人教版九年级数学上册全册教案集_新课标_推荐
九年级数学上册全册教案(最新人教版)
九年级数学上册全册教案(最新人教版)本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 义务教育课程标准人教版数学教案九年级上册XX—XX学年度第一学期学校:班级:九(3)班教师:XX—XX学年度第一学期九年级数学教学进度表周序日期教学工作内容及课时安排8.24—8.3021.1一元二次方程221.2降次——解一元二次方程228.31—9.621.2降次——解一元二次方程539.7—9.1321.3实际问题与一元二次方程及数学活动2 《一元二次方程》单元小结与练习349.14—9.2021.1二次函数的图像与性质559.21—9.2721.2二次函数与一元二次方程221.3实际问题与二次函数2《二次函数》单元小结与练习169.28—10.423.1图形的旋转223.2中心对称370.5—10.1123.3课题学习图案设计2《旋转》单元考及讲评380.12—10.1824.1圆590.19—10.2524.2点、直线、圆和圆的位置关系5 00.26—11.1期中考复习11.2—11.8期中考试与试卷分析21.9—11.1524.3正多边形和圆224.4弧长和扇形面积2131.16—11.2124.4弧长和扇形面积2《圆》单元考及讲评3141.23—11.2925.1随机事件与概率451.30—12.625.2用列举法求概率325.3用频率估计概率162.7—12.1325.4课题学习及数学活动2 《概率初步》单元考及讲评2 72.14—12.20九年级数学下册内容82.21—12.27九年级数学下册内容92.28—1.3九年级数学下册内容20.4—1.10期末考复习21.11—1.17期末考复习及考试教学时间课题21.1一元二次方程课型新授教学媒体多媒体教学目标知识技能.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法..通过根据实际问题列方程,向学生渗透知识于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
人教版初中九年级数学上册全册完整教案
人教版初中九年级数学上册全册教案第二十一章一元二次方程第1课时一元二次方程教学目标1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材P32 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业教材P34 习题22.1 1(2)(4)(6)、2.第2课时一元二次方程教学目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.2. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点1.重点:判定一个数是否是方程的根;2.难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:x 1 2 3 4 5 6 7 8 9 10 11 …x2-8x+20 …问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44x 1 2 3 4 5 6 …x2+7x …列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材P33 思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:x 10 11 12 13 14 15 16 17 …x2-5x-150(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)x 10 11 12 13 14 15 16 17 ……x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……(3)铁片长x=15cm五、归纳小结本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.第3课时直接开平方法教学目标1.理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3= ,x+3=-所以,方程的两根x1=-3+ ,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.三、巩固练习教材P36 练习.补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题2:设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x•2x=8x2=8根据平方根的意义,得x=±2即x1=2 ,x2=-2可以验证,2 和-2 都是方程x•2x=8的两根,但是移动时间不能是负值.所以2 秒后△PBQ的面积等于8cm2.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+ )2=2.56,即(x+ )2=2.56x+ =±1.6,即x+ =1.6,x+ =-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p (p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业P45 复习巩固1、2.第4课时配方法教学目标1.理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9(4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)= ××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45 复习巩固2.3(1)(2)第5课时配方法教学目标1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点1.重点:讲清配方法的解题步骤.2.难点:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P39 练习2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4= y+ ,x+1= y-依题意,得:y2(y+ )(y- )=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2- )2=y2- =±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=- ,x2=- 例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.五、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版九年级数学上册全册教案及作业题(带答案)
三一文库()/初中三年级〔人教版九年级数学上册全册教案及作业题(带答案)〕《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0), =a (a≥0).(3)掌握 # =(a≥0,b≥0), = # ;= (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a ≥0)及 =a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、、、- 、、(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x2.下列式子中,不是二次根式的是()A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新课标第一网1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1(4)∵4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(- )2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6=(4)(-3 )2=9× =6 (5)-62.(1)5=()2 (2)3.4=()2(3) =()2 (4)x=()2(x≥0)3. xy=34=814.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )(3)略1111。
新人教版九年级数学上册教案全套-表格式
新人教版九年级数学上册教案全套-表格式(总102页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中小学课时教案2015-2016学年度上期第本任教学科数学授课班级九年级任课教师学校(盖章)2015年9月1日教育科研培训中心研制学科教学计划(2015-2016学年度上期)九年级 1 班学科数学执教教师本期总第( 1 )课时本期总第( 2 )课时本期总第( 3 )课时本期总第( 4 )课时本期总第( 5 )课时本期总第( 6 )课时本期总第( 7 )课时课后心得本期总第( 8 )课时进度第21章(单元)第3节(课)2课时课型新课备课时间2015年9月16日课题内容21.3 实际问题与一元二次方程(2)授课时间2015年9月17日教学目标1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点难点关键重点:通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点:在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.教具多媒体教学课时及板书设计旁批活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.本期总第( 9 )课时本期总第( 10 )课时本期总第( 11 )课时本期总第( 12 )课时本期总第(13 )课时本期总第( 14 )课时本期总第( 15 )课时本期总第( 16 )课时本期总第( 17 )课时。
【九年级】2020秋人教版数学九年级上册全册word版94页
【关键字】九年级《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).(3)掌握·=(a≥0,b≥0),=·;=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.二、探索新知的式子,我们就把它称二次根式.因此,一般地,我们把形如a ≥0)•的式子叫做二次根式,(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0例11x x>0)、、1x y+x ≥0,y•≥0).分析;第二,被开方数是正数或0.x>0)x ≥0,y ≥0);不是二次1x 1x y+.例2.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.五、归纳小结(学生活动,老师点评)1a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.21.1 二次根式(2)第二课时教学内容1a ≥0)是一个非负数;2.2=a (a ≥0).教学目标a ≥02=a (a ≥0),并利用它们进行计算和化简.a ≥0)是一个非负数,用具体2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方法导2=a (a ≥0).教学过程一、复习引入1.什么叫二次根式?2.当a ≥0a<0二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.44的2=4.同理可得:2=2,2=9,2=3,2=13,2=72,2=0,所以例1 计算1.2 2.(2 3.2 4.)2分析2=a (a ≥0)的结论解题.解:2 =32,(2 =32·2=32·5=45,2=56,(2)2=22724=. 三、巩固练习计算下列各式的值:2 2 (42 )2 ( 222-五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.21.1 二次根式(3)第三课时教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0).2.难点:探究结论.3.关键:讲清a ≥0a 才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=______;. (老师点评):根据算术平方根的意义,我们可以得到:=11023=037.例1 化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.21.2 二次根式的乘除第一课时教学内容a≥0,b≥0)a≥0,b≥0)及其运用.教学目标a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)a≥0,b≥0)及它们的运用.a≥0,b≥0).关键:要讲清(a<0,b<0)=a b,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5三、巩固练习(1)计算(学生练习,老师点评)①②2(2) 化简:教材P11练习全部=五、归纳小结本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P151,4,5,6.(1)(2).21.2 二次根式的乘除第二课时教学内容a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空=________;(1(2;=________;(3(4.3.利用计算器计算填空:,(2=_________,(3,(4=________.(1每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.例1.计算:(1(2(3(4分析:上面4a≥0,b>0)便可直接得出答案.解:(1(2==(3=(4例2.化简:(1(2(3(4a≥0,b>0)就可以达到化简之目的.解:(18=(28 3ba =(3=(4=三、巩固练习教材P14 练习1.五、归纳小结a≥0,b>0a≥0,b>0)及其运用.六、布置作业1.教材P15习题21.2 2、7、8、9.21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1(2,(353a2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.2==例1.(1); (2)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.BAC解:因为AB2=AC2+BC2所以132====6.5(cm)因此AB的长为6.5cm.三、巩固练习教材P14练习2、3五、归纳小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业1.教材P15习题21.2 3、7、10.21.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)(2)(3(4)老师点评:(1x,不就转化为上面的问题吗?(2+3(2y;(2-3+5(3z;(1+2+3(4x y.=(3-2因此,二次根式的被开方数相同是可以合并的,如但它们可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1(2+3(2(4+8例2.计算(1)(2)+解:(1)(12-3+6(2)+三、巩固练习教材P19练习1、2.五、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业1.教材P21习题21.3 1、2、3、5.21.3 二次根式的加减(2)第二课时教学内容利用二次根式化简的数学思想解应用题.教学目标运用二次根式、化简解应用题.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x 依题意,得:12x ·2x=35 x 2=35 x=35所以35秒后△PBQ 的面积为35平方厘米.PQ=2222245535PB BQ x x x +=+==⨯=57答:35秒后△PBQ 的面积为35平方厘米,PQ 的距离为57厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得 22224220AD BD +=+5222221BD CD +=+=5 所需钢材长度为 AB+BC+AC+BD 55≈3×2.24+7≈13.7(m)答:要焊接一个如图所示的钢架,大约需要13.7m的钢材.三、巩固练习教材P19 练习3五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业1.教材P21习题21.3 7.21.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(2)(分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)解:(32例2.计算(1))((2)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1))(2+(2)=2- 2=10-7=3三、巩固练习课本P20练习1、2.五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P21习题21.3 1、8、9.第二十三章旋转单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材P66 复习巩固1、2、3.2.《同步练习》23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴AE=2211()4=174∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形. 三、巩固练习教材P64 练习1、2.五、归纳小结(学生总结,老师点评) 本节课应掌握: 1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 六、布置作业1.教材P66 复习巩固4 综合运用5、6.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案. 教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案. 复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案. 重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案. 教具、学具准备 小黑板 教学过程一、复习引入 1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系? (3)两个图形是旋转前后的图形,它们全等吗? 2.请同学独立完成下面的作图题.如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出△AOB 旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.。
2018-2019最新人教版九年级数学上册全册教案
教学重点 教学难点 教具准备
主要教学过程 【活动 1】 学生根据所学知识填写课本第 2 页“思考”栏目,教师提问: ⑴所填的结果有什么特点? ⑵平方根的性质是什么? 根式吗? 教 学 过 程
(学生可能碰到的困难:①是否会想到用字母表示数;②是否能概括出 a ≥0 这一 条件.) (备用问题)议一议: 1.-1 有算术平方根吗? 2.0 的算术平方根是多少? 3.当 a<0, a 有意义吗?
初中 九 年级( 上 册)
教
案
科目 数 教师
学
2018 -2019 学年度 上 学期
周别 教学内容(课或章或单元)
二次根式 3 二次根式的乘法 3、加减 2 二次根式的加减 1、第 21 章复习 3 一元二次方程 2、解一元二次方程 3 解一元二次方程 5 实际问题与一元二次方程 5 第 22 章复习与检测 5 图形的旋转 3、中心对称 2 中心对称 1、 图案设计 1、 第 23 章复习与检测 3 圆 3、与圆有关的位置关系 2 与圆有关的位置关系 4 正多边形和圆 2、弧长和扇形面积 3 第 24 章复习与检测 阶段复习与段考 5 随机事件与概率 5 用列举法求概 4、用频率估计概率 1 用频率估计概率 1、课题学习 2,、 第 25 章复习与检测 期末复习 期末复习 期考、评卷、工作总结
1.形如 a (a≥0)的式子叫做二次根式, “
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 【作业设计一】 一、选择题 1.下列式子中,是二次根式的是( ) A.- 7 B. 3 7 C. x D.x 3.B D. 2.D
2.下列式子中,不是二次根式的是( ) A. 4 B. 16 C. 8
1 x
3.已知一个正方形的面积是 5,那么它的边长是( ) A.5 B. 5 C.
人教版九年级上册数学教案5篇
人教版九年级上册数学教案5篇人教版九年级上册数学教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。
2、使学生了解两个二次根式的商仍然是一个二次根式或有理式。
3、使学生会将分母中含有一个二次根式的式子进行分母有理化。
4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。
教学过程一、创设问题情境问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2 是否也有二次根式的除法法则呢?问题2 两个二次根式相除,怎样进行呢?二、加强合作,探索规律让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:提问:1、a和b有没有限制?如果有限制,其取值范围是什么?2、= (a≥0,b0)成立吗?为什么?请举例。
三、范例例1、计算。
教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。
提问:1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。
2、哪种方法更简便?例2、化简:(要求分母不带根号)说明:二次根式的化简要求满足以下两条:(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。
(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。
把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。
四、做一做化简:教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。
五、课堂练习P12 练习1、(3)、(4)六、小结本节课,我们学习了二次根式的除法法则,即= (a≥0,b0),并利用它进行计算和化简。
化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2解一元二次方程21.2.3因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x 2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2b a -±(b 2-4ac≥0).2.什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b),a²±2ab+b²=(a±b)².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x 2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛,那么经过x s 物体离地面的高度(单位:m)为10x -4.9x 2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0.解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x 公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac=(-10)2-0=100,a acb b x 242-±-=()101024.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0.∴x=0或10-4.9x=0,∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1解下列方程:(出示课件11)(1)x(x-2)+x-2=0;(2)5x 2-2x-14=x 2-2x+34.师生共同解答如下:解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x -2)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1=0.因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0.因式分解,得(3x-2)(2x+1)=0.于是得3x-2=0或2x+1=0,x1=23,x2=12 .⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2∴x12.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28..∴x1,x2.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x2×3=2±7 3.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0.∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0.∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0.∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2)5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2.解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0时,只得出一个根x=1,则被漏掉的一个根是()A.x=4B.x=3C.x=2D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3.若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0时,x2+3=0,原方程无解;②当y=4时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
【人教版】九年级数学上册全册教案(精选)
【人教版】九年级数学上册全册教案(精选)第二十一章一元二次方程21.1一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3活动2探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是 2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p 转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程:(1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x 2=4 (2)(x -2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x 2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a)2 即(x +b 2a )2=b 2-4ac 4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2 直接开平方,得:x +b 2a =±b 2-4ac 2a即x =-b±b 2-4ac 2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac 2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=c a(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0(2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x= 3(5)x2-1=0 (6)x2-2x+1=0例2不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x +1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y。
人教版九年级数学上册教案(全册)
人教版九年级数学上册教案(全册)第二十一章二次根式教材内容.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式..本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理与其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标.知识与技能()理解二次根式的概念.()理解(≥).;()掌握>),(≥,>).()先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.()用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.()利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.()通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的..情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点.是一个非负数;(=(≥);•与其运用..二次根式乘除法的规定与其运用..最简二次根式的概念..二次根式的加减运算.教学难点(≥)的理解与应用..二次根式的乘法、除法的条件限制..利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点..培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需课时,具体分配如下:.二次根式课时.二次根式的乘法课时.二次根式的加减课时教学活动、习题课、小结课时.二次根式第一课时教学内容二次根式的概念与其运用教学目标(≥)的意义解答具体题目.教学重难点关键.重点:形如.难点与关键:利用“”解决具体问题.一、复习引入(学生活动)请同学们独立完成下列三个问题:,那么它的图象在第一象限横、•纵坐标相问题:已知反比例函数3x等的点的坐标是.问题:如图,在直角三角形中,,,∠°,那么边的长是.AC问题:甲射击次,各次击中的环数如下:、、、、、,那么甲这次射击的方差是,那么.老师点评:,问题:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们•的式子叫做二次根式,“”称为二次根号..有算术平方根吗?.的算术平方根是多少?.当<老师点评:(略)、例.下列式子,哪些是二次根式,x(>)、•≥).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或. (>)、;不是二次根式的有:、1x 、.例.在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于,所以≥,才能有意义.解:由≥,得:≥13当≥13在实数范围内有意义.三、巩固练习教材练习、、.四、应用拓展例.11x +在实数范围内有意义? 分析:11x +在实数范围内有意义,中的≥和11x +中的≠. 解:依题意,得由①得:≥32由②得:≠当≥32且≠时,11x +在实数范围内有意义.例()xy的值.(答案)()若,求的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:”称为二次根号..要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业.教材复习巩固、综合应用..选用课时作业设计..课后作业:《同步训练》第一课时作业设计一、选择题.下列式子中,是二次根式的是()..下列式子中,不是二次根式的是().1x.已知一个正方形的面积是,那么它的边长是()..15.以上皆不对二、填空题.形如的式子叫做二次根式..面积为的正方形的边长为..负数平方根.三、综合提高题.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?.当是多少时,在实数范围内有意义?.)个.....无数.第一课时作业设计答案:一、...(≥).没有二、.依题意得:,∴当>3且≠时,+在实数范围内没有意义.2.13..,二次根式()第二课时教学内容.(≥).(≥)是一个非负数和()(≥),并利用它们进行计算和化简.)(≥);最后运用结论严谨解题.教学重难点关键(≥)与其运用..重点:(≥)是一个非负数;•(≥).教学过程一、复习引入(学生活动)口答.什么叫二次根式?<老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:);;(;;;(;). 老师点评:是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有().同理可得:),,),13,72,),所以例 计算.. . .) 分析:我们可以直接利用((≥)的结论解题.解:32, ··,56,). 三、巩固练习计算下列各式的值:) )22-四、应用拓展例 计算.(≥) . ..分析:()因为≥,所以>;()≥;()2a ()≥;()()··()≥.(≥)的重要结论解题.解:()因为≥,所以>()∵2a()又∵()≥,∴2a≥()∵()··()又∵()≥∴≥,∴(例在实数范围内分解下列因式:()()()分析:(略)五、归纳小结本节课应掌握:.(≥);)(≥).六、布置作业.教材复习巩固.()、()..选用课时作业设计..课后作业:《同步训练》第二课时作业设计一、选择题.下列各式中次根式的个数是( ).. . . ..数没有算术平方根,则的取值范围是( )..> .≥ .< .二、填空题.).三、综合提高题.计算()() ()(12)() ().把下列非负数写成一个数的平方的形式:() () ()16 ()(≥) .已知,求的值..在实数范围内分解下列因式:()()第二课时作业设计答案:一、..二、..非负数三、.()()()(12)14×32()23().()()()()16()(≥)..()))()()()()()()略以上已经编排二次根式()第三课时教学内容教学目标,并利用这个结论解决具体问题.教学重难点关键.重点:..难点:探究结论.教学过程一、复习引入老师口述并板收上两节课的重要内容;.=(≥).那么,问题.二、探究新知(学生活动)填空:;;.(老师点评):根据算术平方根的意义,我们可以得到:110;23;37.例 化简分析:因为(),()(),(),()()•去化简.解:三、巩固练习教材练习.四、应用拓展例 <•并根据这一性质回答下列问题.,则可以是什么数?分析,∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,那么≥.()根据结论求条件;()根据第二个填空的分析,逆向思想;()根据()、<.解:()因为,即使>所以不存在;当<要使,即使>,<综上,<例当>分析:(略)五、归纳小结本节课应掌握:<应用拓展.六、布置作业.教材习题.、、、..选作课时作业设计..课后作业:《同步训练》第三课时作业设计一、选择题.的值是()...23.23.以上都不对确的是()..二、填空题.三、综合提高题.先化简再求值:当时,求的值,甲乙两人的解答如下:甲的解答为:原式;()2a.两种解答中,的解答是错误的,错误的原因是.,求的值.(提示:先由≥,判断•的值是正数还是负数,去掉绝对值).答案:一、..二、...三、.甲甲没有先判定是正数还是负数.由已知得••≥,••≥所以,所以...二次根式的乘除第一课时教学内容(≥,≥)与其运用.(≥,≥),并利用它们进行计算和化简行计算;•(≥,≥)并运用它进行解题和化简.教学重难点关键重点:(≥,≥)(≥,≥)与它们的运用..难点:发现规律,导出教学过程一、复习引入(学生活动)请同学们完成下列各题..填空×;参考上面的结果,用“>、<或=”填空..利用计算器计算填空×,,×.二、探索新知(学生活动)让、个同学上台总结规律.老师点评:()被开方数都是正数;()两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例.计算()(≥,≥)计算即可.分析:()()=()例化简()()(≥,≥)直接化简即可.解:三、巩固练习()计算(学生练习,老师点评)①·() 化简: ; ;教材练习全部四、应用拓展例.判断下列各式是否正确,不正确的请予以改正:解:()不正确.()不正确.五、归纳小结(≥,≥)(≥,本节课应掌握:≥)与其运用.六、布置作业.课本,,,.()()..选用课时作业设计..课后作业:《同步训练》第一课时作业设计一、选择题•那么此直角三角形斜边长是().. c . c .9cm .27cm.化简的结果是().11x-=).≥.≥.≤≤.≥或≤.下列各等式成立的是().二、填空题.自由落体的公式为1(为重力加速度,它的值为10m),若物体下2落的高度为720m,则下落的时间是.三、综合提高题.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?.探究过程:观察下列各式与其验证过程.==同理可得:,……通过上述探究你能猜测出:(>),并验证你的结论.答案:一、...二、三、.设:底面正方形铁桶的底面边长为,则×××,××,..验证:=..二次根式的乘除第二课时教学内容>),反过来(≥,>)与利用它们进行计算和化简.教学目标>(≥,>)与利用它们进行运算.教学重难点关键>),(≥,>)与利用它们进行.重点:理解计算和化简..难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:.写出二次根式的乘法规定与逆向等式..填空.利用计算器计算填空:,,,.。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程的根与系数的关系教案
21.2解一元二次方程21.2.4一元二次方程的根与系数的关系一、教学目标【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.二、课型新授课三、课时1课时四、教学重难点【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.五、课前准备课件六、教学过程(一)导入新课1.一元二次方程的求根公式是什么?(出示课件2)学生口答:2(40).2b b ac x b ac a-±=-≥2.如何用判别式b 2-4ac 来判断一元二次方程根的情况?学生口答:对一元二次方程:ax 2+bx+c=0(a≠0).b 2-4ac>0时,方程有两个不相等的实数根.b 2-4ac=0时,方程有两个相等的实数根.b 2-4ac<0时,方程无实数根.想一想:方程的两根x 1和x 2与系数a、b、c 还有其他关系吗?(二)探索新知探究根与系数的关系填表,观察、猜想(出示课件4)方程x 1,x 2x 1+x 2x 1·x 2x 2-2x +1=0x 2+3x -10=0x 2+5x +4=0你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根x1,x2用式子表示你发现的规律.出示课件5:若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?教师引导:归纳结论:(出示课件6)如果关于x的方程x2+px+q=0的两根为x1,x2,则:x1+x2=-p,x1·x2=q.教师问:如果方程二次项系数不为1呢?(出示课件7)方程x1,x2x1+x2x1·x22x2-3x-2=03x2-4x+1=0上面发现的结论在这里成立吗?请完善规律.①用语言叙述发现的规律;②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.师生共同归纳:(出示课件8)一元二次方程根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a≠0)有两实数根x1,x2,则x1+x2=-ba ,x1·x2=ca.这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.请同学用求根公式证明.(一生板演)教师问:在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式Δ=b2-4ac≥0呢?强调:能用根与系数的关系的前提条件为b2-4ac≥0.出示课件9,10:例1利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;(2)2x2-3x-2=0.学生思考后,共同解答如下:解:⑴这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1·x2=6.⑵这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=32,x1·x2=-1.出示课件11:不解方程,求方程两根的和与两根的积:①x2+3x-1=0;②2x2-4x+1=0.学生自主思考并解答.解:⑴x1+x2=-3,x1·x2=-1.⑵原方程可化为:2122=+-xxx1+x2=2,x1·x2=1 2 .出示课件12:例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.学生思考后,共同解答如下:解:设方程的两个根分别是x1,x2,其中x1=2.所以:x1·x2=2x2=6, 5-即:x2=3, 5-由于x1+x2=2+3 ()5-=,5k-得:k=-7.答:方程的另一个根是3,5-k=-7.出示课件13:已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k 的值.学生自主思考并解答.解:设方程的另一个根为x1.把x=2代入方程,得4-2(k+1)+3k=0.解这方程,得k=-2.由根与系数关系,得x1·2=3k,即2x1=-6.∴x 1=-3.答:方程的另一个根是-3,k 的值是-2.出示课件14:例3不解方程,求方程2x 2+3x-1=0的两根的平方和、倒数和.师生共同分析:将所求代数式分别化为只含有x 1+x 2和x 1·x 2的式子后,用根与系数的关系,可求其值.师生共同解答如下:解:根据根与系数的关系可知:121231,.22+=-⋅=-x x x x ()()22212112212,∵+=++x x x x x x ∴()2221212122+=+-x x x x x x 21331;4222⎛⎫⎛⎫=--⨯-= ⎪ ⎪⎝⎭⎝⎭()1212121132.2312+⎛⎫⎛⎫+==-÷- ⎪ ⎪⎝⎭⎝=⎭x x x x x x 出示课件15:设x 1,x 2为方程x 2-4x+1=0的两个根,则:⑴x 1+x 2=,(2)x 1·x 2=,(3)=-221)(x x ,(4)=+2221x x .学生自主解答后,口答:⑴4;⑵1;⑶12;⑷14.出示课件16:例4设x 1,x 2是方程x 2-2(k-1)x+k 2=0的两个实数根,且x 12+x 22=4,求k 的值.教师分析:将x 1+x 2=2(k -1),x 1x 2=k 2,代入x 12+x 22=4可求出k 值.此时需用Δ=b 2-4ac 来判断k 的取值,这是本例的关键.解:由方程有两个实数根,得Δ=4(k -1)2-4k 2≥0即-8k +4≥0.∴.21≤k 由根与系数的关系得x 1+x 2=2(k -1),x 1x 2=k 2.∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4(k -1)2-2k 2=2k 2-8k +4.由x 12+x 22=4,得2k 2-8k+4=4,解得k 1=0,k 2=4.经检验,k 2=4不合题意,舍去.师生共同总结归纳如下:(出示课件17)12111.x x +=1212;x x x x +2221212122.()2;x x x x x x +=+-12213.x x x x +221212x x x x +=2121212()2;x x x x x x +-=124.(1)(1)x x ++=1212()1;x x x x +++125.x x -==教师强调:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.出示课件18:当k 为何值时,方程2x 2-(k+1)x+k+3=0的两根差为1.学生自主思考并解答.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x2-x1)2=(x1+x2)2-4x1x2,由根与系数的关系得x1+x2=12k+,x1x2=32k+.∴(12k+)2-4×32k+=1.解得k1=9,k2=-3.当k=9或-3时,由于Δ>0,∴k的值为9或-3.(三)课堂练习(出示课件19-25)1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2B.1C.2D.02.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.3.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.4.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.5.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.6.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2).2112xxxx+7.当k为何值时,方程2x2-kx+1=0的两根差为1.8.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.参考答案:1.D2.32;-33.1;-24.解:将x =1代入方程中:3-19+m=0.解得m=16,设另一个根为x 1,则:1×x 1=16.3c a =∴x 1=16.35.解:(1)根据根与系数的关系12,x x k +=-121.2k x x -=得(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=1()14,2k k -+-+=解得:k=-7;(2)因为k=-7,所以127,x x +=12 4.x x =-则:222121212()()474(4)65.x x x x x x -=+-=-⨯-=6.解:根据根与系数的关系得:12124, 1.3b c x x x x a a +=-=-⋅==-(1)(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=44(-1)1;33-++=-(2)222211212121212123492x x x x x x x x x x x x x x +++===-()-.7.解:设方程两根分别为x 1,x 2(x 1>x 2),则x 1-x 2=1,由根与系数的关系,得,221k x x =+,2121=∙x x ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1,21422=⨯-⎪⎪⎭⎫ ⎝⎛k ∴3,22=⎪⎪⎭⎫ ⎝⎛k ∵△>0,∴=±k 8.解:(1)方程有实数根,24b acD =-=(-2m )2-4m (m -2)22448m m m=-+=8m ≠0∴m 的取值范围为m>0.(2)∵方程有实数根x 1,x 2,∴.22,2121mm x x x x -=⋅=+∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1.2422=-⨯-m m 解得m=8.经检验m=8是原方程的解.(四)课堂小结通过这节课的学习你有哪些收获和体会?有哪些地方需要特别注意的?谈谈你的看法.(五)课前预习预习下节课(21.3)第1课时的相关内容。
#人教版九年级数学上册全册教案集_新课标_推荐46195
第22章 二次根式22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______。
x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0((4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a的意义是。
3、当a 为正数时指a 的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式中,字母a 必须满足 , 才有意义。
(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习: x 取何值时,下列各二次根式有意义?①43-x 2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数 (四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
人教版九年级上册数学全册教案(完整版)教学设计
人教版九年级上册数学全册教案(完整版)教学设计21.1 一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm ,则盒底的长为__(100-2x )_cm__,宽为__(50-2x )_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的? 【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0. 其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解? -4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学) 1.下列方程是一元二次方程的是( D ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2) C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A ) A .2 B .0 C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是__x 2+2x -1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是 __-1__.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0, ∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎨⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2 解一元二次方程 21.2.1 配方法(第1课时)一、基本目标 【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 2.理解并掌握直接开方法、配方法解一元二次方程的方法. 【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程. 【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标 【教学重点】掌握直接开平方法和配方法解一元二次方程. 【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P5~P9的内容,完成下面练习. 【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__p ,x 2=__-p __.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__; (3)当p <0时,方程__无实数根__. 2.用直接开平方法解下列方程: (1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有: (1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__-n -p __,x 2=__-n +p __;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2. 二次项系数化为1,得x 2+32x =1.配方,得⎝ ⎛⎭⎪⎫x +342=2516.由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36 .【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练运用公式法解一元二次方程.【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性.二、重难点目标【教学重点】求根公式的推导及用公式法解一元二次方程.【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0. 解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =--3±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a=--9±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根. 【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3 因式分解法(第3课时)一、基本目标 【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法. 【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标 【教学重点】运用因式分解法解一元二次方程. 【教学难点】选择适当的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P14的内容,完成下面练习. 【3 min 反馈】1.将下列各题因式分解:am +bm +cm =__m (a +b +c )__; a 2-b 2=__(a +b )(a -b )__; a 2+2ab +b 2=__(a +b )2__; x 2+5x +6=__(x +2)(x +3)__;3x 2-14x +8=__(x -4)(3x -2)__. 2.按要求解下列方程: (1)2x 2+x =0(用配方法); (2)3x 2+6x -24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学)【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值.【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba.∵9a 2-4b 2=0,∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4 一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:方程x1x2x1+x2x1·x2(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294.(4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214.【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值. 解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎪⎨⎪⎧Δ=[-k +1]2-4⎝ ⎛⎭⎪⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下:x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!21.3 实际问题与一元二次方程一、基本目标 【知识与技能】1.会根据具体问题中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 【过程与方法】经历分析和解决实际问题的过程,体会一元二次方程的数学建模作用. 【情感态度与价值观】体会数学来源于实践,反过来又作用于实践,增强数学的应用意识. 二、重难点目标 【教学重点】列一元二次方程解决实际问题的一般步骤. 【教学难点】利用一元二次方程解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P19~P21的内容,完成下面练习. 【3 min 反馈】1. 有一人患了感毛,经过两轮传染后共有121人患了感冒,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则第一轮后共有__1+x__人患了感冒,第二轮后共有__1+x+x(x+1)__人患了感冒.可列方程 __1+x+x(x+1)=121__.解方程,得x1=__-12(不合题意,舍去)__,_x2=__10__.所以平均一个人传染了__10__个人.2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__23%__.②设乙种药品成本的年平均下降率为y.依题意,得__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(不合题意,舍去)__.所以两种药品成本的年平均下降率 __相同__.提示:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】某林场计划修一条长750 m,断面为等腰梯形的渠道,断面面积为1.6 m2,上口宽比渠深多2 m,渠底比渠深多0.4 m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48 m3,需要多少天才能把这条渠道挖完?【互动探索】(引发学生思考)(1)怎样用渠深表示上口宽和渠底,怎样计算梯形面积?(2)渠道的体积怎样计算?【解答】(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x +2+x +0.4)x =1.6,整理,得5x 2+6x -8=0, 解得x 1=45=0.8,x 2=-2(舍去),∴上口宽为2.8 m ,渠底为1.2 m.(2)如果计划每天挖土48 m 3,需要1.6×75048=25(天)才能挖完渠道.【互动总结】(学生总结,老师点评)解答本题的关键是掌握梯形面积的计算方法,正确用未知数表示出相关数量.【活动2】 巩固练习(学生独学)1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A .2和4 B .6和8 C .4和6D .8和102.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x 个小分支, 则1+x +x ·x =91.解得x 1=9或x 2=-10(舍去).故每个支干长出9个小分支.3.如图,要设计一幅长30 cm 、宽20 cm 的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的14,应如何设计彩条的宽度?(精确到0.1 cm)解:横彩条宽为1.8 cm ,竖彩条宽为1.2 cm.【教师点拨】设横彩条的宽度为3x cm ,则竖彩条的宽度为2x cm.根据题意,得(30-4x )(20-6x )=⎝ ⎛⎭⎪⎫1-14×20×30.解得x 1≈0.61或x 2≈10.2(舍去). 4.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?若能,说明围法;若不能,说明理由; 解:(1)5 cm.(2)不能.设宽为x cm ,则长为(20-x ) cm ,由x (20-x )=101,即x 2-20x +101=0,由Δ=202-4×101=-4<0,∴方程无解,故不能围成一个面积为101 cm 2的长方形.【活动3】拓展延伸(学生对学)【例3】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.【互动探索】(引发学生思考)AB与BC之间的数量关系是怎样的?BC还应满足什么条件?【解答】设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15,当x=10时,BC=50-10-10=30>25,则x1=10不合题意,舍去.故可以围成AB长为15 m,BC长为20 m的矩形花园.【互动总结】(学生总结,老师点评)利用一元二次方程解决实际问题时,要注意检验方程的根是否符合实际问题.环节3 课堂小结,当堂达标(学生总结,老师点评)列一元二次方程解应用题的一般步骤:(1)“设”,即设未知数,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中的等量关系列方程;(3)“解”,即求出所列方程的根;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题.请完成本课时对应练习!22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标 【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数. 2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想. 【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标 【教学重点】 二次函数的概念. 【教学难点】能根据已知条件写出二次函数的解析式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P29的内容,完成下面练习. 【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为__y =ax +b __(a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如__y =ax 2+bx +c __(a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a 、b 、c __.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2.4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.。
人教版九年级数学上册教案5篇
人教版九年级数学上册教案5篇人教版九年级数学上册教案5篇数学是一种精确的艺术,它要求我们严谨和准确地表达思想,从而减少误解和歧义。
这里给大家分享一些关于人教版九年级数学上册教案,供大家参考学习。
人教版九年级数学上册教案【篇1】教材分析:学生在三年级初步感受了生活中的平移与旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形,本节课所学的图形的旋转内容是在上述基础上的进步发展,通过具体实例的展示,通过操作活动,使学生知道一个简单图形在旋转或平移的过程中,能形成一个较复杂的图形,它的学习对于培养学生的空间观念,感受数学美、运用数学知识进行设计具有重要作用。
教学要求:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、能在方格纸上画出简单图形旋转后的图形。
教学重点、难点:1、能在方格纸上将简单图形旋转90,明确是绕哪一点进行旋转的。
2、能找出旋转或平移后的原图形。
教具准备:多媒体、三角形纸学具准备:4张扇形张、方格纸、三角形纸教学过程:一、创设情景电脑出示一组图案,请学生欣赏。
师:这些图案美吗?生:美。
师:这些图案是怎样设计的呢?生:通过旋转设计成的。
师:这些图形是怎样旋转的呢?今天我们就来学习有关图形旋转的知识,并板书课题:图形的旋转。
二、探究新知1、理解顺时针方向。
(1)师出示一个钟面模型。
(2)问:钟面上的时针是怎样旋转的呢?你能用手势比一比吗?(3)抽生比划时针转动的方向,全班一起跟着比手势。
(4)师:时针转动的方向叫顺时针方向。
板书:顺时针方向(5)师:生活中很多图形都是按顺时针方向进行旋转的。
2、体会旋转900的过程,明确是绕哪个点进行旋转的。
(1)电脑出示主题图,请学生仔细观察并思考:图a是怎样变化就得到了图b?生:图a按顺时针方向旋转就得到图b。
师:图a是以哪个点为中心,旋转多少度得到图b的?生:图a是以o点为中心旋转900得到图b的。
师:谁能用完整的语言说说图a到图b的变化过程?生:图a以o点为中心,按顺时针方向旋转900得到图b。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)公式法教案
21.2解一元二次方程21.2.2公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程(一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274xx -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭,2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=±,112x =+212x =-2.用配方法解一元二次方程的步骤?(出示课件3)学生口答:化:把原方程化成x 2+px+q =0的形式.移项:把常数项移到方程的右边,如x 2+px =-q.配方:方程两边都加上一次项系数一半的平方.x 2+px+(2p )2=-q+(2p )2开方:根据平方根的意义,方程两边开平方.(x+2p )2=-q+(2p )2求解:解一元一次方程.定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知探究一公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5)学生答:ax 2+bx+c=0(a≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c.二次项系数化为1,得x 2+b a x=-c a .配方,得x 2+b a x+2(2b a =-c a +2()2ba ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.师生共同完善认知:(出示课件7)20,40,≠>a a 当240,-b a c≥.22b x a a +=±x 1=-b+b 2-4ac 2a ,x 2=-b-b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a,b,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac≥0时,将a,b,c 代入式子x=42b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0;(出示课件9)学生思考后,共同解答如下:解:∵a=1,b=-4,c=-7,∴b 2-4ac=(-4)2-4×1×(-7)=44>0.4.2=x∴12=+x 22=x (2)2x 2x+1=0;(出示课件10)教师问:这里的a、b、c 的值分别是什么?解:2,21.==-=a bc 224(24210.△=-=--⨯⨯=ba c则方程有两个相等的实数根:12.2222-==-=-=⨯b x x a (3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --=1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根(4)46.22510-±--±±===⨯b x a 12464611,.10105+-====-x x (4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=acb△方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac>0时,一元二次方程有两个不相等的实数根;⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根;⑶当∆=b 2-4ac<0时,一元二次方程没有的实数根.教师问:用公式法解一元二次方程的步骤是什么?学生思考后,共同总结如下:(出示课件14)用公式法解一元二次方程的一般步骤:1.将方程化成一般形式,并写出a,b,c 的值.2.求出∆的值.3.(1)当∆>0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答.解:a=3,b=-6,c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.6.23±=⨯x 13,3+=x 2.3=x 探究二一元二次方程的根的情况出示课件16:用公式法解下列方程:(1)x 2+x-1=0;(2)x 2-+3=0;(3)2x 2-2x+1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗?⑴x 2+2x-8=0;⑵x 2=4x-4;⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解.师生共同总结如下:(出示课件18)一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac>0时,有两个不等的实数根:12,;22b b x x a a-+--==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a-==(3)当b 2-4ac<0时,没有实数根.一般的,式子b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1不解方程,判断下列方程根的情况:(1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x²-2mx+4(m-1)=0.师生共同讨论解答如下:解:⑴a=﹣1,b=,c=﹣6,∵△=b 2-4ac=24-4×(﹣1)×(-6)=0.∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3,c=1,∵△=b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m,c=4(m-1),∵△=b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D⑵D出示课件23:例2m为何值时,关于x的一元二次方程2x2-(4m+1)x+2m2-1=0:(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?学生思考后,教师板演解题过程:解:a=2,b=-(4m+1),c=2m2-1,b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9.(1)若方程有两个不相等的实数根,则b2-4ac>0,即8m+9>0,∴m>9 8-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=9 8-;(3)若方程没有实数根,则b2-4ac<0即8m+9<0,∴m<9 8-.∴当m>98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m<98-时,方程没有实数根.出示课件24:m为任意实数,试说明关于x的方程x2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b2−4ac=[−(m−1)]2−4[−3(m+3)]=m2+10m+37=m2+10m+52−52+37=(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0,∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根.(三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.解方程x 2﹣2x﹣1=0.3.方程x 2-4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等的实根,则k 的取值范围是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠05.已知x 2+2x=m-1没有实数根,求证:x 2+mx=1-2m 必有两个不相等的实数根.参考答案:1.D2.解:a=1,b=﹣2,c=﹣1,△=b 2﹣4ac=4+4=8>0,所以方程有两个不相等的实数根,4222x 122b a -±±===±1211x x =+=-3.B4.B5.证明:∵没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x 2+mx=1-2m ,即2210x mx m ++-=.,∵,∴△>0.∴x 2+mx=1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章 二次根式22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x 223x + ③ 2、(133a a --a 的值为___________.(2)若 在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
2.式子)0(≥a a 的取值是非负数。
(五)精讲点拨1、二次根式的基本性质(a )2=a 成立的条件是a ≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
________)(2=a x--21x -(五)拓展延伸1、(1)在式子x x +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.(3)已知y =x -3+23--x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解72-x 4a 2-11(六)达标测试A 组(一)填空题:1、 =________;2、 在实数范围内因式分解:(1)x 2-9= x 2 - ( )2= (x+ ____)(x-____)(2) x 2 - 3 = x 2 - ( ) 2 = (x+ _____) (x- _____)(二)选择题:1、计算 ( ) A. 169 B.-13 C±13 D.132、已知 A. x>-3 B. x<-3 C.x=-3 D x 的值不能确定3、下列计算中,不正确的是 ( )。
253⎪⎪⎭⎫ ⎝⎛的值为2)13(-0,x =则为( )A. 3= 2)3( B 0.5=2)5.0( C .2)3.0(=0.3 D 2)75(=35B 组(一)选择题:1、下列各式中,正确的是( )。
A.= B C D2、 如果等式2)(x -= x 成立,那么x 为( )。
A x ≤0; B.x=0 ; C.x<0; D.x ≥0(二)填空题:1、 若20a -=,则 2a b -= 。
2、分解因式:X 4 - 4X 2 + 4= ________.3、当x= 时,代数式其最小值是 。
二次根式(2)一、学习目标1、掌握二次根式的基本性质:a a =22、能利用上述性质对二次根式进行化简.二、学习重点、难点重点:二次根式的性质a a =2.难点:综合运用性质a a =2进行化简和计算。
三、学习过程(一)复习引入:(1)什么是二次根式,它有哪些性质?4949+=+4994⨯=⨯2424-=-653625=(2x 。
(3)在实数范围内因式分解:x 2-6= x 2 - ( )2= (x+ ____)(x-____)(二)提出问题1、式子a a =2表示什么意义?2、如何用aa =2来化简二次根式? 3、在化简过程中运用了哪些数学思想?(三)自主学习自学课本第3页的内容,完成下面的题目:1、计算:=24 =22.0 =2)54(=220 观察其结果与根号内幂底数的关系,归纳得到: 当=>a a ,0时2、计算:=-2)4( =-2)2.0( =-2)54( =-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<a a ,0时3、计算:=20 当==a a ,0时(四)合作交流1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2 a a2、化简下列各式:______=______=_______=_____a 0=(<)3、请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
(五)展示反馈1、化简下列各式(1))0(42≥x x (2)4x2、化简下列各式(1))3()3(2≥-a a (2)()232+x (x <-2)(六)精讲点拨 利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a ”的取值。
(七)拓展延伸(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________. (2) 把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2B 、2-x C 、x --2 D 、2--x(3) x-4│-│7-x │。
(八)达标测试:A 组1、填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=2、已知2<x <3,化简:3)2(2-+-x xB 组1、 已知0 <x <1,化简:4)1(2+-x x -4)1(2-+x x2、 边长为a 的正方形桌面,正中间有一个边长为3a 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.22.2二次根式的乘除法二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程(一)复习回顾1、计算:(1)4×9=______ 94⨯=_______16⨯=_______(2)16×25 =_______ 25100⨯=_______(3)100×36 =_______ 362、根据上题计算结果,用“>”、“<”或“=”填空:4⨯(1)4×9_____916⨯(2)16×25____25100⨯(3)100×36__36(二)提出问题1、二次根式的乘法法则是什么?如何归纳出这一法则的?2、如何二次根式的乘法法则进行计算?3、积的算术平方根有什么性质?4、如何运用积的算术平方根的性质进行二次根式的化简。
(三)自主学习自学课本第5—6页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)2×3____6(2)5×6____30(3)2×5____10(4)4×5____202、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是:(四)合作交流1、自学课本6页例1后,依照例题进行计算:(1)9×27 (2)25×32(3)a 5·ab 51 (4)5·a 3·b 312、自学课本第6—7页内容,完成下列问题:(1)用式子表示积的算术平方根的性质:。
(2)化简: ①54 ②2212b a③4925⨯ ④64100⨯(五)展示反馈展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243后再进行计算,你有什么好办法?(六)精讲点拨1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
(七)拓展延伸1、判断下列各式是否正确并说明理由。
(1))9()4(-⨯-=94-⨯-(2)323b a =ab b 3(3)×(=68)2(6⨯-⨯=4812-(4)161694⨯ =161694⨯⨯=34⨯=12 2、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1) -332 (2) aa 212-(八)达标测试:A 组1、选择题(1)等式1112-=-•+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1(2)下列各等式成立的是( ).A .45×25=85B .53×42=205C .43×32=75D .53×42=206(3)二次根式6)2(2⨯-的计算结果是( )A .26B .-26C .6D .122、化简:(1)360; (2)432x ;3、计算:(1)3018⨯; (2)7523⨯;B 组1、选择题(1)若04144222=+-++++-c c b b a ,则c a b ••2=( ) A .4 B .2 C .-2 D .1(2)下列各式的计算中,不正确的是( )A .64)6()4(-⨯-=-⨯-=(-2)×(-4)=8 B .2222442)(244a a a a =⨯=⨯=C .5251694322==+=+ D .12512131213)1213)(1213(121322⨯=-⨯+=-+=-2、计算:(1)68×(-26); (2;二次根式的除法一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。