则CE=.13.如图,在△ABC中,∠BAC=40°,将△ABC绕点A逆时针旋转,得到△ADE,点B的对应点D恰好落在线段AC的延长线上,连接BD.若∠BDE=90°,则∠ABC=度.14.我们规定能使等式成立的一对数(m,n)为“友好数对”.例如当m=2,n=﹣8时,能使等式成立,(2,﹣8)是“友好数对”.若(a,3)是“友好数对”,则a=.三、解答题15.(5分)小明解方程出现了错误,解答过程如下:方程两边都乘以x,得2﹣(x﹣1)=1(第一步)去括号,得2﹣x+1=1(第二步)移项,合并同类项,得﹣x=﹣2(第三步)解得x=2(第四步)∴原方程的解为x=2(第五步)(1)小明解答过程是从第步开始出错的,这一步正确的解答结果,此步的根据是.(2)小明的解答过程缺少步骤,此方程的解为.16.(5分)为了积极响应“3亿人上冰雪”号召,我市某中学组织初二420名学生到北大壶滑雪场开展冬令营活动.学校到某旅游公司租车,该公司现有A,B两种车型,若租用3辆A型车,5辆B型车,则空余15个座位;如果租用5辆A型车,3辆B型车,则有15个人没座位.求该公司A,B两种车型各有多少个座位.17.(5分)如图,三张“黑桃”扑克牌,背面完全相同将三张扑克牌背面朝上,洗匀后放在桌面上甲,乙两人进行摸牌游戏,甲先从中随机抽取一张,记下数字再放回洗匀,乙再从中随机抽取一张.(1)甲抽到“黑桃”,这一事件是事件(填“不可能“,“随机“,“必然”);(2)利用树状图或列表的方法,求甲乙两人抽到同一张扑克牌的概率.18.(5分)如图,四边形ABCD中,∠D=90°,AB=AC,BE⊥AC于点E,AE=AD.求证:AC平分∠DAB.四、解答题19.(7分)在边长为1个单位长度的小正方形组成的3×3的正方形网格图①、图②中,各画一个顶点在格点上的平行四边形,要求:每个平行四边形均为轴对称图形,每个平行四边形至少有一条边长为,所画的两个四边形不全等.20.(7分)某班数学活动小组测量吉林市“世纪之舟”的高度.他们制定了测量方案,并利用课余时间完成了实地测景,测量项目及数据如下表:请你根据活动小组测得的数据,求世纪之舟的高AB (结果保留小数点后一位). (参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.50)21.(7分)如图,在平面直角坐标系中,双曲线y=经过点A (6,1),过点A 作AB ⊥y 轴,垂足为点B ,点C 是双曲线第三象限上一点,连接AC ,BC .(1)求k 的值;(2)若△ABC 的面积为12,求直线AC 的解析式22.(7分)随着现代科技的发展,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项;A .与同学亲友聊天;B .学习;C .购物;D .游戏;E .其他),五一节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有人;(2)表中m的值为并补全条形统计图;(3)若该中学有800名学生,估计全校学生中利用手机购物和玩游戏的共有多少人?请你根据以上计算结果,给出中学生如何合理使用手机的一条建议.五、解答题(每小题8分.共16分)23.(8分)假期小颖决定到游泳馆游泳,游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用根据图中信息解答问题:(1)按A种方案购票,每张门票价格为元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.24.(8分)如图,在直角三角形ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,将△ABC沿AB翻折,得到△ABC',DE的延长线交BC'于点F.(1)判断△BEF的形状为;(2)当DE⊥BC'时,求证四边形ACBC'为正方形;(3)若AB=4,连接C'E,当C'E⊥DE时,直接写出DF的长.六、解答题(每小题10分,共20分)25.(10分)如图,在直角三角形ABC中,∠ABC=90°,AB=6cm,BC=8cm.动点P从点A出发,沿线段AB向终点B以1cm/s的速度运动,同时动点Q从点C出发沿线段CA以2cm/s的速度向终点A运动,以PQ,CQ为邻边作平行四边形PECQ.设平行四边形PECQ与直角三角形ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(t>0).(1)当点E落在线段BC上时,求t的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)当四边形PECQ为矩形时,直接写出t的值.26.(10分)我们规定抛物线y=ax2+bx+c(a≠0)与x轴有两个不同的交点A,B时,线段AB称为该抛物线的“横截弦”,其长度记为d.(1)已知抛物线y=2x2﹣x﹣3,则d=;(2)已知抛物线y=ax2+bx+2经过点A(1,0),当d=2时,求该抛物线所对应的函数解析式;(3)已知抛物线y=﹣x2+bx+c经过点A(1,0),与y轴交于点D.①抛物线恒存在“横截弦”,求c的取值范围;②求d关于c的函数解析式;③连接AD,BD,△ABD的面积为S.当1≤S≤10时,请直接写出c取值范围.参考答案一、单项选择题1.解:在实数0,﹣1,,π中,属于无理数的有,π共两个.故选:B.2.解:将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是,故选:D.3.解:A.a2+a3,不是同类项,不能合并,A错误;B.a2•a4=a6,B错误;C.a2÷a=a,C正确;D.(a2b)3=a6b3,D错误;故选:C.4.解:△=(﹣6)2﹣4×2×5=﹣4<0,所以方程无实数根.故选:D.5.解:S扇形=(m2),故选:B.6.解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.二、填空题(每小题3分,共24分)7.解:=﹣2.故答案为:﹣2.8.解:3x+1>﹣2移项得,3x>﹣2﹣1,合并同类项得,3x>﹣3,即x>﹣1.故答案为x>﹣1.9.解:由题意可得,该商品的售价为:a×0.5﹣30=(0.5a﹣30)元,故答案为:(0.5a﹣30).10.解:根据题意,可得等量关系:弩马十二日路程+弩马x日路程=良马x天路程,所以列方程150×12+150x=240x,故答案为150×12+150x=240x.11.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.12.解:∵把△BEF沿直线EF翻折,使点B的对应点D恰好落在AC上.若∠AFD=90°,∴∠BFE=∠EFD=45°,∵等边△ABC,∴∠B=∠C=60°,∴∠FEB=∠F ED=180°﹣45°﹣60°=75°,∴∠DEC=180°﹣75°﹣75°=30°,∴∠EDC=180°﹣30°﹣60°=90°,∵CD=1,∴CE=2,故答案时:213.解:由旋转的性质得:∠ADE=∠ABC,AD=AB,∴∠ADB=∠ABD=(180°﹣∠BAC)=(180°﹣40°)=70°,∵∠BDE=90°,∴∠ADE=∠BDE﹣∠ADB=20°,∴∠ABC=20°,故答案为:20.14.解:根据题意,可得:+=,∴+=+,∴+﹣=+﹣,∴+=,解得a=﹣.故答案为:﹣.三、解答题(每小题5分,共20分)15.解:(1)小明解答过程是从第一步开始出错的,这一步正确的解答结果2﹣(x﹣1)=x,此步的根据是等式的基本性质.(2)小明的解答过程缺少检验步骤,此方程的解为x=1.5.故答案为:(1)一;2﹣(x﹣1)=x;等式的基本性质;(2)检验;x=1.5 16.解:设公司A、B两种车型各有x个座位和y个座位,根据题意得:.解得:.答:公司A、B两种车型各有45个座位和60个座位.17.解:(1)甲抽到“黑桃”,这一事件是必然事件;故答案为:必然;(2)画树状图得:∵共有9种等可能的结果,甲乙两人抽到同一张扑克牌的有3种情况,∴两次两次抽取的卡片上数字之积是奇数的概率==.18.证明:∵BE⊥AC,∴∠AEB=∠D=90°,在Rt△ADC与Rt△AEB中,,∴Rt△ADC≌Rt△AEB(HL),∴∠DAC=∠BAC,∴AC平分∠DAB.四、解答题(每小题7分共28分)19.解:如图所示:.20.解:设BG=x米.在Rt△BFG中,∠β=45°,∴FG==x;在Rt△BEG中,∠α=27°,∴EG==2x,∴EF=EG﹣FG=x.∵EC⊥AC,ED⊥AC,EC=ED,∴四边形ECDF为矩形,同理,四边形ECAG为矩形.∴EF=CD,即x=50,AG=EC=1.5,∴AB=AG+BG=51.5.答:世纪之舟的高AB为51.5米.21.解:(1)∵双曲线y=,经过点A(6,1),∴=1,解得k=6;(2)设点C到AB的距离为h,∵点A的坐标为(6,1),AB⊥y轴,∴AB=6,∴S△ABC=×6•h=12,解得h=4,∵点A的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),设直线AC的解析式为y=kx+b,则,解得,所以,直线AC的解析式为y=x﹣2.22.解:(1)5÷0.1=50(人),答:这次被调查的学生有50人.故答案为50;(2)m==0.2,n=0.2×50=10,p=0.4×50=20.条形统计图补充如下:故答案为0.2;(3)800×(0.1+0.4)=800×0.5=400(人),答:全校学生中利用手机购物或玩游戏的共有400人.建议:学生在假期里应该更加规范自己使用手机的情况,可以用于学习或其他有意义的事情.五、解答题(每小题8分.共16分)23.解:(1)由图可得,按A种方案购票,每张门票价格为:350÷10=35(元),故答案为:35;(2)贵宾卡的价格是:470﹣10×(35﹣8)=200(元),设y2与x的函数解析式是y2=kx+b,,得,即y2与x的函数解析式是y2=27x+200;(3)当按A种方式购票,30天需要花费:35×30=1050(元),按B种方式购票,30天需要花费:27×30+200=1010(元),∵1050>1010,∴小颖选择B种购票方案比较合算.24.解:(1)∵点D,E分别为AC,AB的中点,∴DE∥BC,∴∠BEF=∠ABC,∵将△ABC沿AB翻折,得到△ABC',∴∠ABC=∠ABC′,∴∠BEF=∠EBF,∴△BEF是等腰三角形;故答案为:等腰三角形;(2)∵将△ABC沿AB翻折,得到△ABC',∴∠C′=∠C=90°,AC=AC′,∵DE⊥BC',∴∠BFD=90°,∴∠C′=∠BFD,∴DF∥AC′,∵DE∥BC,∴∠CBC′=∠DFC′=90°,∴四边形ACBC′是矩形,∵AC=AC′,∴四边形ACBC′是正方形;(3)∵E为AB的中点,∴C′E=BE=AE=AB=2,∴∠EC′B=∠C′BE,过F作FH⊥BE,∵EF=BF,∴∠EFH=∠BFH,∴∠BFH+∠ABC=90°,∵C'E⊥DE,∴∠C′EF=90°,∴∠EC′F+∠EFC′=90°,∴∠C′FE=∠BFH=∠EFH,∵∠C′FE+∠EFH+∠BFH=180°,∴∠C′FE=∠FEH=60°,∴∠ADE=∠FEH=30°,∴EF=CE=,DE=AE=,∴DF=EF+DE=.六、解答题(每小题10分,共20分)25.解:(1)当点E落在线段BC上时,PQ∥BC,∴△APQ∽△ABC,∴=,∵∠AB C=90°,AB=6cm,BC=8cm,∴AC==10cm,∴=,解得:t=;(2)分情况讨论:①当0<t≤时,作PG⊥AC于G,如图1所示:则∠PGA=90°=∠ABC,∵∠A=∠A,∴△APG∽△ACB,∴=,即=,解得:PG=t,∴重叠部分图形的面积S=平行四边形PECQ的面积=2t×t═t2,即S=t2(0<t≤);②当<t≤5时,如图2所示:作PG⊥AC于G,CF⊥PE于F,则CF=PG,同①得:CF=PG=t,PH=10﹣t,∴EH=PE﹣PH=t﹣10,∴重叠部分图形的面积S=平行四边形PECQ的面积﹣△C EH的面积=2t×t﹣(t﹣10)×t=t2+4t,即S=t2+4t(<t≤5);③当5<t≤6时,Q到达A点停止不动,如图3所示:CE=AP=t,作PG⊥AC于G,同①得:PG=t,BH=t,∴CH=BC﹣BH=t,∴重叠部分图形的面积为S=平行四边形PECQ的面积﹣△CEH的面积=10×t﹣×t×t=﹣t2+8t,即S═﹣t2+8t(5<t≤6);(3)当四边形PECQ为矩形时,∠PQC=90°,∴∠PQA=90°=∠ABC,∵∠A=∠A,∴△APQ∽△ACB,∴=,即=,解得:t=.26.解:(1)令y=0,得2x2﹣x﹣3=0,解得,x1=﹣1,x2=,∴d=|x1﹣x2|=,故答案为:;(2)经过点A(1,0),d=2,∴抛物线与x轴另一个交点是(﹣1,0)或(3,0),将A(1,0)代入y=ax2+bx+2,得a+b=﹣2,将(﹣1,0)代入y=ax2+bx+2,得a﹣b=﹣2,将(3,0)代入y=ax2+bx+2,得9a+3b=﹣2,∴a=﹣2,b=0或a=,b=﹣,∴y=﹣2x2+2或y=x2﹣x+2;(3)将A(1,0)代入y=﹣x2+bx+c得b+c=1;∴y=﹣x2+(1﹣c)x+c,令y=0,得﹣x2+(1﹣c)x+c=0,x+x2=1﹣c,x1•x2=﹣c,1∵d=|x1﹣x2|=,①抛物线恒存在“横截弦”,∴△=(1﹣c)2+4c=c2+2c+1>0,∴c≠﹣1;②d==|c+1|,当c>﹣1时,d=c+1,当c<﹣1时,d=﹣c﹣1;③S=d|c|==,∵1≤S≤10,∴﹣5≤c≤﹣2或1≤c≤4;。
吉林省吉林市2019-2020学年中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣52.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率3.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-4.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B 3C3D.35.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)6.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D . 7.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .13138.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )A .﹣2.5B .﹣0.6C .+0.7D .+59.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是( )A .4B .32C .2D .3310.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒二、填空题(本题包括8个小题)11.函数y=12-x x的自变量x 的取值范围是_____. 12.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 13.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为_________________.14.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.15.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______.16.如图,在平面直角坐标系中,点P(﹣1,a)在直线y =2x+2与直线y =2x+4之间,则a 的取值范围是_____.17.如图,在△ABC 中,DE ∥BC ,1=2AD DB ,则ADE BCED 的面积四边形的面积=_____.18.如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当扇形AOB 的半径为22时,阴影部分的面积为__________.三、解答题(本题包括8个小题)19.(6分)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,E 是弧BD 的中点,AE 与BC 交于点F ,∠C=2∠EAB . 求证:AC 是⊙O 的切线;已知CD=4,CA=6,求AF 的长.20.(6分)如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x>0)交于点1)(,A a . 求a ,k 的值;已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P(m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x>0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.21.(6分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x 的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?22.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?23.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24.(10分)如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.求反比例函数y=kx的表达式;求点B的坐标;求△OAP的面积.25.(10分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.26.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.若苗圃园的面积为72平方米,求x ;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答. 详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.2.C【解析】 解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确; D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C .3.D【解析】 连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23.故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.4.C【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2,高是3.∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅⋅.故选C . 5.C【解析】如图:分别作AC 与AB 的垂直平分线,相交于点O ,则点O 即是该圆弧所在圆的圆心.∵点A 的坐标为(﹣3,2),∴点O 的坐标为(﹣2,﹣1).故选C .6.D【解析】【分析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C 选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D 选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE∴cos BF EBF BE ∠=== 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 8.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.9.B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=12AB=1222,在Rt△PBE中,PB=3,∴223-22(),∴22,∴2.故选B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.10.B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.二、填空题(本题包括8个小题)11.x≤12且x≠0【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x≤且0x≠.故答案为12x≤且0x≠.12.28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.13.1【解析】【分析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=13x+2=0+2=2,∴B(0,2),∴OB=2,令y=0,得0=13x+2,解得,x=-6,∴A(-6,0),∴OA=OD=6,∵OB∥CD,∴CD=2OB=4,∴C(6,4),把c(6,4)代入y=kx(k≠0)中,得k=1,故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.14.4610【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.1【解析】【分析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3),∴3=4-m ,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式. 16.0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等. 17.18【解析】【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE ∥BC ,AD 1=DB 2, ∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC,∴S △ADE :S △ABC =1:9, ∴ADE S ADE BCED S ABC S ADE 的面积四边形的面积=-=18. 【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 18.π﹣1【解析】 【分析】 根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =12 ,∴CD =OD =1,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=24522360π() ﹣12×11 =π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.三、解答题(本题包括8个小题)19.(1)证明见解析(2)6【解析】【分析】(1)连结AD ,如图,根据圆周角定理,由E 是BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD ,如图,∵E 是BD 的中点,∴2DAB EAB ∠=∠,∵2ACB EAB ∠=∠,∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒, ∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,,∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=,∴22220226AF AD DF =+=+=【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点. 20.(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤.【解析】【分析】 (1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】 解:(1)将1)(,Aa 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.21. (1) y =﹣2x+220(40≤x≤70);(2) w =﹣2x 2+300x ﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y 与x 成一次函数解析式,设为y =kx+b (k≠0),把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价×销售量,列出w 关于x 的二次函数解析式即可;(3)利用二次函数的性质求出w 的最大值,以及此时x 的值即可.【详解】(1)设y =kx+b(k≠0),根据题意得708060100k b k b +=⎧⎨+=⎩, 解得:k =﹣2,b =220,∴y =﹣2x+220(40≤x≤70);(2)w =(x ﹣40)(﹣2x+220)﹣350=﹣2x 2+300x ﹣9150=﹣2(x ﹣75)2+21;(3)w =﹣2(x ﹣75)2+21,∵40≤x≤70,∴x =70时,w 有最大值为w =﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.22.(1)10,30;(2)y=15(02)3030(211)x xx x≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.23.(1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为: 1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得100010x540 x44-≥⎧⎨≥⎩,解得:44≤x≤46 .w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.24.(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=1.【解析】【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=kx,得:k=12,则反比例函数解析式为y=12x;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴2243+,∵AB∥x轴,且AB=OA=1,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=13x,由1312y xyx⎧=⎪⎪⎨⎪=⎪⎩可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=1.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.25.(1)见解析;(2)6013 DE=.【解析】【分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC=,∴B C∠=∠.又∵AD为BC边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.26.(1)2(2)当x=4时,y 最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y ,根据题意得到二次函数的解析式y=x (31-2x )=-2x 2+31x ,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x 2-15x +36=1.解得x 1=3(舍去),x 2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S =x(31-2x)=-2(x -152)2+2252(6≤x≤4). ①当x =152时,S 有最大值,S 最大=2252; ②当x =4时,S 有最小值,S 最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.722.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C.D.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm24.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米5.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°6.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-7.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6 9.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)10.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定二、填空题(本题包括8个小题)11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.12.如图,数轴上点A所表示的实数是________________.13.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=经过正方形AOBC对角线的交点,半径为(422-的圆内切于△ABC,则k的值为________.16.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .17.如图,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值3m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为_____ m .18.关于x 的一元二次方程2kx x+1=0 有两个不相等的实数根,则k 的取值范围是 ▲ .三、解答题(本题包括8个小题)19.(6分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?20.(6分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.21.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.22.(8分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.23.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.24.(10分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.25.(10分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.26.(12分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.3.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.。
2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)
吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C. D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4= .【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .【答案】1. 【解析】试题解析:由旋转的性质得到AB=AB′=5, 在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5, 所以B′D=222254AB AD '-=-=4,所以B′C=5﹣B′D=1. 故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 m .【答案】9. 【解析】即旗杆AB 的高为9m .考点:相似三角形的应用.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画»BE,ºCE .若AB=1,则阴影部分图形的周长为 (结果保留π).【答案】65π+1. 【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴»BE=ºCE =10831805AB ππ︒⨯⨯=︒, ∴C 阴影=»BE+ºCE +BC=65π+1. 考点:正多边形和圆.14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 . 【答案】1. 【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式21211x x ++-出现了错误,解答过程如下:原式=12(1)(1)(1)(1)x x x x ++-+-(第一步)=1+2(1)(1)x x +-(第二步)=231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【答案】隧道累计长度为126km ,桥梁累计长度为216km . 【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.2 9.6 9.6 7.8 9.3乙 5.8 9.7 9.8 5.8 9.9丙 4 6.2 8.5 9.9 9.9统计值平均数(万元)中位数(万元)众数(万元)数值人员甲9.3 9.6乙8.2 5.8丙7.7 8.5【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3 【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)43;(3)6+3或23+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=3AD=3,∴四边形ABC'D′的周长为43,∴矩形周长为6+3或23+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x≤28);(3)4秒【解析】(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴1202820k bk b⎧+=⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:y=58x+52(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=2,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=12DQ2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=2,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方; ③P 与O 或A 重合时,符合条件,m=0或m=4. 试题解析:【问题】 ∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0), 沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x 1=3,x 2=1, ∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >7时,函数y 随x 增大而增大; 【应用】:∵D (1,1),E (3,1), ∴DE=3﹣1=2, ∵S △PDE =12DE•h≥1, ∴h ≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤210或m≥10.考点:二次函数综合题.。
吉林省吉林市2019年中考数学模拟试卷(含答案)
2019年吉林省吉林市中考数学模拟试卷一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D 的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD=3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:统计量班级平均数中位数方差优秀率甲班 6.5 3.4530%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a =3,b =7,c =4,∴b 2﹣4ac =72﹣4×3×4=1. ∴y ==.∴y 1=﹣1,y 2=﹣.当y =﹣1时,x ﹣2=﹣1,∴x =1; 当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由; (3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P 的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,。
2019年吉林地区中考数学一模试卷(解析版)
2019年吉林地区中考数学一模试卷一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣22.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×1023.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣56.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为.8.计算=.9.分式方程的解为x=.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为人.11.某商品按进价提高20%出售,若进价为a元,则售价为元.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为.(结果保留π)13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为,选择该种型号手机的人数占被调查人数的百分比为;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=,汽车的速度是km/h;(2)当m≤x≤3时,求y关于x的函数解析式.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE的大小,并证明你的猜想;(2)根据(1)中的结果,猜想S△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.2016年吉林地区中考数学一模试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2【考点】有理数的乘法.【分析】根据有理数乘法法则来计算.【解答】解:﹣1×2=﹣(1×2)=﹣2.故选D.2.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:37000用科学记数法表示应为3.7×104,故选B.3.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】得到从几何体正面看得到的平面图形即可作出判断.【解答】解:从正面看得到3列正方形的个数依次为1,2,1.故选C.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°【考点】平行线的性质;直角三角形的性质.【分析】首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣5【考点】坐标与图形性质.【分析】先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.【解答】解:∵点P坐标为(﹣3,4),∴OP==5,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=5,∵点A在x轴的负半轴上,∴点A的横坐标是﹣5.故选D.6.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠A=90°﹣55°=35°,∴∠BCD=∠A=35°.故选D.二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为x<﹣1.【考点】解一元一次不等式.【分析】根据解不等式的方法可以得到2x+3<1的解集,本题得以解决.【解答】解:2x+3<1不等式两边同时减去3,得2x<﹣2两边同时除以2,得x<﹣1,故答案为:x<﹣1.8.计算=3.【考点】二次根式的加减法.【分析】原式化简后,合并同类二次根式即可得到结果.【解答】解:原式=+2=3.故答案为:3.9.分式方程的解为x=2.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣2,解得:x=2,经检验x=2是分式方程的解,则分式方程的解为x=2,故答案为:2.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为16人.【考点】中位数.【分析】根据中位数的定义,将这组数据从小到大重新排列,求出最中间两个数的平均数即可.【解答】解:∵共有6个数,∴这组数据的中位数是第3、4个数的平均数,∴这组数据的中位数是(17+15)÷2=16(人).故答案为:16.11.某商品按进价提高20%出售,若进价为a元,则售价为a元.【考点】列代数式.【分析】根据:进价×(1+增长百分率)=售价,即可得.【解答】解:若进价为a元,则售价为(1+20%)a=a,故答案为:a.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为π+2.(结果保留π)【考点】弧长的计算;翻折变换(折叠问题).【分析】根据折叠的性质得到=,利用扇形的弧长的计算的长,根据周长公式计算即可.【解答】解:的长为=π,由折叠的性质可知,=,∴图中阴影部分的周长=AO++=AO+=π+2,故答案为:π+2.13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为40°.【考点】旋转的性质;平行四边形的性质.【分析】由平行四边形的性质和旋转的性质得出AD′=AD,∠D′=∠ADC=70°,由等腰三角形的性质得出∠ADD′=∠D′=70°,再由三角形内角和定理即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADC+∠BAD=180°,∴∠BDC=180°﹣110°=70°,由旋转的性质得:AD′=AD,∠D′=∠ADC=70°,∴∠ADD′=∠D′=70°,∴∠α=180°﹣2×70°=40°;故答案为:40°.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:2a(a+2b)﹣(a+2b)2=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=(﹣1)2﹣4×()2=﹣7.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?【考点】二元一次方程组的应用.【分析】设参加植树的男生有x人,女生有y人,根据:“男、女生共20人、植树共52棵”列方程组求解可得.【解答】解:设参加植树的男生有x人,女生有y人,根据题意,得:,解得:,答:参加植树的男生有12名,女生有8人.17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.【解答】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.【考点】作图-轴对称变换.【分析】(1)直接利用轴对称图形的性质得出对应线段,进而得出答案;(2)直接利用平行四边形的判定方法进而得出答案.【解答】解:(1)如图所示:四边形ACBD即为所求;(2)四边形ACBD是平行四边形,理由:∵BC=AD,BD=AC,∴四边形ACBD是平行四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为50,选择该种型号手机的人数占被调查人数的百分比为36%;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?【考点】条形统计图;用样本估计总体.【分析】(1)m等于各型个数的和;(2)最喜欢的就是数量最多的类型,然后根据百分比的意义求解;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)m=8+10+18+14=50;(2)四种型号中用户最喜欢的型号为C,该种型号手机的人数占被调查人数的百分比时是×100%=36%,故答案是:C,36%;(3)2000×=560(人),答:估计选择D的用户是560人.21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义分别求出BD、DC的长,求和即可.【解答】解:在Rt△ABD中,tanα=,则BD=AD•tanα=120×0.51=61.2,在Rt△ACD中,tanβ=,则CD=AD•tanβ=120×1.60=192,∴BC=BD+CD=61.2+192=253.2≈253,答:这栋楼高约为253米.22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=1,汽车的速度是60km/h;(2)当m≤x≤3时,求y关于x的函数解析式.【考点】一次函数的应用.【分析】(1)利用小李骑摩托车的速度以及其行驶的路程得出m的值,再利用甲、乙两地相距145km,再结合行驶时间得出汽车的速度;(2)首先得出P,Q点坐标,进而利用待定系数法求出一次函数解析式.【解答】解:(1)由题意可得:小李骑摩托车所用的时间m=25÷25=1(h),汽车的速度是:÷(3﹣1)=60(km/h);故答案为:1,60;(2)当m≤x≤3时,设y关于x的函数关系式为:y=kx+b,由题可得:m=1,P(1,25),Q(3,145),把P,Q两点坐标代入:y=kx+b,得:,解得:,故y关于x的函数解析式为:y=60x﹣35.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.【考点】切线的判定.【分析】(1)欲证明BD是⊙O的切线,只要证明∠OBD=90°,先四边形AOBC是菱形,得OB∥AD,根据两直线平行同旁内角互补即可解决问题.(2)连接OC,先证明△OBC,△OAC都是等边三角形,在RT△BCD中利用30度性质即可解决问题.【解答】(1)证明:∵点O关于AB的对称点C在⊙O上,∴AO=AC,BO=BC,∵AO=OB,∴AO=OB=BC=CA,∴四边形AOBC是菱形,∴AD∥OB,∴∠D+∠OBD=180°,∵BD⊥AD,∴∠D=90°,∴∠OBD=90°,∴BD⊥OB,∵OB是⊙O的半径,∴DB是⊙O的切线.(2)连接OC,由(1)可知四边形AOBC是菱形,∴OB=OC=BC=OA=AC,∴△OBC,△OAC都是等边三角形,∴∠BCO=∠ACO=60°,∴∠ACB=120°,∴∠BCD=180°﹣∠ACB=60°,在RT△BCD中,∵∠D=90°,BC=2,∠DBC=30°,∴CD=BC=1,∴BD===.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若AD=CD,∠ADB=∠CDB,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)连接AF,通过给定的条件结合全等直角三角形的判定定理(HL)可得出Rt △AFB≌Rt△AFD,由此找出BF=DF,结合筝形定义即可得出结论;(2)若要四边形ABCD是筝形,只需证明△ABD≌△CBD即可.根据全等三角形的判定定理(SAS)随便选取一组条件“当AD=CD,∠ADB=∠CDB”来证明;(3)过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH 与N交直线y=﹣x于点P2,连接HP2,由等边三角形的三线合一可得知“HM为OG的垂直平分线,GN为OH的垂直平分线”,由此即得出“四边形OHGP1为筝形,四边形OGHP2为筝形”,再根据给定条件找出点M、N、H点的坐标,利用待定系数法即可得出直线HM和直线GN的解析式,最后结合两直线的交点知识求出点P的坐标.【解答】解:(1)四边形ABFD是筝形.理由:如图②,连接AF.在Rt△AFB和Rt△AFD中,,∴Rt△AFB≌Rt△AFD(HL),∴BF=DF,又∵AB=AD,∴四边形ABFD是筝形.(2)若要四边形ABCD是筝形,只需△ABD≌△CBD即可.当AD=CD,∠ADB=∠CDB时,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴AB=CB,∴四边形ABCD是筝形.故答案为:AD=CD,∠ADB=∠CDB.(3)存在,理由如下:过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH与N 交直线y=﹣x于点P2,连接HP2,如图③所示.∵△OGH为等边三角形,∴HM为OG的垂直平分线,GN为OH的垂直平分线,且OG=GH=HO,∴P2O=P2H,P1O=P1G,∴四边形OHGP1为筝形,四边形OGHP2为筝形.∵△OGH为等边三角形,点G的坐标为(﹣1,0),∴点H的坐标为(,),点M的坐标为(,0),点N的坐标为(,).①∵H(,),M(,0),∴直线HM的解析式为x=,令直线y=﹣x中的x=,则y=﹣.∴P1的坐标为(,﹣);②设直线GN的解析式为y=kx+b,则有,,解得:,∴直线GN的解析式为y=﹣x+.联立,解得:,故点P2的坐标为(﹣1,1).综上可知:在直线l:y=﹣x上存在点P,使得以O,G,H,P为顶点的四边形为筝形,点P的坐标为(,﹣)或(﹣1,1).六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=4cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.【考点】四边形综合题.【分析】(1)直接利用等腰直角三角形的性质得出AF,AE的长,进而求出答案;(2)分段讨论,①当0<x≤4时,②当4<x≤6时,③当6<x≤8时,进而求出答案;(3)根据题意得出Q点移动到C点时,即AQ的长就是中点Q移动的距离,进而得出答案.【解答】解:(1)如图1,∵点F落在CD上,△AEF是等腰直角三角形,∴可得AD=DF=2cm,则AF=AE=2cm∴x=AE==4(cm),故答案为:4cm;(2)①当0<x≤4时,如图2所示,过点F作FH⊥AB于H,则FH=AE=x,=AE•FH=x x=x2,∴y=S△AEF②当4<x≤6时,如图3所示,过点F作FH⊥AB于H,FH交CD于点G,AF,EF分别交CD于M,N,由题意可得:△MNF是等腰直角三角形,∴FG=FH﹣GH=x﹣2,∴MN=2FG=2(x﹣2)=x﹣4,∴S △MNF =MN •FG=(x ﹣4)(x ﹣2)=(x ﹣2)2,∴y=S △AEF ﹣S △MNF ==2x ﹣4.③当6<x ≤8时,如图4所示,过点F 作FH ⊥AB 于H ,FH 交CD 于点G ,AF 、EF 分别交CD 于M 、N ,EF 交BC 于点P , 由题意可得:△MNF ,△EPB 都是等腰直角三角形,S MNF =(x ﹣2)2,S △EPB =EB •BP=(x ﹣6)2,∴y=S △AEF ﹣S △MNF ﹣S △EPB =﹣x 2+8x ﹣22,综上所述:y=;(3)如图5,∵EF 的中点为Q ,∴当E 点停止时,可得△ADM ,△FMC ,△CBE 为等腰直角三角形,则AD=DM=2cm ,BC=BE=2cm ,故MC=4cm ,AE=8cm ,∴=,∴此时C ,Q 点重合,∴AQ=2cm ,即在整个平移过程中点Q 移动的距离为2cm .26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=8,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE(2)根据(1)中的结果,猜想S的大小,并证明你的猜想;△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.【考点】二次函数综合题.【分析】(1)令y=0,解关于x的一元二次方程得出x的值,即可得知点A的坐标,令x=0求出y值,由此得出B点的坐标,再根据正方形形的性质以及D点的横坐标为m得出点D、点E的坐标,代入k、m的值得出点A、B、E、D四点的坐标,再根据三角形的面积公式即可得出结论;=.由(1)得出由k、m表示的点A、B、E、D四点的坐标,结合三角形(2)S△ABE的面积公式求出S即可得出结论;△ABE=8找出k值,设点P的坐标为(n,y).以A,B,E,P为顶点的四边形(3)根据S△ABE为平行四边形有三种情况,分情况考虑,利用平行四边形的性质以及坐标系中点的意义即可得出结论.【解答】解:(1)令y=﹣x2+k=0,则x2=k2,解得:x1=﹣k,x2=k,∴点A的坐标为(﹣k,0).令x=0,则y=k,∴点B的坐标为(0,k).∵D点的横坐标为m,∴点E的坐标为(m,m),点D的坐标为(m,0).当k=3,m=2时,A(﹣3,0),B(0,3),E(2,2),D(2,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×3×3+×(3+2)×2﹣(3+2)×S△ABE2=;当k=4,m=3时,A(﹣4,0),B(0,4),E(3,3),D(3,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×4×4+×(4+3)×3﹣(4+3)×S△ABE3=8;当k=5,m=4时,A(﹣5,0),B(0,5),E(4,4),D(4,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×5×5+×(5+4)×4﹣(5+4)×S△ABE4=.故答案为:;8;.=.(2)S△ABE证明:由(1)知:A(﹣k,0),B(0,k),E(m,m),D(m,0),=AO•OB+(OB+DE)•OD﹣AD•DE=k•k+(k+m)m﹣(k+m)m=.S△ABE(3)设点P的坐标为(n,y).==8,∵S△ABE∴k=4.当以A,B,E,P为顶点的四边形为平行四边形时,分三种情况:①当AB、EP为对角线时,令对角线的交点为M,如图1所示.∵四边形AEBP为平行四边形,∴点M平分AB,点M平分EP.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴﹣4+0=m+n,即m+n=﹣4;②AB、EP为对边,且点P在E的左侧时,延长ED,过点P作PN⊥ED于点N,如图2所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=m﹣n,即m﹣n=4;③AB、EP为对边,且点P在E的右侧时,延长FE,过点P作PN⊥FE于点N,如图3所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=n﹣m,即n﹣m=4.综上可知:当以A,B,E,P为顶点的四边形为平行四边形时,m与n满足的关系式有m+n=﹣4,m﹣n=4和n﹣m=4.2016年10月24日。
吉林省吉林市2019-2020学年中考数学一模考试卷含解析
吉林省吉林市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)22.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线3.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°4.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有()个A .1个B .2 个C .3 个D .4个5.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是46.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .58.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=- D .2+2=29.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)10.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .1612.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.15.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.16.估计无理数11在连续整数___与____之间.17.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .18.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 2.C 【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C . 3.D 【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案. 【详解】解:由题意可得:∠EDF=30°,∠ABC=45°, ∵DE ∥CB ,∴∠BDE=∠ABC=45°, ∴∠BDF=45°BDF=45°-30°-30°-30°=15°=15°. 故选D . 【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE 的度数是解题关键. 4.C 【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA ,∠DFE=∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x+6)2=62+(12﹣x )2, 解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确; ∵△ADG ≌△FDG ,△DCE ≌△DFE , ∴∠ADG=∠FDG FDG,,∠FDE=∠CDE ∴∠GDE=12ADC ∠=45〫.③正确;BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,④错误; ∴正确说法是①②③ 故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度. 5.D 【解析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确; B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 6.B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】,正确;A、原式=23=6B 、原式不能合并,错误;C 、原式=()222-=,错误;D 、原式=22,错误. 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 9.C 【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论. 【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意;B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意, 故选C .【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.10.B 【解析】 【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30° ∵BO ∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°DOC=90°-45°-45°-45°-30°-30°-30°=15°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 11.C【解析】 画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 12.B 【解析】分析:本题是考察数轴上的点的大小的关系. 解析:由图知,b<0<a ,故①正确,因为b 点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a ,所以ab<0,故③错误,由①知a-b>a+b ,所以④正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(﹣2,4) 【解析】 【分析】根据点P(x,y)关于原点对称的点为(-x,-y )即可得解. 【详解】解:∵点A (2,-4)与点B 关于原点中心对称, ∴点B 的坐标为:(-2,4). 故答案为:(-2,4). 【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键. 14.8x + 【解析】 【分析】根据数据x 1,x 2,…,x n 的平均数为x =1n(x 1+x 2+…+x n ),即可求出数据x 1+1,x 2+1,…,x n +1的平均数.【详解】数据x 1+1,x 2+1,…,x n +1的平均数=1n (x 1+1+x 2+1+…+x n +1)=1n(x 1+x 2+…+x n )+1=x +1. 故答案为x +1. 【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标. 15.517m -<…或843m =-. 【解析】 【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m=-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<…之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围; 【详解】联立2325y x mx y x m⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-,∴抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:843m =±, 当843m =+时,252322m x +==+>当843m =-时,25232m x +==-,满足题意,当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<,∴517m -<<令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-,故57m =-也满足题意, 故m 的取值范围为:517m -<…或843m =-故答案为:517m -<…或843m =-. 【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键. 16.3 4 【解析】 【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题. 【详解】解:∵91116<<, ∴3114<<,∴无理数11在连续整数3与4之间. 【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,AB=22AC BC +=22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18.1.【解析】【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=221.6 1.2求出即可;(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】2019-2020年吉林市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a?a-a?2b+b?a-b?2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.6.【答案】B【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.。
2019年吉林省吉林市中考数学一模试卷含答案解析
2019年吉林省吉林市中考数学一模试卷含答案解析2019年吉林省吉林市中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.12.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107 3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=36.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.10.(3分)(2019?湖州)分解因式:x2﹣9=.11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=.12.(3分)(2017?吉林一模)二次函数y =x2﹣2x+3的最小值是.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为°(写出一个即可)16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于.(用含a的式子表示)三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件时,AD∥BC;当△ABC的边满足条件时,EF∥AC;应用:如图3,在锐角△GHK中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是cm2;(2)当t=s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.26.(10分)(2017?吉林一模)如图,在平面直角坐标系中的三点A(1,0),B(﹣1,0),P(0,﹣1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x﹣h)2+k的图象经过点P、C、D.(1)当m=1时,a=;当m=2时,a=;(2)猜想a与m的关系,并证明你的猜想;(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A、B对应,二次函数y=2a(x﹣h)2+k的图象经过点P,C1,D1,①求n与m之间的关系;②当△COD1是直角三角形时,直接写出a的值.2017年吉林省吉林市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.1【解答】解:根据数轴上点的位置得:﹣2.5<a<0,则a的值可能为﹣2,故选:C.2.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107【解答】解:4220000=4.22×106,故选:B.3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.【解答】解:∵x﹣1>2,∴x>3,∵>3,∴使不等式x﹣1>2成立的数为:.故选:D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.6.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°【解答】解:∵∠B=85°,∠ACB=45°,∴∠A=180°﹣85°﹣45°=50°,∵CD∥AB,∴∠ACD=∠A,∴∠ACD=50°,故选:C.7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,∴AB100(米).则两岸间的大致距离为100米.故选:B.8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.【解答】解:∵AB是切线,∴OA⊥AB,∴∠OAB=90°,∵OC∥AB,∴∠COA=∠OAB=90°,∴阴影部分的扇形的圆心角的度数为270°,∴S阴π.故选:D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.【解答】解:的相反数是,故答案为:.10.(3分)(2019?湖州)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=1.【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等实根,∴△=(﹣2)2﹣4k=0,解得k=1.故答案为:1.12.(3分)(2017?吉林一模)二次函数y=x2﹣2x+3的最小值是2.【解答】解:∵二次函数y=x2﹣2x+3可化为y=(x﹣1)2+2的形式,∴二次函数y=x2﹣2x+3的最小值是2.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为3.【解答】解:作CE⊥OB于E,∵OC是∠AOB的平分线,CD⊥OA,CE⊥OB,∴CE=CD=3,故答案为:3.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为(,0).【解答】解:∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴AB=5,∵OC为AB边的中线,∴OC AB,∴OD=OC,∴D(,0);故答案为:(,0).15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为30°(写出一个即可)【解答】解:∵四边形ABCD内接于⊙O,∴∠B=180°﹣∠ADC=50°,当点P与点O重合时,∠BCP=∠B=50°,∴0≤∠BCP≤50°,∴∠BCP可能为30°,故答案为:30.16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于a﹣2.(用含a的式子表示)【解答】解:依题意,设A(m,n)C(c,d),∵A、C两点在函数y的图象上,∴m n=cd=1,∴图中两块阴影部分面积的和等于a﹣2,故答案为:a﹣2.三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.【解答】解:x(x﹣2)+(x+1)2 =x2﹣2x+x2+2x+1=2x2+1,当x时,原式=2×()2+1=2×2+1=4+1=5.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.【解答】解:设鸡有x只,兔有y只.根据题意可得:,解得:.答:鸡有23只,兔有12只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.【解答】解:(1)∵共有a,b,c,三根吸管,∴乙抽到吸管c的概率,故答案为:;(2)画树状图得:由树状图可知所有可能结果共6种,其中乙、丙两人都没有抽到吸管c的结果有2种,所以P(乙、丙两人都没有抽到吸管c).四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【解答】解:根据题意得BD=0.3+1.5=1.8,DE=2.5,在Rt△ABD中,∵tan B,∴AD=BD?tan B=1.8×tan35°=1.8×0.70≈1.26,∴AE=AD+DE=1.26+2.5≈3.8(m).答:配电房的高AE为3.8m.22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?【解答】解:(1)(2×5+4×10+6×15+12×20+4×25+2×30)=18min;处在中间位置的数,即中位数为20min;出现次数最多的数位20min,即众数为20min.(2)众数最有可能被叫到,故选20min.五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为10km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.【解答】解:(1)由题意可得,民俗村与古庙群之间的路程为:10﹣0=10(km),故答案为:10;(2)设小明与民俗村之间的路程s关于时间t的函数解析式是s =kt,k×1=30,得k=30,即小明与民俗村之间的路程s关于时间t的函数解析式是s=30t,设小华与民俗村之间的路程s关于时间t的函数解析式是s=at+b,,得,即小华与民俗村之间的路程s关于时间t的函数解析式是s=20t+10;(3)由题意可得,将s=45代入s=30t,得t=1.5,件t=1.5代入s=20t+10,得s=40,45﹣40=5,答:当小明到达滑雪场时,小华与滑雪场的路程是5km.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件AB=BC时,AD∥BC;当△ABC的边满足条件AB=BC时,EF∥AC;应用:如图3,在锐角△GH K中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.【解答】解:操作:如图1所示:发现:当△ABC的边满足条件AB=BC时,AD∥BC;理由如下:如图2所示,由对称的性质得:△ADC≌△ABC,∴∠DAC=∠BAC,∵AB=BC,∴∠BAC=∠BCA,∴∠DAC=∠BCA,∴AD∥BC;故答案为:AB=BC;当△ABC的边满足条件AB=BC时,EF∥AC;理由如下:由旋转的性质得:△AEF≌△ABC,∴∠EF A=∠BCA,∵AB=BC,∴∠BAC=∠BCA,∴∠EF A=∠BAC,∴EF∥AC;故答案为:AB=BC;应用:四边形GHQR是菱形,理由如下:由操作、发现可知:MG∥KH,RQ∥GH,∴四边形GHQR是平行四边形,∴∠PRG=∠GHK,∵RQ∥GH,∴∠RPG=∠KGH,∵KG=KH,∴∠KGH=∠KHG,∴∠PRG=∠RPG,∴RG=PG,又∵PG=GH,∴RG=GH,∴四边形GHQR是菱形.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是16cm2;(2)当t=6s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.【解答】解:(1)如图1,过点C作CD⊥OA于D,在Rt△COD中,∠AOC=60°,OC=4,∴CD=2,∵OA=8,∴S平行四边形OABC=OA?CD=8×216cm2,故答案为:16;(2)如图3,过点C作CD⊥OA于D,由(1)知,CD=2,S平行四边形OABC=16cm2,∵直线PQ平分平行四边形OABC的面积,∴S梯形OCQP S平行四边形OABC168,由运动知,CQ=t﹣4,OP=t,∴S梯形OCQP(CQ+OP)?CD(t﹣4+t)×2(2t﹣4)=8,∴t=6,故答案为:6;(3)当0≤t≤4时,如图2,过点Q作QD⊥OA于D,。
2019年吉林省中考数学试卷含答案
绝密★启用前 在吉林省2019 年初中毕业生学业水平考试数 学数学试题共6 题,包括六道大题,共26 道小题。
全卷满分120 分,考试时间为120 分此钟。
考试结束后,将本试卷和答题卡一并交回。
5.如注意事项:A1.答题前,请您将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码 区域内。
2.答题时,请您按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答题无效。
卷一、单项选择题(每小题 2 分,共 12 分) 1.如图,数轴上蝴蝶所在点表示的数可能为()上答题无效6.曲更A .3B .2C .1D .-1 (2.如图,由6 个相同的小正方体组合成一个立体图形,它的俯视图为 )中ABC正面D(第2题)二、7.分8.不9.计AB C D 10.3.若a 为实数,则下列各式的运算结果比a 小的是A . a 1B . a 1() C . a 1D . a 1 4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至11.少为 ()A .30°B .90°C .120°D .180°数学试卷 第 1 页(共 8 页)16.甲口袋中装有红色、绿色两子,从乙口袋都是红色的概EDCAB(第11题)12.如图,在四边形ABC D 中,AB 10 ,BD AD .若将 △BC D 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BC DE 的周长为.BECDA(第12题)13.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长 为90 m ,则这栋楼的高度为m .17.已知y 是x 的(1)求y 关于x14.如图,在扇形OAB 中,AO B 90 ,D ,E 分别是半径OA ,OB 上的点,以O D ,OE 为邻边的OD CE 的顶点C 在 AB 上,若O D 8 ,OE 6 ,则阴影部分图形的面积是 (2)当 x 4 时________(结果保留 ).B CE18.如图,在ABF ,连接BE 、O D A(第14题)AE三、解答题(每小题 5 分,共 20 分)15.先化简,再求值:a 12a a 2,其中a 2 .B(第1数学试卷 第 3 页(共 8 页)四、解答题(每小题 7 分,共 28 分) 19.图①,图②均为4 4 的正方形网格,每个小正方形的顶点称为格点.在图①中已画出 线段AB ,在图②中已画出线段C D ,其中A 、B 、C 、D 均为格点,按下列要求画图: (1)在图①中,以AB 为对角线画一个菱形AEBF 且E ,F 为格点;(2)在图②中,以C D 为对角线画一个对边不相等的四边形C G D H ,且G ,H 为格点,在此卷上答题无效CG D CH D 90 .22.20.问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根 竹签上.如果每根竹签串5 个山楂,还剩余4 个山楂;如果每根竹签串8 个山楂,还剩 余7 根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立 的是________(填写序号).(1)bc d a ;(2)ac d b ;(3)ac d b .21.墙壁及淋浴花洒截面如图所示,已知花洒底座A 与地面的距离AB 为 170 cm ,花洒A C 的长为 30 cm ,与墙壁的夹角CA D 为 43°.求花洒顶端C 到地面的距离CE (结果精确到1 cm )(参考数据:s in43 0.68 ,cos43 0.73 ,tan43 0.93)数学试卷 第 5 页(共 8 页)五、解答题(每小题 8 分,共 16 分)六、解答题(每小23.甲、乙两车分别从A , B 两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原 速行驶到B 地,乙车立即以原速原路返回到B 地,甲、乙两车距B 地的路程y (k m) 与 各自行驶的时间x (h) 之间的关系如图所示. 25.如图,在矩形AE .动点P 、以2 cm/s 的过程中,点P (1)AE(1)m,n;(2)求乙车距B 地的路程y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)当甲车到达B 地时,求乙车距B 地的路程(2)求y 关于x5(3)当P QC ED Q(第226.如图,抛物线y于点C (0,-324.性质探究如图①,在等腰三角形 A BC 中,ACB 120 ,则底边 A B 与腰 A C 的长度之比为 ________.(1)求此抛物(2)当点P 位于(3)设此抛物差为h .ECHABFG ①求h 关②当h 9图①图②(第24题)理解运用(1)若顶角为120°的等腰三角形的周长为8 4 3 ,则它的面积为 (2)如图②,在四边形EF G H 中,EF EG EH .①求证:EFG EH G FG H ;;②在边F G ,G H 上分别取中点M , N ,连接M N .若FG H 120 ,EF 10 ,直接写 出线段M N 的长. 类比拓展顶角为2 的等腰三角形的底边与一腰的长度之比为________(用含 的式子表示).数学试卷 第 7 页(共 8 页)吉林省2019年初中毕业生学业水平考试数学答案解析一、单项选择题1.【答案】D【解析】蝴蝶在原点的左边,应为负数,所以,选项中,只有1有可能,选D.【考点】数轴的定义2.【答案】D【解析】从上面往下看,能看到一排四个正方形,D 符合.【考点】三视图3.【答案】B【解析】a1表示比a小1 的数,所以,B 符合.【考点】实数的运算法则4.【答案】C【解析】一个圆周360°,图中三个箭头,均分圆,每份为120°,所以,旋转120°后与自身重合。
吉林省吉林市2019-2020学年中考数学一模考试卷含解析
吉林省吉林市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)22.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线3.一副直角三角板如图放置,其中C DFE 90∠=∠=,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°4.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个5.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是46.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .58.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=-D .2+2=29.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)10.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .1612.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.15.已知抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,则m 的取值范围是__.1611在连续整数___与____之间.17.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .18.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.2.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.3.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.4.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC∠=45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC∠=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.5.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法6.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式,正确;B、原式不能合并,错误;C、原式2=,错误;D、原式故选A.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10.B【解析】【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故选B【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等11.C【解析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 =.故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.12.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(﹣2,4)【解析】【分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14.8x+【解析】【分析】根据数据x1,x2,…,x n的平均数为x=1n(x1+x2+…+x n),即可求出数据x1+1,x2+1,…,x n+1的平均数.【详解】数据x 1+1,x 2+1,…,x n +1的平均数=1n (x 1+1+x 2+1+…+x n +1)=1n (x 1+x 2+…+x n )+1=x +1. 故答案为x +1.【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.15.517m -<或8m =- 【解析】【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围;【详解】联立2325y x mx y x m ⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-, ∴抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:8m =±当8m =+ 2522m x +==+>当8m =-252m x +==- 当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<, ∴517m -<< 令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-, 故57m =-也满足题意,故m 的取值范围为:517m -<或8m =-故答案为: 517m -<或8m =-【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.16.3 4【解析】【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】<<,∴34<,在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18.1.【解析】【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=22求出即可;1.6 1.2(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
吉林省2019年中考数学模拟试卷及答案
吉林省2019年中考数学模拟试卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1. 据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是A.26×108B.2.6×108 C.26×109 D.2.6×109 2.-sin60°的倒数为A .-2B .21C .-33D .-2333. 如右图所示是一个几何体的三视图,这个几何体的名称是A .圆柱体B .三棱锥C .球体D .圆锥体4.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是A .假设CD ∥EFB .假设AB ∥EFC .假设CD 和EF 不平行 D .假设AB 和EF 不平行5.关于x 的一元二次方程(a ﹣1)x 2+2x+1=0有两个实数根,则a 的取值范围为A .a ≤2B .a <2C .a <2且a ≠1D .a ≤2且a ≠16.矩形具有而平行四边形不一定...具有的性质是 A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角相等7.下列运算正确的是A .42=±B .236x x x ⋅=C .235+=D .236()x x =8.下列说法正确的是A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +-C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则乙组数据比甲组数据稳定16题图 9.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k ≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为A .8B .3 3C .2 2D .4 10. 如图,在平行四边形ABCB 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知△AEF 的面积为4,则△OBE 的面积为A .4B .8C .10D .12 第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 因式分解:x 3-xy 2= 。
【附5套中考模拟试卷】吉林省吉林市2019-2020学年中考数学模拟试题含解析
6.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是( )
A.∠EGD=58°B.GF=GHC.∠FHG=61°D.FG=FH
7.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()
23.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)求抛物线的解析式;
(2)若PN:PM=1:4,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+ 的最小值.
21.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道 上确定点D,使CD与 垂直,测得CD的长等于21米,在 上点D的同侧取点A、B,使∠CAD=30 ,∠CBD=60 .求AB的长(精确到0.1米,参考数据: );已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
2.将二次函数 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()
A形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为( )
吉林省吉林市2019-2020学年中考数学模拟试题(1)含解析
吉林省吉林市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 2.下列各式中,正确的是( ) A .﹣(x ﹣y )=﹣x ﹣y B .﹣(﹣2)﹣1=12C .﹣x x y y -=-D .3882÷= 3.-4的相反数是( ) A .14B .14-C .4D .-44.据调查,某班20为女同学所穿鞋子的尺码如表所示, 尺码(码) 34 35 36 37 38 人数251021则鞋子尺码的众数和中位数分别是( ) A .35码,35码B .35码,36码C .36码,35码D .36码,36码5.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B . C . D .6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB 绕点O 顺时针旋转90°得到△A′OB′,则A 点运动的路径¼'AA 的长为( )A.πB.2πC.4πD.8π7.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<88.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-9.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.1210.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=kx(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20 11.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°12.﹣23的绝对值是()A.﹣322B.﹣23C.23D.322二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:sin30°﹣(﹣3)0=_____.14.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.15.计算tan 260°﹣2sin30°﹣2cos45°的结果为_____.16.标号分别为1,2,3,4,……,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____. 17.分解因式:24xy x =____18.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y=2x ﹣4的图象与反比例函数y=kx的图象交于A 、B 两点,且点A 的横坐标为1.(1)求反比例函数的解析式;(2)点P 是x 轴上一动点,△ABP 的面积为8,求P 点坐标.20.(6分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.21.(6分)如图,直线y=﹣x+3分别与x 轴、y 交于点B 、C ;抛物线y=x 2+bx+c 经过点B 、C ,与x 轴的另一个交点为点A (点A 在点B 的左侧),对称轴为l 1,顶点为D .(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.22.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)23.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.24.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.25.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)27.(12分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把△ABC 绕坐标原点O 顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O 为位似中心,相似比为2,把△A1B1C1 放大为原来的2 倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;请在x 轴上求作一点P,使△PBB1 的周长最小,并写出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.2.B【解析】【分析】A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=12,故B正确;C选项,﹣x xy y-=,故C错误;D=2÷2=,故D错误.【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.3.C【解析】【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.4.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.5.C【解析】.详解:49 911,4 <<Q由被开方数越大算术平方根越大,<<即7 3,2 <<故选C.的大小. 6.B【解析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径¼'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.7.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180x ﹣180150%x +()=1. 故选A . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键. 9.C 【解析】 【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值. 【详解】 ∵x+2y=5, ∴2x+4y=10, 则2x+4y+1=10+1=1. 故选C . 【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型. 10.A 【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.11.B 【解析】解:∵OC 平分∠AOB ,∴∠AOC=∠BOC=12∠AOB=35°,∵CD ∥OB ,∴∠BOC=∠C=35°,故选B . 12.C 【解析】 【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│-322│=322,A错误;│-23│=23,B错误;│322│=322,D错误;│2│=2,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1 2【解析】【分析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.14.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形, ∴∠D+∠ABC=180°, ∴∠D=115°, 故答案为:115°. 【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 15.1 【解析】 【分析】分别算三角函数,再化简即可. 【详解】解:原式=2-2×12×2=1. 【点睛】本题考查掌握简单三角函数值,较基础. 16.奇数. 【解析】 【分析】根据概率的意义,分n 是偶数和奇数两种情况分析即可. 【详解】若n 为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5, 若n 为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5, 故答案为:奇数. 【点睛】本题考查概率公式,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 17.x(y+2)(y-2) 【解析】 【分析】原式提取x ,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.38.【解析】【分析】根据合数定义,用合数的个数除以数的总数即为所求的概率.【详解】∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是38.故答案为:38.【点睛】本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn;找到合数的个数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=6x;(2)(4,0)或(0,0)【解析】【分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
2019年吉林省中考数学模拟试题及参考答案.doc
2019年吉林省中考模拟试题数学试卷一、单项选择题(每小题2分,共12分)1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.3.下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a54.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.65.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110° D.40°6.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5二、填空题(每小题3分,共24分)7.2017年端午节全国景区接待游客总人数8260万人,这个数用科学记数法可表示为人.8.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.9.分解因式:x2﹣(x﹣3)2=.10.在数学课上,老师要求同学们利用一副三角板任作两条平行线.小明的作法如下:如图,(1)任取两点A,B,画直线AB.(2)分别过点A,B作直线AB的两条直线AC,BD;则直线AC、BD即为所求.老师说:“小明的作法正确.”请回答:小明的作图依据是.11.正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD 上,P为AE的中点,连接PG,则PG的长为.12.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)13.直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是.14.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(每小题5分,共20分)15.(5分)解不等式组:16.(5分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.17.(5分)小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.18.(5分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.四、解答题(每小题7分,共28分)19.(7分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.20.(7分)等边△ABC的边长为2,P是平面内任意一点,△PAB、△PBC、△PAC 均为等腰三角形.(1)请用尺规作图的方法作出所有满足条件的点P(不写做法,保留作图痕迹,用P1,P2,P3…表示);(2)直接写出∠PAB的度数;(3)在满足条件的所有点P中任取2点,则这两点距离的最小值是,最大值是.21.(7分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)22.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.五、解答题(每小题8分,共16分)23.(8分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.24.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x 的变化关系.(1)小亮行走的总路程是米,他途中休息了分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?六、解答题(每小题10分,共20分)25.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.26.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案:一、1.B2.C3.C4.B5.A6.D二、7.8.26×1078.50°9.3(2x﹣3)10.同位角相等,两直线平行(答案不唯一).11.12.15.313.<k<114.+或1三、解答题(每小题5分,共20分)15.(5分)解:(1)∵解不等式①得:x<﹣1,解不等式②得:x <﹣10, ∴不等式组的解集为x <﹣10;16.(5分)解:设甲种车辆一次运土x 立方米,乙种车辆一次运土y 立方米, 由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米. 17.(5分)解:不公平, 画树状图得:∵共有9种等可能的结果,数字的差为偶数的有4种情况,∴P (小华胜)=,P (小军胜)=, ∵≠,∴这个游戏对双方不公平.18.(5分)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∵BE=DF ,∴AB +BE=CD +DF ,即AE=CF , ∵AB ∥CD , ∴AE ∥CF ,∴∠E=∠F ,∠OAE=∠OCF , 在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ), ∴OE=OF .四、解答题(每小题7分,共28分)19.(7分)解:(1)共有25个员工,中位数是第13个数,则中位数是3400元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400;3000;(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;20.(7分)解:(1)如图所示满足条件的点P有10个.(2)∠PAB=15°或30°或60°或75°或120°或150°.(3)在RT△P1BH中,∵BH=1,∠HBP1=30°,∴BP1=,∴最小值P1P2=BP2﹣BP1=AB﹣BP1=2﹣,∴最大值P5P10=P5H+HC+CP10=2HC+AC=2+2,故答案为:,2﹣;2+2.21.(7分)解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.22.(7分)解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.五、解答题(每小题8分,共16分)23.(8分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.【解答】解:OE⊥DC,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形,∴OE⊥DC.24.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x 的变化关系.(1)小亮行走的总路程是3600米,他途中休息了20分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解答】解:(1)根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;…(2分)(2)小亮休息前的速度为:(米/分)…(4分)小亮休息后的速度为:(米/分)…(6分)(3)小颖所用时间:(分)…(8分)小亮比小颖迟到80﹣50﹣10=20(分)…(9分)∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…(10分)六、解答题(每小题10分,共20分)25.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.26.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x +m 经过点M (1,0),∴0=2×1+m ,解得m=﹣2,∴y=2x ﹣2, 则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
-吉林省吉林市2019年中考数学模拟试卷(有答案)
吉林省吉林市2019年中考数学模拟试卷(含答案)一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC 的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x 轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD =3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:平均数中位数方差优秀率统计量班级甲班 6.5 3.45 30%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.∴y==.∴y1=﹣1,y2=﹣.当y=﹣1时,x﹣2=﹣1,∴x=1;当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由;(3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.13.解:∵点A(0,),B(﹣1,0),∴OA=,OB=1,∴AB==2,∴OB=AB,∴∠OAB=30°,∠OBA=60°,∵四边形ABCD是菱形,∴∠DBE=∠OBA=30°,连接BD,作DE⊥BC于E,如图所示:则∠DEB=90°,DE=OA=,∵∠DEB=90°,∴BD=2DE=2;故答案为:2.14.解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故答案为:6﹣π.三.解答题15.解:原式=•=•=a﹣1,当a=2时,原式=2﹣1=1.16.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.17.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.18.证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.四.解答题19.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD•cos∠MCD=3×cos72°≈3×0.31=﹣0.93米∵AC=5.5米,EF=0.4米,∴PC+AC﹣EF=0.93+5.5﹣0.4=6.03米答:摄像头下端点F到地面AB的距离为6.03米.20.解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:×100%=30%,故答案为:6.5,6.5,30%;(2)冠军应发给甲班,理由:由表格可知,甲乙两班的平均数一样,优秀率一样,但是甲班的中位数大于乙班,说明甲班有一半的学生成绩好于乙班,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.21.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.22.解:(1)(2)如图;(3)猜想:DF⊥AG,理由如下:延长FD交AG于点H,如图所示,∵△DCF≌△ABE,△ABE≌△ADG,∴∠F=∠AEB=∠G,又∵∠CDF=∠GDH,∴∠GHD=∠DCF=90°,DF⊥AG.五.解答题23.解:(1)2(x﹣3)2﹣5(x﹣3)﹣7=0,设x﹣3=y,则原方程化为:2y2﹣5y﹣7=0,∵a=2,b=﹣5,c=﹣7,∴b2﹣4ac=(﹣5)2﹣4×2×(7)=81,y=,∴y1=,y2=﹣1,当y=时,x﹣3=,解得:x=;当y=﹣1时,x﹣3=﹣1,解得:x=2;所以原方程的解为:x1=,x2=2;(2)(a2+b2)(a2+b2﹣2)=3,设a2+b2=y,则原方程化为:y(y﹣2)=3,即y2﹣2y﹣3=0,(y﹣3)(y+1)=0,y﹣3=0, y+1=0,y 1=3,y2=﹣1,当y=3时,a2+b2=3;当y=﹣1时,a2+b2=﹣1,∵两个数的平方和具有非负性,∴此时不行,即代数式a2+b2的值为3.24.解:(1)由题意M(1,4),n(4,1),∵点M在y=上,∴k=4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CP=PQ,∠CPQ=90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3).六.解答25.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.26.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,,(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,-----WORD格式--可编辑--专业资料-----∴,解得x =2(舍去),x=﹣2,∴,如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.--完整版学习资料分享----。
【2019年中考数学】吉林省实验中学2019年中考第一次模拟数学试卷(含答案)
吉林省实验中学2019—2019学年度上学期初三年级第一次模拟—— 数学试卷 ——(满分120分 限时120分钟)命题人:张楠 审题人:马玉春一、选择题:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为 ( )A . 5tan40°B . 5cos40°C .5sin40°D .°5cos 402.在ABC ∆中,090C ∠=,若cosB=2,则sinA 的值为 ( )2C. 3D.12 3. 对于函数25y x =,下列结论正确的是 ( )A .y 随x 的增大而增大B .图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的4. 如图,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△ ( )A . 1∶2B .1∶3C .1∶4D . 2∶35. 在ABC ∆中,,A B ∠∠都是锐角,tanA=1,sinB=2, 你认为ABC ∆最确切的判断是 ( )A. 等腰三角形B.等腰直角三角形C. 直角三角形D.锐角三角形6. 如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =; ④2y dx =,则,,,a b c d 的大小关系为 ( )A.a b c d >>>B.a b d c >>>C.b a c d >>>D.b a d c >>>9. DE 的长为 ( )A .1B .2 C. 3 D .1+ 39. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足 为E ,4cos 5A =,则下列结论中: ①DE=3cm ; ②EB=1cm ; ③215S cm =菱形ABCD .正确的个数为 ( )A .0个B .1个C .2个D .3个第9题 第9题 第12题 二、填空:(共19分,每小题3分)9. 若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________.10. 已知点A(-3,1y ),B(-1,2y ),C(2,3y )在抛物线223y x =上,则1y ,2y ,3y 的大小关系是 ________________.(用“<”连接)11. ABC △中,90C ∠=,4tan 3A =,则sin cos A A += _________. 12. 如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是 _________°.13. 如果某人沿坡度i =4:3的斜坡前进50米后,•他所在的位置比原来的位置升高了_______米.14. 已知在ABC ∆中,BC=6,AC=∠A=30°,则AB 的长是________________.三、解答题:(共99分)15. 计算:(9分)(1)()2cos 602009πtan 45--+ (2)2sin 603tan302sin 452-+-.16.(6分)如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O ,A ,B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△OA 1B 1与△OAB 对应线段的比为2∶1,画出△OA 1B 1(所画△OA 1B 1与△OAB 在原点两侧);(2)直接写出点A 1、B 1的坐标______________________.(3)直接写出11tan OA B ∠=____________.19.(6分)如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD.(结果保留根号)19.(9分) 如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC于点D ,已知AB =10,BC =15,MN =3.(1)求证:BN =DN ;(2)直接写出△ABC 的周长是______________.19.(9分)如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式;(2)连结OC ,求出AOC ∆的面积.20.(9分) 如图,在矩形ABCD 中,DE ⊥AC 于E ,3cos 5ADE ∠=,AB =3,(1)求AD 的值.(2)直接写出DEC S ∆的值是_____________.21. (9分)如图,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省吉林市2019年中考数学模拟试卷(含答案)一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D 的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD=3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:统计量班级平均数中位数方差优秀率甲班 6.5 3.4530%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a =3,b =7,c =4,∴b 2﹣4ac =72﹣4×3×4=1. ∴y ==.∴y 1=﹣1,y 2=﹣.当y =﹣1时,x ﹣2=﹣1,∴x =1; 当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由; (3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P 的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.13.解:∵点A(0,),B(﹣1,0),∴OA=,OB=1,∴AB==2,∴OB=AB,∴∠OAB=30°,∠OBA=60°,∵四边形ABCD是菱形,∴∠DBE=∠OBA=30°,连接BD,作DE⊥BC于E,如图所示:则∠DEB=90°,DE=OA=,∵∠DEB=90°,∴BD=2DE=2;故答案为:2.14.解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故答案为:6﹣π.三.解答题15.解:原式=•=•=a﹣1,当a=2时,原式=2﹣1=1.16.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.17.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.18.证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.四.解答题19.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD•cos∠MCD=3×cos72°≈3×0.31=﹣0.93米∵AC=5.5米,EF=0.4米,∴PC+AC﹣EF=0.93+5.5﹣0.4=6.03米答:摄像头下端点F到地面AB的距离为6.03米.20.解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:×100%=30%,故答案为:6.5,6.5,30%;(2)冠军应发给甲班,理由:由表格可知,甲乙两班的平均数一样,优秀率一样,但是甲班的中位数大于乙班,说明甲班有一半的学生成绩好于乙班,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.21.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.22.解:(1)(2)如图;(3)猜想:DF⊥AG,理由如下:延长FD交AG于点H,如图所示,∵△DCF≌△ABE,△ABE≌△ADG,∴∠F=∠AEB=∠G,又∵∠CDF=∠GDH,∴∠GHD=∠DCF=90°,DF⊥AG.五.解答题23.解:(1)2(x﹣3)2﹣5(x﹣3)﹣7=0,设x﹣3=y,则原方程化为:2y2﹣5y﹣7=0,∵a=2,b=﹣5,c=﹣7,∴b2﹣4ac=(﹣5)2﹣4×2×(7)=81,y=,∴y1=,y2=﹣1,当y=时,x﹣3=,解得:x=;当y=﹣1时,x﹣3=﹣1,解得:x=2;所以原方程的解为:x1=,x2=2;(2)(a2+b2)(a2+b2﹣2)=3,设a2+b2=y,则原方程化为:y(y﹣2)=3,即y2﹣2y﹣3=0,(y﹣3)(y+1)=0,y﹣3=0, y+1=0,y 1=3,y2=﹣1,当y=3时,a2+b2=3;当y=﹣1时,a2+b2=﹣1,∵两个数的平方和具有非负性,∴此时不行,即代数式a2+b2的值为3.24.解:(1)由题意M(1,4),n(4,1),∵点M在y=上,∴k=4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CP=PQ,∠CPQ=90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3).六.解答25.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.26.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,,(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。