2020年辽宁省铁岭市中考数学试卷(含答案解析)

合集下载

辽宁省铁岭市2020年中考数学试卷B卷

辽宁省铁岭市2020年中考数学试卷B卷

辽宁省铁岭市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)下列算式中,运算结果为负数的是()A . -(-3)B . |-3|C . -32D . (-3) 22. (2分) (2019九上·萧山期中) 已知一个正多边形的内角为a度,则下列不可能是a的值的是()A . 90B . 100C . 120D . 176.43. (2分)(2017·东城模拟) 下列哪个几何体,它的主视图、左视图、俯视图都相同()A .B .C .D .4. (2分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁5. (2分) (2018九上·江海期末) 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为()A .B .C .D .6. (2分)函数y=ax+b与函数y=cx+d的图象是两条直线,只有一个交点,则二元一次方程组有()A . 无数解B . 无解C . 唯一解D . 不能确定7. (2分) (2016七上·兰州期中) 下列各对数中,数值相等的是()A . 23和32B . (﹣2)2和﹣22C . 2和|﹣2|D . ()2和8. (2分)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A . BD平分∠ABCB . △BCD的周长等于AB+BCC . AD=BD=BCD . 点D是线段AC的中点9. (2分) (2019九下·常德期中) 下列说法中正确是()A . 一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定D . 一组数据8,3,7,8,8,9,10的众数和中位数都是810. (2分) (2016九上·鼓楼期末) 已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()A . m﹣1>0B . m﹣1<0C . m﹣1=0D . m﹣1与0的大小关系不确定11. (2分)某商品原价为200元,经过连续两次降价后售价为148元,设平均每次降价为a%,则下面所列方程正确的是()A . 200 (1+a%)2=148B . 200 (1﹣a% )2=148C . 200 (1﹣2a% )=148D . 200 (1﹣a2%)=l4812. (2分)若圆柱的底面半径为3cm,母线长为4cm,则这个圆柱的侧面积为()A . 12cm2B . 24cm2C . 12πcm2D . 24πcm213. (2分)关于x的一元二次方程(m-1)2+x+m2-1=0的一个根是0,则m的值为()A . 1B . -1C . 1或-1D .14. (2分) (2017七上·抚顺期中) 观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A . 57个B . 60个C . 63个D . 85个二、填空题 (共6题;共7分)15. (2分)(2015八下·潮州期中) 若,则 =________;,且,则x=________.16. (1分) (2017七下·威远期中) 若(x-y+1)2与的值互为相反数,则的值为________.17. (1分)位似图形的相似比也叫做________18. (1分) (2017九上·肇源期末) 若2a=3b=4c,且abc≠0,则的值是 ________.19. (1分) (2017七下·丰城期末) 某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是________.20. (1分)(2017·古田模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.三、解答题 (共7题;共81分)21. (20分) (2018八上·涞水期末) 计算:计算与化简,解分式方程(1)a•a5﹣(2a3)2+(﹣2a2)3(2)先化简(a﹣),再求值,其中a=3,b=1(3)分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)(4)解分式方程:.22. (8分)(2016·宜宾) 某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a=________,b=________(2)该校八年级学生共有600人,则该年级参加足球活动的人数约________人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23. (10分)(2019·黄浦模拟) 如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C 作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足 .(1)求证:四边形ABCD是矩形;(2)求证: .24. (15分)已知正比例函数图象上一个点A到x轴的距离为4,这个点A的横坐标为﹣2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数经过哪几个象限?(3)这个正比例函数的函数值y是随着x增大而增大?还是随着x增大而减小?25. (10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?26. (6分) (2018八上·江阴期中) 已知如图,在矩形ABCD中,AB=4cm,BC=7cm,(1)点F在边BC上,且 BF=3,若点P从点A出发,以每秒1cm的速度沿A→D→C→F运动,设点P运动的时间为t秒,求当t为何值时,△AFP为等腰三角形?(2)如图2,将长方形ABCD折叠,折痕为MN,点A的对应点A′落在线段BC上,当点A′ 在BC上移动时,点M、N也随之移动,若限定点M、N分别在线段AB、AD上移动,则点A′ 在线段BC上可移动的最大距离是________.27. (12分) (2019八下·萝北期末) 某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:购买量x(千克) 1.52 2.53付款金额y(元)7.51012b (1)写出a、b的值,a=________b=________;(2)求出当x>2时,y关于x的函数关系式;(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共6题;共7分)15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共81分)21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-2、27-1、27-2、27-3、。

2020年辽宁省铁岭市中考数学试卷及答案解析

2020年辽宁省铁岭市中考数学试卷及答案解析

辽宁省铁岭市2020年初中毕业考试数学试卷(北师版)一、选择题:1.-2的倒数是( )A. -2B. 12-C. 12D. 2 【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12 故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.下列运算正确的是( )A. 2235a a a +=B. 22224a b a b +=+()C. 236a a a ⋅=D. 2336()ab a b -=-【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.3.如图,几何体的左视图是( )A. B. C. D.【答案】C【解析】【分析】根据左视图是从左面看到的图形求解即可.【详解】解:A.不是该几何体的三视图,故不符合题意;B.不是该几何体的三视图,故不符合题意;C.是左视图,符合题意;D.是俯视图,故不符合题意;故选C.【点睛】本题考查了三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4.一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A. 34B.13C.14D.38【答案】A【解析】【分析】根据概率的计算公式计算即可.【详解】摸到红球的概率=663 2684==+.故选A.【点睛】本题考查摸球中概率的计算,关键在于牢记概率公式.5.如图,ABC ∆中,AC BC <,如果用尺规作图的方法在BC 上确定点P ,使PA PC BC +=,那么符合要求的作图痕迹是( )A.B. C. D.【答案】C【解析】【分析】 利用线段垂直平分线的性质以及圆的性质分别判断即可得出答案.【详解】解:A 、如图所示:此时CA =CP ,则无法得出AP =BP ,故不能得出PA +PC =BC ,故此选项错误;B 、如图所示:此时BA =PB ,则无法得出AP =BP ,故不能得出PA +PC =BC ,故此选项错误; C 、如图所示:此时PA =BP ,则能得出PA +PC =BC ,故此选项正确;D 、如图所示:此时CP =AP ,故不能得出PA +PC =BC ,故此选项错误;故选:C .【点睛】本题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.6.如图,正比例函数y x =与反比例函数4y x=的图象交于A 、B 两点,其中(2,2)A ,则不等式4x x >的解集为( )A. 2x >B. 2x <-C. 20x -<<或02x <<D. 20x -<<或2x >【答案】D【解析】【分析】由题意可求点B 坐标,根据图象可求解.【详解】解:∵正比例函数y=x 与反比例函数4y x =的图象交于A 、B 两点,其中A (2,2), ∴点B 坐标为(-2,-2)∴由图可知,当x >2或-2<x <0,正比例函数y x =图象在反比例函数4y x =的图象的上方, 即不等式4x x>的解集为x >2或-2<x <0 故选:D .【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.7.如图,在Rt ABC ∆中,90304ACB A BC ∠=︒∠=︒=,,,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A. 43πB. 23πC. 13πD. 13π-【答案】A【解析】【分析】 根据三角形的内角和得到60B ∠︒=,根据圆周角定理得到12090COD CDB ∠︒∠︒=,=,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt ABC ∆中,9030ACB A ∠︒∠︒=,=,60B ∴∠︒=,120COD ∴∠︒=,4BC =,BC 为半圆O 的直径,90CDB ∴∠︒=,2OC OD ∴==,2CD BC ∴==,图中阴影部分的面积2120214136023COD COD S S ππ∆⋅⨯-⨯=-扇形=﹣= 故选A .【点睛】本题考查扇形面积公式、直角三角形性质、解题的关键是学会分割法求面积.8.如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴相交于点(1,0)A -和(3,0)B ,下列结论:①20a b +=;②当13x -≤≤时,0y <;③若11(,)x y 、22(,)x y 在函数图象上,当12x x <时,12y y <;④30a c +=,正确的有( )A ①②④B. ①④C. ①②③D. ①③④ 【答案】B【解析】【分析】根据二次函数的图象与性质(增减性、对称性、与x 轴的交点)逐个判断即可. 【详解】由题意得:此二次函数的对称轴为13122b x a -+=-== 解得20a b +=,则结论①正确由函数图象可知,当13x -≤≤时,0y ≥,则结论②错误由二次函数的性质可知,当1x ≤时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小1x 与2x 取值范围不确定 的.∴无法确定1y 与2y 的大小关系,则结论③错误将点(1,0)A -代入二次函数的解析式得:0a b c -+=20a b +=,即2b a -=230a b c a a c a c ∴-+=++=+=,则结论④正确综上,结论正确的有①④故选:B .【点睛】本题考查了二次函数的图象与性质(增减性、对称性、与x 轴的交点),熟练掌握二次函数的图象与性质是解题关键.二、填空题9.我国首艘国产航母排水量约为65000吨,将65000用科学记数法记为__________.【答案】46.510⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:65000=6.5×104,故答案为:6.5×104.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【解析】【详解】∵一元二次方程220x x k -+=有两个不相等的实数根,∵∵=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.11.如图AB 是O Θ的直径,弦CD OB ⊥于点E ,交O Θ于点D ,已知5OC cm =,8CD cm =,则AE__________cm.【答案】8【解析】【分析】由垂径定理知,CE=12CD=4,在Rt∆OCE中,由勾股定理得OE=3,从而得到AE的长.【详解】解:∵CD⊥AB,AB是OΘ的直径,CD=8cm,∴CE=ED=12CD=4由勾股定理得:22222549OE OC CE=-=-=,∴OE=3∴AE=AO+OE=5+3=8,故答案为:8【点睛】本题主要考查了垂径定理及勾股定理得应用,明确弦,弦心距,半径之间的关系是解题的关键.12.如图,平行于BC的直线DE把ABC∆分成面积相等的两部分,且点D,E分别在边AB,AC上,则BDAD的值为__________.1【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED,可得出AD AB =BD =AB−AD 即可求出BD AD的值,此题得解. 【详解】解:∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C∴△ADE ∽△ABC ∴2ADE ABC S AD AB S ⎛⎫= ⎪⎝⎭∵平行于BC的直线DE 把ABC ∆分成面积相等的两部分,∴AD AB = ∴1BDAB AD AD AD -== 1【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.13.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长__________.【答案】95cos α【解析】【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB 的长.【详解】解:作AD ⊥BC 于点D ,则390.325 BD=+=,cosBDABα=,95cosABα∴=解得:95cosABα=米,故答案为:95cosα.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知ABCD的顶点A的坐标为(0,4),顶点B、D分别在x轴和直线3y=-上,则对角线AC的最小值是__________.【答案】11【解析】【分析】根据题意可知当点C在y轴上时,AC 最短,根据全等三角形的判定和性质可知CN=OA=4,对角线AC的最小值即可求出.【详解】解:根据题意可知当点C在y轴上时,对角线AC的长最小,如图连接BD,交AC于M,∵ABCD∴MA=MC,MD=MB,∠NMD=∠OMB,∠DNM =∠BOM∴△DNM≌△BOM (AAS)∴OM=MN∴AO=CN=4∵NO=3∴AC=AO+NO+NC=11故答案为:11【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,作出合适的辅助线是解题的关键.三、解答题:15.某海监船以20海里/时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离是多少?(结果保留根号)【答案】【解析】【分析】首先证明PB =BC ,推出∠C =30°,可得PC =2PA ,求出PA 即可解决问题. 【详解】解:岛屿P 在B 的北偏西30方向30APB ∴∠=在Rt PAB ∆中,2PB AB =由题意得:2BC AB =PB BC ∴=C CPB ∴∠=∠60ABP C CPB ∠=∠+∠=30C ∴∠=在Rt PAC ∆中2PC PA ∴=tan 60PA AB =⋅220PC ∴=⨯=海里)答;此时海监船与岛的户之间的距离是【点睛】本题考查解直角三角形的应用−方向角问题,涉及到的知识有30°角所对的直角边等于斜边的一半,三角形的外角性质,等边对等角等知识,解题的关键是证明出PB =BC .16.如图,某反比例函数图象的一支经过点(2,3)A 和点B (点B 在点A 的右侧)作BC y ⊥轴于点C ,连结AB ,AC .若ABC ∆的面积为6,求点B 的坐标.【答案】(6,1)B【解析】【分析】 设反比例函数解析式为(0)k y k x=≠,把(2,3)A 代入求出反比例函数解析式,设B 点坐标为(,)a b ,作AD BC ⊥于D ,则(2,)D b ,表示出a ,b 的关系,利用ABC ∆的面积为6列方程求解即可. 【详解】解:设反比例函数解析式为(0)k y k x=≠, 把(2,3)A 代入解析式得, 236k xy ==⨯=,∴反比例函数的解析式为6y x=. 设B 点坐标为(,)a b ,如图,作AD BC ⊥于D ,则(2,)D b , 反比例函数6y x=的图象经过点(,)B a b , 6b a∴=, 63AD a ∴=-, 116(3)622ABC S BC AD a a∆∴=⋅=-=, 解得:6a =,1b ∴=,(6,1)B ∴.【点睛】本题考查了坐标与图形,以及反比例函数图象上点的坐标特征:反比例函数k y x=(k 是常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 17.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.∵1∵求每天的销售利润y (元)与销售单价x (元)之间的函数关系式;∵2∵求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(2) y=-5x 2+800x-27500(50≤x≤100);(2) 销售单价为80元时,每天销售利润最大,最大利润是4500元.【解析】试题分析:本题考查了二次函数的实际应用---销售利润问题.(1)根据“利润=(售价-成本)销售量”列出函数关系式;(2)把(1)中的二次函数解析式转化为顶点式,利用二次函数图象的性质进行解答.:(1)y=(x-50)[50+5(100-x )]=(x-50)(-5x+550)=-5x 2+800x-27500所以y=-5x 2+800x-27500(50≤x≤100);(2)y=-5x 2+800x-27500=-5(x-80)2+4500∵a=-5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;即销售单价为80元时,每天的销售利润最大,最大利润是4500元.18.如图,在Rt ABC ∆中,90ACB ∠=,60B ∠=,D 为AB 边的中点,连接DC 过D 作DE DC ⊥交AC 于点E(1)求EDA ∠的度数;(2)如图2,F 为BC 边上一点,连接DF ,过D 作DG DF ⊥交AC 于点G 请判断线段CF 与EG 数量关系,并说明理由.【答案】(1)30;(2)CF =,详见解析【解析】【分析】 (1)根据三角形内角和算出∠A=30°,再利用直角三角形斜边中线性质得出∠DCA=∠A=30°,根据外角定理即可求出∠ADE=30°.(2)根据垂直推算出∠FDC=∠GDE,再求出∠BCD=∠DEG,可得~DFC DGE ∆∆,再由相似比求出关系即可. 的【详解】解:(1)在Rt ABC ∆中,90ACB ∠=,60B ∠=30A ∴∠=又D 为边AB 的中点,DC DA ∴=30DCA A ∴∠=∠=又DE DC ⊥90CDE ∴∠=9060DEC DCA ∴∠=-∠=30EDA DEC A ∴∠=∠-∠=(2)CF =理由如下: DG DF ⊥90FDC CDG ∴∠+∠=又90CDE ∠=90GDE CDG ∴∠+∠=FDC GDE ∴∠=∠又60BCD BCA DCA ∠=∠-∠=,60DEG ∠=BCD DEG ∴∠=∠~DFC DGE ∴∆∆tan tan 603CF CD DCA GE DG∴==∠==即:CF =【点睛】本题考查解直角三角形、三角形外角性质,相似三角形的性质和判定,解直角三角形,关键在于熟练掌握相关的基础概念.19.如图,AB 是⊙O 的直径,点C 为O 上一点,CM 为O 的切线,OM AB ⊥于点O ,分别交AC 、CN 于D 、M 两点.。

辽宁省2020年中考数学试卷(含答案)

辽宁省2020年中考数学试卷(含答案)

辽宁省2020年中考数学试卷一、选择题(共10小题,每题3分,共30分)1.下列各数中,比-2小的数是()A.-1B.0C.-3D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m·4m2=8m2D.m5÷m3=m24.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A B C D5.小明同学5次数学小测验成绩分别是90分、95分、85分、95分、100分,则小明这5次成绩的众数和中位数分别是()A.95分、95分 B.85分、95分 C.95分、85分 D.95分、90分6.下列事件属于必然事件的是()A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B. k>0,b>0C. k<0,b>0D. k<0, b<08.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.⎩⎨⎧=+=+1760010080200yxyxB.⎩⎨⎧=+=+1760080100200yxyxC.⎪⎩⎪⎨⎧=+=+2001008017600yxyxD.⎪⎩⎪⎨⎧=+=+2008010017600yxyx9.如图,△ABC的顶点A在反比例函数xky=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()A.4B.-4C.7D.-710.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()10题图xyOCDA BEP37xyOB AC9题图A.2B.59 C.56D.1 二、填空题(共8小题,每题3分,共24分)11.五年以来,我国城镇新增就业人数为66000000人,数据66000000用科学计数法表示为 . 12.分解因式:2a 2-8ab+8b 2= .13.如图,AB ∥CD ,若∠E=34°,∠D=20°,则∠B 的度数为 .14.五张看上去无差别的卡片,正面分别写着数字1,2,2,3,5,现把它们的正面向下,随机地摆放在桌面上,从中任意抽出一张,则抽到数字“2”的卡片的概率是 . 15.关于x 的一元二次方程2x 2-x-k=0的一个根为1,则k 的值是 . 16.不等式组⎩⎨⎧〉+≤-03042x x 的解集是 .17.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,B (8,7),D (5,0),点P 是边AB 或边BC 上的一点,连接OP ,DP ,当△ODP 为等腰三角形时,点P 的坐标为 .18.如图,A 1,A 2,A 3…,A n ,A n+1是直线x y l 3:1=上的点,且OA 1=A 1A 2=A 2A 3=…A n A n+1=2,分别过点A 1,A 2,A 3…,A n ,A n+1作1l 的垂线与直线x y l 33:2=相交于点B 1,B2,B 3…,B n ,B n+1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3…,A n B n+1,B n A n+1,交点依次为P 1,P 2,P 3…,P n ,设△P 1A 1A 2,△P 2A 2A 3,△P 3A 3A 4,…,△P n A n A n+1的面积分别为S 1,S 2,S 3…,S n ,则S n = .(用含有正整数n 的式子表示) 三、解答题(19题10分,20题12分,共22分)19.先化简,再求值:01-2)2018(2a ,4244)241(-+=-+-÷+-π其中a a a a20.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人;13题图 17题图(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.四、解答题(21题12分,22题12分,共24分)21.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,1000m,E在BD的中点处.E在B的北偏西30°方向上,E在A的西北方向上,C,D相距3(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五、解答题(12分)23.服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?六、解答题(12分)24.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD ,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=2时,求⊙O的半径.DACB MFE DABCNOFD ABC (O )E MNOB CAE D F七、解答题(12分)25.在菱形ABCD 中,∠BAD=120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F.(1)如图1,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条线段之间的数量关系;(2)如图2,点O 在CA 的延长线上,且OA=31AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由;(3)点O 在线段AC 上,若AB=6,BO=72,当CF=1时,请直接写出BE 的长.图1 图2 备用图八、解答题(14分)26、如图,抛物线y=ax 2+2x+c (a <0)与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,OB=OC=3. (1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD. OD 交BC 于点F ,当S △COF ︰S △CDF =3︰2时,求点D 的坐标. (3)如图2,点E 的坐标为(0,23),点P 是抛物线上的点,连接EB ,PB ,PE 形成的△PBE 中,是否存在点P ,使∠PBE 或∠PEB 等于2∠OBE ?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.图2 备用图图1参考答案1-10、CBDBA DAACB11、6.6×10712、2(a-2b)213、54°14、15、116、-3<x≤217、18、19、20、21、22、23、24、25、26、1、只要朝着一个方向奋斗,一切都会变得得心应手。

铁岭市2020年中考数学试卷(II)卷

铁岭市2020年中考数学试卷(II)卷

铁岭市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中最大的数是()A . 5B .C . πD . ﹣82. (2分) (2017九上·红山期末) 下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中随机事件有()A . 0个B . 1个C . 2个D . 3个3. (2分)(2012·丽水) 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A . ①B . ②C . ③D . ④4. (2分) (2016高一下·广州期中) 把一块直尺与一块三角板如图放置,若sin∠1=,则∠2的度数为()A . 120°B . 135°C . 145°D . 150°5. (2分) (2018九上·宁波期中) 二次函数y=a(x-m)2-n的图象如图,则一次函数y=mx+n的图象经过()A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限6. (2分) (2017八下·北海期末) 点M在第二象限内,M到x轴是距离是3,到y轴距离是2,那么点M的坐标是()A . (-3,2)B . (-2,-3)C . (-2,3)D . (2,-3)7. (2分) (2016九下·南京开学考) 某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5人数1121A . 中位数是4,平均数是3.75B . 众数是4,平均数是3.8C . 众数是2,平均数是3.75D . 众数是2,平均数是3.88. (2分) (2016九上·威海期中) 在△ABC中,|sinC﹣ |+(﹣cosB)2=0,则∠A=()A . 100°B . 105°C . 90°D . 60°9. (2分)当a<0时,抛物线y=x2+2ax+1+2a2的顶点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)函数与在同一坐标系中的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2017·东莞模拟) 在函数y= 中,自变量x的取值范围是________.12. (1分)在同一平面上⊙O外一点P到⊙O的距离最长为7cm,最短为2cm,则⊙O的半径为________cm.13. (1分)(2017·本溪模拟) 分解因式:12x2﹣3y2=________.14. (1分)(2017·定远模拟) 如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB的度数为________.15. (1分) (2017八下·徐汇期末) 如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m 的取值范围是________.三、解答题 (共9题;共87分)16. (5分) (2017·雁塔模拟) 计算:()﹣1+|﹣ |﹣(π﹣3)0+3tan30°.17. (5分)先化简:1-,再选取一个合适的a值代入计算.18. (10分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.19. (5分) (2017·南京) 如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20. (15分)(2018·河北) 如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y= (x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.21. (12分)(2018·凉州) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)根据所给信息,解答以下问题:(1)(1)在扇形统计图中,对应的扇形的圆心角是________度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在________等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?22. (10分) (2019九上·邓州期中) “早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?23. (10分) (2016八上·江津期中) 如图,已知∠MAN=120°,AC平分∠MAN.B,D分别在射线AN,AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.24. (15分) (2016九上·平定期末) 综合与探究:如图,抛物线y=- x2+bx+c与x轴交于A(-1,0),B (5,0)两点,过点B作线段BC⊥x轴,交直线y=-2x于点C.(1)求该抛物线的解析式;(2)求点B关于直线y=-2x的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共87分)16-1、17-1、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

2020年辽宁省铁岭市中考数学试题及参考答案(word解析版)

2020年辽宁省铁岭市中考数学试题及参考答案(word解析版)

2020年铁岭市初中毕业生学业考试数学试卷(考试时间120分钟,满分150分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的绝对值是()A.B.﹣C.3 D.﹣32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b44.一组数据1,4,3,1,7,5的众数是()A.1 B.2 C.2.5 D.3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.B.C.D.6.不等式组的整数解的个数是()A.2 B.3 C.4 D.57.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米.根据题意,所列方程组正确的是()A.B.C.D.8.一个零件的形状如图所示,AB∥DE,AD∥BC,∠CBD=60°,∠BDE=40°,则∠A的度数是()A.70°B.80°C.90°D.100°9.如图,矩形ABCD的顶点D在反比例函数y=(x>0)的图象上,点E(1,0)和点F(0,1)在AB边上,AE=EF,连接DF,DF∥x轴,则k的值为()A.2B.3 C.4 D.410.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc >0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1 B.2 C.3 D.4(第9题图)(第10题图)二、填空题(本题共8小题,每小题3分,共24分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为.12.分解因式:ab2﹣9a=.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是.(填“甲”或“乙”)14.关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是.17.一张菱形纸片ABCD的边长为6cm,高AE等于边长的一半,将菱形纸片沿直线MN折叠,使点A与点B重合,直线MN交直线CD于点F,则DF的长为cm.18.如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(x﹣1﹣)÷,其中x=3.20.(12分)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.(12分)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)五、解答题(满分12分)23.(12分)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)12 14 16每周的销售量y(本)500 400 300 (1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.七、解答题(满分12分)25.(12分)在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C 逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.参考答案与解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的绝对值是()A.B.﹣C.3 D.﹣3【知识考点】绝对值.【思路分析】依据绝对值的性质求解即可.【解题过程】解:|﹣|=.故选:A.【总结归纳】本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得答案.【解题过程】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.【总结归纳】本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a2b4,故D错误.故选:C.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.一组数据1,4,3,1,7,5的众数是()A.1 B.2 C.2.5 D.3.5【知识考点】众数.【思路分析】众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.【解题过程】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.【总结归纳】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋中有4个红球、2个白球,共6个,从袋子中随机摸出1个球,则摸到红球的概率是=.故选:D.【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.不等式组的整数解的个数是()A.2 B.3 C.4 D.5【知识考点】一元一次不等式组的整数解.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解题过程】解:解不等式3+x>1,得:x>﹣2,解不等式2x﹣3≤1,得:x≤2,则不等式组的解集为﹣2<x≤2,所以不等式组的整数解有﹣1、0、1、2这4个,故选:C.【总结归纳】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米.根据题意,所列方程组正确的是()A.B.C.D.【知识考点】由实际问题抽象出二元一次方程组.【思路分析】根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.【解题过程】解:由题意可得,,故选:D.【总结归纳】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.一个零件的形状如图所示,AB∥DE,AD∥BC,∠CBD=60°,∠BDE=40°,则∠A的度数是()A.70°B.80°C.90°D.100°【知识考点】平行线的性质.【思路分析】根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.【解题过程】解:∵AB∥DE,AD∥BC,∴∠ABD=∠BDE,∠ADB=∠CBD,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°﹣∠ADB﹣∠ABD=80°,故选:B.【总结归纳】本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.如图,矩形ABCD的顶点D在反比例函数y=(x>0)的图象上,点E(1,0)和点F(0,1)在AB边上,AE=EF,连接DF,DF∥x轴,则k的值为()A.2B.3 C.4 D.4【知识考点】反比例函数图象上点的坐标特征;矩形的性质.【思路分析】过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.【解题过程】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF∥x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),∵矩形ABCD的顶点D在反比例函数y=(x>0)的图象上,∵k=4.则k的值为4.故选:C.【总结归纳】本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc >0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1 B.2 C.3 D.4【知识考点】二次函数图象与系数的关系.【思路分析】①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;②根据抛物线对称轴是直线x=1,即﹣=1,可得b=﹣2a,进而可以判断;③根据b=﹣2a,可得c<2,进而可以判断;④当x=﹣1时,y<0,即a﹣b+c<0,根据b=﹣2a,可得3a+c<0,即可判断.【解题过程】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,即﹣=1,所以b=﹣2a,所以b+2a=0,所以②正确;③因为b=﹣2a,由4a+b2<4ac,得4a+4a2<4ac,∵a<0,∴c<1+a,根据抛物线与y轴的交点,c<2,所以③错误;④当x=﹣1时,y<0,即a﹣b+c<0,因为b=﹣2a,所以3a+c<0,所以④正确.所以正确的是②④2个.故选:B.【总结归纳】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.二、填空题(本题共8小题,每小题3分,共24分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.分解因式:ab2﹣9a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】根据提公因式,平方差公式,可得答案.【解题过程】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【总结归纳】本题考查了因式分解,一提,二套,三检查,分解要彻底.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是.(填“甲”或“乙”)【知识考点】方差.【思路分析】根据方差的意义求解可得.【解题过程】解:∵s甲2=6.67,s乙2=2.50,∴s甲2>s乙2,∴这6次比赛成绩比较稳定的是乙,故答案为:乙.【总结归纳】本题主要考查方差,解题的关键是掌握方差的意义.14.关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是.【知识考点】根的判别式.【思路分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解题过程】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故答案为:k>﹣1.【总结归纳】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB 于点M,交AC于点N.分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC 的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF 的周长为.【知识考点】作图—基本作图.【思路分析】直接利用基本作图方法结合全等三角形的判定与性质进而得出BD=DF,即可得出答案.【解题过程】解:∵AB=5,AC=8,AF=AB,∴FC=AC﹣AF=8﹣5=3,由作图方法可得:AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△AFD中,∴△ABD≌△AFD(SAS),∴BD=DF,∴△DFC的周长为:DF+FC+DC=BD+DC+FC=BC+FC=9+3=12.故答案为:12.【总结归纳】此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是.【知识考点】等边三角形的性质;多边形内角与外角;正多边形和圆.【思路分析】根据正五边形和等边三角形的性质得到∠EAF=108°﹣60°=48°,根据等腰三角形的性质即可得到结论.【解题过程】解:∵正五边形ABCDE,∴∠EAB==108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°﹣60°=48°,∵AE=AF,∴∠AEF=∠AFE=(180°﹣48°)=66°,故答案为:66°.【总结归纳】本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.一张菱形纸片ABCD的边长为6cm,高AE等于边长的一半,将菱形纸片沿直线MN折叠,使点A与点B重合,直线MN交直线CD于点F,则DF的长为cm.【知识考点】菱形的性质;翻折变换(折叠问题).【思路分析】根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.【解题过程】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B==,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG==2,∴CG=BC﹣BG=6﹣2,∵AB∥CD,∴∠GCF=∠B=30°,∴CF=CG•cos30°=(6﹣2)×=3﹣3,∴DF=DC+CF=6+3﹣3=(3+3)cm;②如图2,BE=AE=3,同理可得DF=3﹣3.综上所述:则DF的长为(3+3)或(3﹣3)cm.故答案为:(3+3)或(3﹣3).【总结归纳】本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)【知识考点】列代数式;规律型:图形的变化类;三角形的面积.【思路分析】设△ADC的面积为S,利用相似三角形的性质求出S1,S2,…S n与S的关系即可解决问题.【解题过程】解:设△ADC的面积为S,由题意,AC∥B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴=()2=,∴=4S,∵==,CB1=2,∴DB1=,同法D1B2=,∵DB1∥D1B2,∴==,∴=,∴S1=S+=,∵△A1C1D1∽△ACD,∴=()2=,∴=4S,同法可得,=,∴S2=4S+==×4,…S n=×4n﹣1,∵S=×2×=,∴S n=×4n﹣1.故答案为:.【总结归纳】本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(x﹣1﹣)÷,其中x=3.【知识考点】分式的化简求值.【思路分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解题过程】解:(x﹣1﹣)÷===,当x=3时,原式=.【总结归纳】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(12分)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.【知识考点】扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.【解题过程】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60﹣9﹣15﹣12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1 男2 女1 女2 男1 (男2,男1)(女1,男1)(女2,男1)男2 (男1,男2)(女1,男2)(女2,男2)女1 (男1,女1)(男2,女1)(女2,女1)女2 (男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是=.【总结归纳】此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15﹣m)个,根据题意列出不等式并解答.【解题过程】解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.【总结归纳】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.(12分)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】(1)根据正切的定义求出AM;(2)根据正切的定义求出BM,结合图形计算即可.【解题过程】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=,∴AM=CM•tan∠ACM=60×=20(米),答:大桥主架在桥面以上的高度AM为20米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=,∴MB=CM•tan∠BCM≈60×0.25=15(米),∴AB=AM+MB=15+20≈50(米)答:大桥主架在水面以上的高度AB约为50米.【总结归纳】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.五、解答题(满分12分)23.(12分)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)12 14 16每周的销售量y(本)500 400 300 (1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?【知识考点】二次函数的应用.【思路分析】(1)根据题意和表格中的数据,可以求得y与x之间的函数关系式;(2)根据题意,可以得到w与x的函数关系式,然后根据二次函数的性质,可以解答本题.【解题过程】解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,∴w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.六、解答题(满分12分)24.(12分)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.【知识考点】圆周角定理;圆内接四边形的性质;切线的判定与性质.【思路分析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.【解题过程】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵,∴,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵,。

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。

铁岭市2020版中考数学试卷(I)卷

铁岭市2020版中考数学试卷(I)卷

铁岭市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -3 的相反数是()A .B . -3C . 3D . -2. (2分)已知,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A . 53°B . 63°C . 73°D . 83°3. (2分)(2017·新泰模拟) 一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A . 2πB . 6πC . 7πD . 8π4. (2分)函数:y=中自变量x的取值范围是()A . x≥-1B . x≠3C . x≥-1且x≠3D . x<-15. (2分) (2016八下·桂阳期末) 在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为()A . (﹣3,4)B . (3,4)C . (3,﹣4)D . (﹣3,﹣4)6. (2分)化简+=()A . 0B . 1C . 1+aD . -17. (2分) (2019九上·罗湖期末) 下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A .B .C .D .8. (2分)(2016·达州) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分)(2017·和平模拟) 如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A .B . 1C .D .10. (2分) (2019八上·哈尔滨月考) 如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)光的速度大约是300000千米/秒,将300000用科学记数法表示为________ .12. (1分)(2019·定州模拟) 因式分解:﹣3x3+3x=________.13. (1分) (2018九上·南昌期中) 如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是________.14. (1分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为________.15. (1分) (2019八下·南县期中) 如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm 则CD的长为________cm.16. (1分)(2018·盘锦) 如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是________.17. (1分)如图,□ABCD中,点E在AB边上,将△EBC沿CE所在直线折叠,使点B落在AD边上的点B′处,再将折叠后的图形打开,若△AB′E的周长为4cm,△B′DC的周长为11cm,则B′D的长为________cm.18. (2分)配方:x2﹣6x+________ =________ .三、解答题 (共10题;共109分)19. (15分) (2017七下·嵊州期中) 计算(1)(2)(3)先化简,再求值:(x+2)2-(x+1)(x-1),其中x=20. (10分)(2019·玉林模拟) 如图,已知矩形OABC中,OA=3,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.21. (5分)(2017·河南模拟) 钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)22. (12分) (2020七下·仙居期末) 某校七年级举行“数学计算能力“比赛,比赛结束后,随机抽查部分学生的成绩,根据抽查结果绘制成如下的统计图表.根据以上信息解答下列问题:(1)共抽查了________名学生,统计图表中,m=________:(2)请补全直方图;(3)若七年级共有800名学生,分数不低于80分为优良,请你估算本次比赛七年级分数优良的学生的人数.23. (7分) (2019九上·沙坪坝期末) 为学习贯彻党的十九大精神,我区各校积极开展了“党的十九大精神进校园”的宣讲活动,某校为了解学生对党的十九大报告中民生问题的关注情况,随机调查了部分学生,要求被调查的学生只能从A:生态环境、B:医疗卫生、C:文化教育、D:住房保障,四个方面中选择一项,根据调查结果,绘制了如下两幅不完整的统计图:请解答下列问题:(1)在扇形统计图中B所对应扇形的圆心角等于________度,并补全条形统计图;________(2)甲乙两位同学对调查的四个方面都非常关注,他们从四个方面随机选择了一个,请用列表或画树状图的方法,求出他们恰好选择到同一个方面的概率.24. (10分)阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D 逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD <4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.25. (10分)(2013·内江) 某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.X506090120y40383226(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.26. (10分) (2019八上·霸州期中) 如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.27. (15分)(2017·濮阳模拟) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设点P是位于直线BC下方的抛物线上一动点,过点P作y轴的平行线交直线BC于点Q,求线段PQ的最大值;(3)在(2)的条件下,抛物线的对称轴与直线BC交于点M,问是否存在点P,使以M、P、Q为顶点的三角形与△CBO相似?若存在,请求出点P的坐标;若不存在,请说明理由.28. (15分)(2017·雁塔模拟) 如图,抛物线y= x2+bx+c经过A(﹣1,0),C(2,﹣3)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式及顶点坐标;(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共109分)19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

辽宁省铁岭市2020年中考数学试卷A卷

辽宁省铁岭市2020年中考数学试卷A卷

辽宁省铁岭市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各组有理数比较大小正确的是()A . -10>-1B . -0.1<-100C . 1>-1000D . 0<-102. (2分)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A .B .C .D .3. (2分) (2019八上·辽阳月考) 在下列说法中,① 的算术平方根是4;②3是9的平方根;③在实数范围内,一个数如果不是有理数,则一定是无理数;④两个无理数之和还是无理数.其中正确的个数是()A . 4个B . 3个C . 2个D . 1个4. (2分)我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A . 4.2×104B . 0.42×105C . 4.2×103D . 42×1035. (2分) (2017八下·曲阜期末) 在函数y= 中,自变量x的取值范围是()A . x>3B . x≥3C . x≠3D . x≤36. (2分)已知x1、x2是方程x2-x-3=0的两个实数根,那么x12+x22的值是()A . 1B . 5C . 7D .7. (2分)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是()A . ③④B . ①②③C . ②④D . ①②③④8. (2分)如图,在⊙O中,直径AB⊥弦CD于E,连接BD,若∠D=30°,BD=2,则AE 的长为()A . 2B . 3C . 4D . 59. (2分) (2017八下·抚宁期末) 一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A .B .C .D .10. (2分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为()A .B .C .D .11. (2分)已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是()A . 16厘米B . 10厘米C . 6厘米D . 4厘米12. (2分)(2018·路北模拟) 如图,A,B分别为反比例函数y=﹣(x<0),y= (x>0)图象上的点,且OA⊥OB,则sin∠ABO的值为()A .B .C .D .二、填空题 (共6题;共22分)13. (4分) (2019七上·义乌月考) 点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:①数轴上表示1和3两点之间的距离是________②数轴上表示x和-1的两点之间的距离表示为________③若x表示一个有理数,且-4<x<2,则|x-2|+|x+4|=________④若x表示一个有理数,且|x-2|+|x+4|=8,则有理数x的值是________14. (1分)如图,点P是梯形ABCD的腰CD的中点,△ABP的面积是6cm2 ,则梯形ABCD的面积为________ cm2 .15. (1分)若点P(a﹣5,a+3)关于原点对称点在第四象限,则a的取值范围为________ .16. (5分)(2018·长清模拟) 某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.17. (10分)(2017·抚州模拟) 计算与解分式方程(1) |1﹣2sin45°|﹣ +()﹣1(2) + =3.18. (1分)(2011·南宁) 如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.过点C作CC1⊥AB于C1 ,过点C1作C1C2⊥AC于C2 ,过点C2作C2C3⊥AB于C3 ,…,按此作法进行下去,则ACn=________.三、解答题。

辽宁省铁岭市2020年中考数学复习模拟卷一(含解析)

辽宁省铁岭市2020年中考数学复习模拟卷一(含解析)

2020年辽宁省铁岭市中考数学复习模拟卷(1)一.选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共30分)1.|﹣5|等于()A.﹣5 B.C.5 D.2.物体的形状如图所示,则从上面看此物体得到的平面图形是()A. B.C.D.3.下列计算中正确的是()A.2a+a=3a2B.2a2•a3=3a5C.(2a)2÷a=4a(a≠0)D.(﹣a+b)(a+b)=a2﹣b24.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示,则这50名学生读书册数的众数、中位数是()册数0 1 2 3 4人数 3 13 16 17 1A.3,3 B.3,2 C.2,3 D.2,26.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.7.如图,∠MAN=63°,进行如下操作:以射线AM上一点B为圆心,以线段BA长为半径作弧,交射线AN于点C,连接BC,则∠BCN的度数是()A.54°B.63°C.117°D.126°8.如图,在地板的环形图案上,OA=AB=BC=CD=a,任意抛出一个乒乓球,落在阴影区域的概率是()A.B.C.D.9.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为(3,4),则不等式kx+1≥﹣3x+b的解集为()A.x≥3 B.x≤3 C.x>3 D.x<310.如图,点B是反比例函数图象上的一点,矩形OABC的周长是16,正方形BCFG和正方形OCDE的面积之和为32,则反比例函数的解析式为()A.y=B.y=C.y=D.y=二.填空题(每小题3分,共24分)11.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.12.分解因式:6xy2﹣9x2y﹣y3=.13.在一个不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别(每次从袋子里摸出一个球记录下颜色后再放回,经过大量的重复试验,发现摸到白球的频率稳定在0.6,则袋中白球的个数是.14.5名篮球队员进行1分钟定点投篮训练.1分钟内有2人投进篮筐7球,2人投进篮筐10球,1人投进篮筐11球,这5名队员这次定点投篮的平均成绩是球.15.若关于x的一元二次方程x2﹣4x+4=m没有实数根,则m的取值范围是.16.当非负整数a=时,方程组有正整数解.17.如图,正方形ABCD的顶点A,B的坐标分别为(﹣2,0),(﹣1,0).顶点C,D在第二象限内.以原点O为为位似中心,将正方形ABCD放大为正方形A′B′C′D′,若点B′的坐标为(2,0),则点D′的坐标为.18.如图,已知等边△ABC的边长为6,D、E分别是AB、AC边上的动点,DE∥BC,将线段CE绕C点顺时针旋转120°,得到线段CF,连接DF,则当点D在AB边上从A运动到B的过程中,DF的中点M运动的路径长为.三.解答题(本大题共8小题,共96分.解答应写出必要的文字说明、证明过程或演算步骤)19.先化简,再求值:,其中.20.学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21.如图,在矩形ABCD中,若延长AD至点E,延长CB至点F,并使得DE=BF,连接AF、CE及DF.(1)求证:四边形AECF是平行四边形;(2)若DE=3,CD=4,AD=5,求证:DF平分∠AFC.22.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.23.如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求A、B两观景台之间的距离;(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)24.某商场要经营一种文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1)当每天的利润为1440元时,为了让利给顾客,每件文具的销售价格应定为多少元?(2)设每天的销售利润为W元,每件文具的销售价格为x元,如果要求每天的销售量不少于10件,且每件文具的利润至少为25元.①求W与x的函数关系式,并写出自变量的取值范围;②问当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?25.如图①,△AOB≌△COD,延长AB,CD相交于点E.(1)求证:DE=BE;(2)将两个三角形绕点O旋转,当∠AEC=90°时(如图②),连接BC、AD.取BC的中点F,连接EF,则线段EF、AD的数量关系为,位置关系为;(3)将图②中的线段EB,ED同时绕点E顺时针方向旋转到图③所示位置,连接AD、BC,取BC的中点F,连接EF,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.26.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.【解答】解:|﹣5|=5.故选:C.2.【解答】解:该几何体从上面看到的平面图有两层,第一层一个正方形,第二层有3个正方形.故选:C.3.【解答】解:A、2a+a=3a,故此选项错误;B、2a2•a3=2a5,故此选项错误;C、(2a)2÷a=4a(a≠0),正确;D、(﹣a+b)(a+b)=﹣a2+b2,故此选项错误;故选:C.4.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.5.【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选:B.6.【解答】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.7.【解答】解:由作图可知BA=BC,∴∠A=∠BCA=63°,故选:B.8.【解答】解:∵以OD为半径的圆的面积=π•(4a)2=16πa2,以OB为半径的圆的面积=π•(2a)2=4πa2,以OA为半径的圆的面积=π•a2=πa2,∴阴影部分的面积=4πa2﹣πa2=3πa2,9 ∴任意抛出一个乒乓球,落在阴影区域的概率==.故选:B.9.【解答】解:∵一次函数y=﹣3x+b和y=kx+1的图象交点为(3,4),∴当x≥3时,kx+1≥﹣3x+b,∴不等式kx+1≥﹣3x+b的解集为x≥3.故选:A.10.【解答】解:设B点坐标为(x,y),根据题意得x2+y2=32,x+y=8,∴(x+y)2=64,∴x2+2xy+y2=64,即32+2xy=64,∴xy=16,∴反比例函数的解析式为y=.故选:B.二.填空题(共8小题)11.【解答】解:4400000000=4.4×109.故答案为:4.4×10912.【解答】解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)213.【解答】解:设袋子中白球的个数为x,根据题意,得:=0.6,解得:x=24,经检验:x=24是分式方程的解,所以袋子中白球的个数是24,故答案为:24.10 14.【解答】解:这次定点投篮的平均成绩=(7×2+10×2+11)÷5=7,故答案为:7.15.【解答】解:由题意可知:△<0,∴16﹣4×(4﹣m)<0,∴m<0故答案为:m<0.16.【解答】解:,①﹣②×2,得(a+4)y=16,解得,∵为正整数,且a为非负整数,∴a+4≥4且为整数,∴a+4=4,8,16,即a=0,4,12,故答案为0或4或12.17.【解答】解:以原点O为为位似中心,将正方形ABCD放大为正方形A′B′C′D′,点B的坐标为(﹣1,0).点B′的坐标为(2,0),∴正方形ABCD与正方形A′B′C′D′的相似比为1:2,∵点A的坐标为(﹣2,0),∴点A′的坐标为(4,0),∴A′B′=2,∴OA′=4,∵四边形A′B′C′D′是正方形,∴A′D′=A′B′=2,∴点D′的坐标为(4,﹣2),故答案为:(4,﹣2).18.【解答】解:如图,取BC中点N,连接NM,将线段BD绕B点逆时针旋转120°,得到线段BG,连接DG.∵△ABD是等边三角形,DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴∠ADE=∠AED,∴AD=AE,BD=EC,∵BD=BG,CE=CF,BN=CN,∴NG=FN,∵DM=MF,∴MN=DG,MN∥DG,∠MNF=∠G=30°,易知点M的运动轨迹为线段MN,当点D与A重合时,易知DG=2•AB•cos30°=6,∴MN=DG=3,故答案为3.三.解答题(共8小题)19.【解答】解:原式=÷﹣=•﹣=﹣=,∵a=1+3﹣1=3,∴原式==﹣.20.【解答】解:(1)陈老师一共调查学生:(2+1)÷15%=20(名);故答案为:20.(2)C类学生人数:20×25%=5(名),C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),×360°=36°,补充条形统计图如图,故答案为:36;(3)解法二:列表如下,A类学生中的两名女生分别记为A1和A2,女A1 女A2 男A男D(女A1,男D)(女A2,男D)(男A,男D)女D(女A1,女D)(女A2,女D)(男A,女D)共有6种等可能的结果,其中,一男一女的有3种,所以所选两名学生中恰好是一名男生和一名女生的概率为=.21.【解答】证明:(1)∵ABCD为矩形,∴AD∥BC,AD=BC.∵DE=BF,∴AD+DE=BC+FB,即AE=FC.又∵AE∥FC,∴四边形AECF是平行四边形.(2)∵ABCD为矩形,∴∠CDE=90°.∴CE===5.∵四边形AECF是平行四边形,∴AF=CE=5.又∵AD=5,∴AD=AF.∴∠AFD=∠ADF.∵AD∥FC,∴∠ADF=∠DFC.∴∠AFD=∠DFC.∴FD平分∠AFC.22.【解答】(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.23.【解答】解:(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=12.∴AB=BD+AD=(5+5)km;答:A、B两观景台之间的距离为=(5+5)km;(2)如图,过点B作BF⊥AC于点F,则∠BAP=30°,∵AB=(5+5),∴BF=AB=(+)km.答:观测站B到射线AP的最短距离为(+)km.24.【解答】解:(1)设每件文具的销售价格应定为x元,根据题意,得:(x﹣20)[250﹣10(x﹣25)]=1440,解得:x1=44,x2=26,∵要让利给顾客,∴x=26,答:每件文具的销售价格应定为26元;(2)由题意得:W=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000∵,∴45≤x≤49,∴W=﹣10(x﹣35)2+2250 (45≤x≤49);②W=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵﹣10<0,抛物线的对称轴为直线x=35∴抛物线开口向下,在对称轴的右侧,W随x的增大而减小∴当x=45时,W取最大值为1250.答:当销售价格定为45元时,该文具每天的销售利润最大,最大利润为1250元.25.【解答】(1)证明:连结AC,如图①,∵△AOB≌△COD,∴∠1=∠2,OC=OA,CD=AB,∵OC=OA,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠ECA=∠EAC,∴EC=EA,∴EC﹣CD=EA﹣AB,即DE=BE;(2)解:如图②,在△ECB和△EAD中,∴△ECB≌△EAD,∴AD=BC,∠ECB=∠EAD,∵∠AEC=90°,而点F为BC的中点,∴EF=FC=FB=BC,∴EF=AD,∵FC=FE,∴∠FCE=∠FEC,而∠FEC+∠FEA=90°,∴∠EAD+∠FEA=90°,∴EF⊥AD;故答案为EF=AD,EF⊥AD;(3)解:(2)中的结论成立.理由如下:延长CE到G使EG=CE,AD与BG相交于M,∵点F为BC的中点,∴EF为△CBG的中位线,∴EF∥BG,EF=BG,∵图②中的线段EB,ED同时绕点E顺时针方向旋转到图③所示位置,∴∠CED=∠AEB,BE=DE,∴∠CED+∠CEA=∠AEB+∠AEG,即∠BEG=∠AED,在△AED和△GEB中,∴△AED≌△GEB,∴AD=GB,∠DAE=∠G,∴EF=AD,∵∠BHA=∠EHG,∴∠AMH=∠GEH=90°,∴AD⊥BG,∴AD⊥EF.26.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S=EF•OB=(﹣m2+3m)×3=﹣(m﹣)2+.当m=时,S最大=.此时,点E的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n=﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n=.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),。

辽宁省铁岭市2020年中考数学试卷C卷

辽宁省铁岭市2020年中考数学试卷C卷

辽宁省铁岭市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·自贡期末) 下列各式错误的是()A . |- |=B . -的相反数是C . -的倒数是-D . -<-2. (2分)(2019·宁波模拟) 2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A . 1.32×109B . 1.32×108C . 1.32×107D . 1.32×1063. (2分)(2020·广西模拟) 下图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .4. (2分)(2011·泰州) 计算2a2•a3的结果是()A . 2a5B . 2a6C . 4a5D . 4a65. (2分) (2019八上·江津期中) 如果一个正多边形的一个内角是144°,则这个多边形是()A . 正十边形B . 正九边形C . 正八边形D . 正七边形6. (2分) (2019七下·宿豫期中) 如图,有一块含有角的直角三角板的两个顶点放在直尺的对边上.如果,那么的度数是()A .B .C .D .7. (2分)(2018·遵义) 如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A . x>2B . x<2C . x≥2D . x≤28. (2分)(2017·新泰模拟) 如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE,AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共8题;共12分)9. (1分) (2016九上·平凉期中) 要使二次根式有意义,字母x必须满足的条件是________10. (1分)(2020·许昌模拟) 在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有________个11. (1分) (2018九上·青浦期末) 如果关于的一元二次方程没有实数根,那么的取值范围是________.12. (5分)(2020·北京模拟) 如图,在平面直角坐标系中,,以为一边,在第一象限作菱形,并使,再以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,,,则过点,,的圆的圆心坐标为________.13. (1分) (2019九上·南岗期末) 已知扇形的弧长为4π,圆心角为120°,则它的半径为________.14. (1分)(2013·嘉兴) 杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.15. (1分)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有________个点.16. (1分) (2017七下·钦州期末) 如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.则∠EDF的度数是________.三、解答题 (共10题;共92分)17. (5分)(2012·辽阳) 先化简,再求值:,其中x= .18. (5分)(2019·抚顺模拟) 在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣5,1),B(﹣1,5),C(﹣2,2),将△ABC绕原点顺时针旋转90°得△A1B1C1 ,△A1B1C1与△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2;(2)sin∠CAB=________;(3)△ABC与△A2B2C2组成的图形是否是轴对称图形?若是轴对称图形,请直接写出对称轴所在的直线解析式.19. (16分)(2017·个旧模拟) 某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:用户季度用水量频数分布表平均用水量(吨)频数频率3<x≤6100.16<x≤9m0.29<x≤12360.3612<x≤1525n15<x≤1890.09请根据上面的统计图表,解答下列问题:(1)在频数分布表中:m=________,n=________;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?20. (5分) (2016九上·石景山期末) 中秋节来临,小红家自己制作月饼.小红做了三个月饼,1个芝麻馅,2个豆沙馅;小红的爸爸做了两个月饼,1个芝麻馅,1个豆沙馅(除馅料不同,其它都相同).做好后他们请奶奶品尝月饼,奶奶从小红做的月饼中拿了一个,从小红爸爸做的月饼中拿了一个.请利用列表或画树状图的方法求奶奶拿到的月饼都是豆沙馅的概率.21. (10分)(2017·北仑模拟) 已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= ,直线AC解析式为y2=ax+b.(1)求反比例函数解析式;(2)当y1<y2时,求x的取值范围;(3)求△CDE的面积.22. (5分)如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)23. (10分) (2018九下·盐都模拟) 有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)在Rt△ABC 中,∠ACB=90°,若∠A 为智慧角,则∠B 的度数为________;(2)如图①,在△ABC 中,∠A=45°,∠B=30°,求证:△ABC 是智慧三角形;(3)如图②,△ABC 是智慧三角形,BC 为智慧边,∠B 为智慧角,A(3,0),点 B,C 在函数 y=(x >0)的图像上,点 C 在点 B 的上方,且点 B 的纵坐标为.当△ABC是直角三角形时,求 k 的值.24. (15分)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y (元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系。

2020年辽宁省铁岭市中考数学试题(解析版)

2020年辽宁省铁岭市中考数学试题(解析版)

2020年辽宁省铁岭市中考数学试卷一、选择题(本大题共8小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.22.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b63.(3分)如图,几何体的左视图是()A.B.C.D.4.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.5.(3分)如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使P A+PC =BC,那么符合要求的作图痕迹是()A.B.C.D.6.(3分)如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),则不等式x>的解集为()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>27.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣8.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(﹣1,0)和B (3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)我国首艘国产航母排水量约为65000吨,将65000用科学记数法记为.10.(3分)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.11.(3分)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.12.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,且点D,E分别在边AB,AC上,则的值为.13.(3分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长.14.(3分)如图,已知▱ABCD的顶点A的坐标为(0,4),顶点B、D分别在x轴和直线y =﹣3上,则对角线AC的最小值是.三、解答题(本大题共6小题,共分.解答应写出必要的文字说明、证明过程或演算步骤)15.如图所示,某海盗船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处使,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,求出此时海监船与岛屿P之间的距离(即PC的长,结果精确到0.1)(参考数据:≈1.732,≈1.414)16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧)作BC ⊥y轴于点C,连结AB,AC.若△ABC的面积为6,求点B的坐标.17.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本,且不高于100元.(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?18.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D 作DE⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF与EG的数量关系,并说明理由.19.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.20.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与BC相交于点E,与x轴交于点H,连接PB.(1)求该抛物线的解析式;(2)抛物线上存在一点G,使∠GBA+∠PBE=45°,请求出点G的坐标;(3)抛物线上是否存在一点Q,使△QEB与△PEB的面积相等,若存在,请直接写出点Q的坐标;若不存在,说明理由.2020年辽宁省铁岭市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.3.(3分)如图,几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形,矩形的中间是两条横着的虚线,故选:C.4.(3分)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的盒子中装有2个白球,6个红球,共8个,摸到红球的概率为:=.故选:A.5.(3分)如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使P A+PC =BC,那么符合要求的作图痕迹是()A.B.C.D.【分析】由PB+PC=BC和P A+PC=BC易得P A=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.6.(3分)如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),则不等式x>的解集为()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴B(﹣2,﹣2),观察函数图象,发现:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象的上方,∴不等式x>的解集为是﹣2<x<0或x>2,故选:D.7.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣【分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=BC=2,图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣,故选:A.8.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(﹣1,0)和B (3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④【分析】①根据二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(﹣1,0)和B (3,0),可得对称轴为:x=1,所以b=﹣2a,进而可以判断①;②观察函数图象可得,当﹣1≤x≤3时,y>0,进而可以判断②;③根据抛物线开口向下,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小即可判断③;④观察函数图象可得当x=﹣1时,y=0,再根据b=﹣2a,即可判断④.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),∴对称轴为:x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,所以①正确;②观察函数图象可知:当﹣1≤x≤3时,y>0,所以②错误;③∵抛物线开口向下,当x>1,x1<x2时,y随x的增大而减小,∴y1>y2;当x<1,x1<x2时,y随x的增大而增大,∴y1<y2;∴③错误;④当x=﹣1时,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,∴④正确.所以正确的有①④.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)我国首艘国产航母排水量约为65000吨,将65000用科学记数法记为 6.5×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65000=6.5×104,故答案为6.5×104,10.(3分)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【分析】直接利用根的判别式得出△=b2﹣4ac=4﹣4k>0进而求出答案.【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.11.(3分)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=8cm.【分析】利用垂径定理得到CE=DE=CD=4,然后利用勾股定理计算出OE,再计算AO+OE即可.【解答】解:∵CD⊥OB,∴CE=DE=CD=4,在Rt△OCE中,OE==3,∴AE=AO+OE=5+3=8(cm).故答案为8.12.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,且点D,E分别在边AB,AC上,则的值为﹣1.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出AD=AB,结合BD=AB﹣AD可得出BD=AB,进而可得出=﹣1.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴====,∴AD=AB,∴BD=AB﹣AD=AB,∴==﹣1.故答案为:﹣1.13.(3分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长.【分析】过A点作AD⊥BC于点D,先根据题目中的数据求得BD,再解直角三角形求得结果.【解答】解:过A点作AD⊥BC于点D,∵BC=3+0.3×2=3.6(m),∴BD==1.8m,∴=(m).故答案为:.14.(3分)如图,已知▱ABCD的顶点A的坐标为(0,4),顶点B、D分别在x轴和直线y =﹣3上,则对角线AC的最小值是11.【分析】设点C坐标为(a,b),由平行四边形的性质和中点坐标公式可求b=﹣7,可得点C在直线y=﹣7上运动,由垂线段最短可求解.【解答】解:设点C坐标为(a,b),∵顶点B、D分别在x轴和直线y=﹣3上,∴点B,点D的纵坐标分别为0,﹣3,∵四边形ABCD是平行四边形,∴AC与BD互相平分,∴,∴b=﹣7,∴点C在直线y=﹣7上运动,∴当AC⊥直线y=﹣7时,AC的长度有最小值,∴对角线AC的最小值=4﹣(﹣7)=11,故答案为:11.三、解答题(本大题共6小题,共分.解答应写出必要的文字说明、证明过程或演算步骤)15.如图所示,某海盗船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处使,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,求出此时海监船与岛屿P之间的距离(即PC的长,结果精确到0.1)(参考数据:≈1.732,≈1.414)【分析】首先证明PB=BC,推出∠C=30°,可得PC=2P A,求出P A即可解决问题.【解答】解:在Rt△P AB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,∴PC=2×20×≈69.3(海里).16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧)作BC ⊥y轴于点C,连结AB,AC.若△ABC的面积为6,求点B的坐标.【分析】首先根据点A的坐标求得函数的解析式,然后作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值.【解答】解:由题意得,k=xy=2×3=6∴反比例函数的解析式为:y=.设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y=的图象经过点B(a,b)∴b=,∴AD=3﹣.∴S△ABC=BC•AD=a(3﹣)=6,解得a=6,∴b==1∴B(6,1).17.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本,且不高于100元.(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500所以y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;即销售单价为80元时,每天的销售利润最大,最大利润是4500元.18.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D 作DE⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF与EG的数量关系,并说明理由.【分析】(1)根据直角三角形斜边中线的性质得出CD=BD=AD,即可得出∠ACD=∠A=30°,进而根据三角形外角的性质得到∠EDA=30°;(2)解直角三角形求得=,然后通过证得△FCD∽GED,求得FC=GE.【解答】(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.19.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.20.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与BC相交于点E,与x轴交于点H,连接PB.(1)求该抛物线的解析式;(2)抛物线上存在一点G,使∠GBA+∠PBE=45°,请求出点G的坐标;(3)抛物线上是否存在一点Q,使△QEB与△PEB的面积相等,若存在,请直接写出点Q的坐标;若不存在,说明理由.【分析】(1)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式;(2)分两种情况讨论,由锐角三角函数可求OF的长,可求点F坐标,可得BF解析式,联立方程组可求点G坐标;(3)由等底等高的两个三角形的面积相等,可求点Q的坐标.【解答】解:(1)把A(﹣1,0),B(3,0),C(0,3)三点代入抛物线解析式,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4,则顶点P(1,4),对称轴为直线x=1,∴H(1,0),∴PH=4,BH=2,∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,∴点E(1,2),∵B(3,0),C(0,3),∴OB=OC,∴∠CBO=45°,若点G在直线AB的上方时,∵PH⊥AB,∠CBO=45°,∴∠HEB=45°,∴∠PBE+∠BPE=45°,∵∠GBA+∠PBE=45°,∴∠BPE=∠GBA,∴tan∠BPH=tan∠GBA=,∴,∴OF=,∴点F(0,),∴直线BF解析式为:y=﹣x+,联立方程组可得:,解得:或,∴点G的坐标为(﹣,);若点G在直线AB的下方时,由对称性可得:点F'(0,﹣),∴直线BF解析式为:y=x﹣,联立方程组可得:,解得:或,∴点G'的坐标为(﹣,﹣),综上所述:点G的坐标为(﹣,)或(﹣,﹣);(3)存在,∵点E(1,2),顶点P(1,4),∴PE=2,PH=4,∴EH=2=PE,如图2,过点P作PQ∥BC,交抛物线于Q,此时△QEB与△PEB的面积相等,∵PN∥BC,点P坐标(1,4),直线BC解析式为y=﹣x+3,∴PQ解析式为y=﹣x+5,联立方程组得:,解得:或,∴点Q(2,3),过点H作HQ'∥BC,交抛物线于Q'、Q'',∴PQ∥BC∥HQ',∵PE=EH,∴PQ与BC之间的距离=BC与HQ'之间的距离,∴△QEB与△PEB的面积相等,∵PQ∥BC,点H(1,0),直线BC解析式为y=﹣x+3,∴直线Q'H的解析式为:y=﹣x+1,联立方程组得:,解得:或,∴点Q的坐标为(,)或(,),综上所述:点Q的坐标为(2,3)或(,)或(,).。

辽宁省铁岭市2020版中考数学试卷(II)卷

辽宁省铁岭市2020版中考数学试卷(II)卷

辽宁省铁岭市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2016七上·蕲春期中) 下列各数中互为相反数的是()A . ﹣25与(﹣5)2B . 7与|﹣7|C . (﹣2)2与4D . 3与2. (2分)在函数中,自变量x的取值范围是()A . x≠4B . x≤4C . x<4D . 1<x<43. (2分)若锐角α满足sinα>,且cosα>,则α的范围是()A . 0°<α<30°B . 30°<α<60°C . 60°<α<90°D . 45°<α<90°4. (2分)(2019·金华模拟) 某中学在举行“弘扬中华传统文化读书月”活动结束后,对八年级(1)班40位学生所阅读书籍数量情况的统计结果如表所示:阅读书籍数量(单位:本)1233以上人数(单位:人)121693这组数据的中位数和众数分别是()A . 2,2B . 1,2C . 3,2D . 2,15. (2分)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A . 等边三角形B . 矩形C . 菱形D . 正方形6. (2分)(2018·福田模拟) 下列命题错误的是()A . 经过三个点一定可以作圆B . 同圆或等圆中,相等的圆心角所对的弧相等C . 三角形的外心到三角形各顶点的距离相等D . 经过切点且垂直于切线的直线必经过圆心7. (2分)我国南方一些地区的农民戴的斗笠是圆锥形,已知圆锥的高为40cm,底面半径为30cm,要在斗笠的外表面刷上油漆,则刷漆部分的面积为()A . 1500πcm2B . 2000πcm2C . 1200πcm2D . 1600πcm28. (2分) (2016八下·宜昌期中) 在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A . 1个B . 2个C . 3个D . 4个9. (2分)在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是()A .B .C .D .10. (2分)如图,△ABC是等边三角形,D为BC边上的点,∠BAC=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A . 75°B . 60°C . 45°D . 15°二、填空题: (共8题;共8分)11. (1分)分解因式:m(x﹣y)+n(y﹣x)=________ .12. (1分)(2017·湘潭) 截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学记数法表示为________.13. (1分) (2018八上·沁阳期末) 若关于x的分式方程无解,则实数m=________.14. (1分)下表反映的是我们目前学过的函数(不是二次函数)图象上点的横坐标x与纵坐标y之间的对应关系:x346y43m则m的值可以是________ .15. (1分) (2015八下·萧山期中) 请把命题“有两个角相等的三角形是等腰三角形”改写成“如果…,那么…”的表述形式:________.16. (1分) (2019八下·乌兰浩特期中) 已知E、F、G、H分别是矩形ABCD的边AB、BC、CD、DA的中点,AB=8,BC=6,则四边形EFGH的面积为________.17. (1分)如图,在▱ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________ .(结果保留π)18. (1分)在平面直角坐标系中,点A的坐标为(3,0),⊙A的半径为1,若直线y=mx﹣m(m≠0)与⊙A 相切,则m的值为________.三、解答题: (共10题;共93分)19. (5分)(2017·磴口模拟) 计算()﹣1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |20. (10分) (2017七下·长春期末) 解下列不等式或等式组:(1)(2)21. (5分)如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.22. (10分)(2015·丽水) 如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.23. (8分) (2016九下·津南期中) 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是________,并补全频数分布直方图;(2) C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?24. (5分)(2018·吉林) 一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.25. (10分)(2017·集宁模拟) 我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?26. (15分)(2017·薛城模拟) 如图(1),E是正方形ABCD的边BC上的一个点(E与B,C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当 = 时,求sin∠CFE的值.27. (15分)(2017·邵阳) 如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.(1)【问题引入】若点O是AC的中点, = ,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.(2)若点O是AC上任意一点(不与A,C重合),求证:• • =1;(3)【拓展应用】如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若 = , = ,求的值.28. (10分)(2018·邗江模拟) 如图,□ABCD的边AD与经过A、B、C三点的⊙O相切.(1)求证:AB=AC;(2)如图2,延长DC交⊙O于点E,连接BE,sin∠E=,⊙O半径为13,求□ABCD 的面积.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共10题;共93分)19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年辽宁省铁岭市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.−2的倒数是()A. −2B. −12C. 12D. 22.下列运算正确的是()A. 2a+3a=5a2B. (a+2b)2=a2+4b2C. a2×a3=a6D. (−ab2)3=−a3b63.如图所示几何体的左视图是()A. B. C. D.4.一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A. 34B. 13C. 15D. 385.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B.C. D.6.如图,正比例函数y=x与反比例函数y=4x的图象交于A、B两点,其中A(2,2),则不等式x>4x的解集为()A. x>2B. x<−2C. −2<x<0或0<x<2D. −2<x<0或x>27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A. 43π−√3 B. 23π−√32C. 13π−√32D. 13π−√38.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(−1,0)和B(3,0),下列结论:①2a+b=0;②当−1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A. ①②④B. ①④C. ①②③D. ①③④二、填空题(本大题共6小题,共18.0分)9.我国首艘国产航母排水量约为65000吨,将65000用科学记数法记为______.10.若一元二次方程x2−2x+k=0有两个不相等的实数根,则k的取值范围是______.11.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=______cm.12.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,且点D,E分别在边AB,AC上,则BD的值为______.AD13.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长______.14.如图,已知▱ABCD的顶点A的坐标为(0,4),顶点B、D分别在x轴和直线y=−3上,则对角线AC的最小值是______.三、解答题(本大题共6小题,共48.0分)15.如图所示,某海盗船以20海里/小时的速度在某海域执行巡航任务,当海盗船由西向东航行至A处使,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,求出此时海监船与岛屿P之间的距离(即PC的长,结果精确到0.1)(参考数据:√3≈1.732,√2≈1.414)16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧)作BC⊥y轴于点C,连结AB,AC.若△ABC的面积为6,求点B的坐标.17.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?18.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF与EG的数量关系,并说明理由.19.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4√5,求MC的长.20.如图,抛物线y=ax2+bx+c经过A(−1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与BC相交于点E,与x轴交于点H,连接PB.(1)求该抛物线的解析式;(2)抛物线上存在一点G,使∠GBA+∠PBE=45°,请求出点G的坐标;(3)抛物线上是否存在一点Q,使△QEB与△PEB的面积相等,若存在,请直接写出点Q的坐标;若不存在,说明理由.答案和解析1.【答案】B)=1.【解析】解:∵−2×(−12∴−2的倒数是−1,2故选:B.根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.【答案】D【解析】【分析】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2·a3=a5,故此选项错误;D、(−ab2)3=−a3b6,正确.故选:D.3.【答案】C【解析】解:从左边看是一个矩形,矩形的中间是两条横着的虚线,故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.【答案】A【解析】解:根据题意可得:一个不透明的盒子中装有2个白球,6个红球,共8个,摸到红球的概率为:68=34.故选:A.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题考查可能性的大小,用到的知识点是概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.【答案】C【解析】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.6.【答案】D【解析】解:∵正比例函数y=x与反比例函数y=4x的图象交于A、B两点,其中A(2,2),∴B(−2,−2),观察函数图象,发现:当−2<x<0或x>2时,正比例函数图象在反比例函数图象的上方,∴不等式x>4x的解集为是−2<x<0或x>2,故选:D.根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.7.【答案】A【解析】解:如下图,过点O作OE⊥CD于点E,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∠OCD=30°,∴OC=OD=2,∴OE=1,∴CE=√3,∴CD=2CE=2√3,图中阴影部分的面积=S扇形COD −S△COD=120⋅π×22360−12×2√3×1=4π3−√3,故选:A.根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.8.【答案】B【解析】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(−1,0)和B(3,0),∴对称轴为:x=1,∴−b2a=1,∴b=−2a,∴2a+b=0,所以①正确;②观察函数图象可知:当−1≤x≤3时,y>0,所以②错误;③∵抛物线开口向下,当x>1,x1<x2时,y随x的增大而减小,∴y1>y2;当x<1,x1<x2时,y随x的增大而增大,∴y1<y2;∴③错误;④当x=−1时,y=0,∴a−b+c=0,∵b=−2a,∴3a+c=0,∴④正确.所以正确的有①④.故选:B.①根据二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(−1,0)和B(3,0),可得对称轴为:x=1,所以b=−2a,进而可以判断①;②观察函数图象可得,当−1≤x≤3时,y>0,进而可以判断②;③根据抛物线开口向下,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小即可判断③;④观察函数图象可得当x=−1时,y=0,再根据b=−2a,即可判断④.本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x轴的交点,解决本题的关键是掌握二次函数的图象和性质.9.【答案】6.5×104【解析】解:65000=6.5×104,故答案为6.5×104,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】k<1【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【解答】解:∵一元二次方程x2−2x+k=0有两个不相等的实数根,∴△=b2−4ac=4−4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.11.【答案】8【解析】解:∵CD⊥OB,CD=4,∴CE=DE=12在Rt△OCE中,OE=2−42=3,∴AE=AO+OE=5+3=8(cm).故答案为8.CD=4,然后利用勾股定理计算出OE,再计算AO+OE 利用垂径定理得到CE=DE=12即可.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.12.【答案】√2−1【解析】解:∵DE//BC,∴△ADE∽△ABC,∴ADAB =√S△ADES△ABC=√S△ADES△ADE+S四边形BDEC=√12=√22,∴AD=√22AB,∴BD=AB−AD=2−√22AB,∴BDAD =2−√22AB√22AB=√2−1.故答案为:√2−1.由DE//BC可得出△ADE∽△ABC,利用相似三角形的性质可得出AD=√22AB,结合BD=AB−AD可得出BD=2−√22AB,进而可得出BDAD=√2−1.本题考查了相似三角形的判定与性质,利用相似三角形的面积比等于相似比的平方,找出AD=√22AB是解题的关键.13.【答案】95cosαm【解析】解:过A点作AD⊥BC于点D,∵BC=3+0.3×2=3.6(m),∴BD=12BC=1.8m,∴AB=BDcosα= 1.8cosα=95cosα(m).故答案为:95cosαm.过A点作AD⊥BC于点D,先根据题目中的数据求得BD,再解直角三角形求得结果.本题主要考查了解直角三角形,矩形的性质,构造直角三角形是解题关键.14.【答案】11【解析】解:设点C坐标为(a,b),∵顶点B、D分别在x轴和直线y=−3上,∴点B,点D的纵坐标分别为0,−3,∵四边形ABCD是平行四边形,∴AC与BD互相平分,∴−3+02=4+b2,∴b=−7,∴点C在直线y=−7上运动,∴当AC⊥直线y=−7时,AC的长度有最小值,∴对角线AC的最小值=4−(−7)=11,故答案为:11.设点C坐标为(a,b),由平行四边形的性质和中点坐标公式可求b=−7,可得点C在直线y=−7上运动,由垂线段最短可求解.本题考查了平行四边形的性质,垂线段最短,中点坐标公式,确定点C的运动轨迹是本题的关键.15.【答案】解:由题可知在Rt△PAB中,∠APB=30°,AB=20(海里),BC=40(海里),∴PB=2AB=40(海里),∴PB=BC=40(海里),∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB⋅tan60°=20√3(海里),∴PC=2×20√3≈69.3(海里).【解析】本题考查解直角三角形的应用−方向角问题,解题的关键是证明PB=BC,推出∠C=30°.首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.16.【答案】解:由题意得,k=xy=2×3=6∴反比例函数的解析式为:y=6x.设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y=6x的图象经过点B(a,b)∴b=6a,∴AD=3−6a.∴S△ABC=12BC⋅AD=12a(3−6a)=6,解得a=6,∴b=6a=1∴B(6,1).【解析】首先根据点A的坐标求得函数的解析式,然后作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值.本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,熟练掌握待定系数法求函数的解析式是解题的关键.17.【答案】解:(1)y=(x−50)[50+5(100−x)]=(x−50)(−5x+550)=−5x2+800x−27500所以y=−5x2+800x−27500(50≤x≤100);(2)y=−5x2+800x−27500=−5(x−80)2+4500∵a=−5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;即销售单价为80元时,每天的销售利润最大,最大利润是4500元.【解析】(1)根据“利润=(售价−成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.此题考查二次函数的实际应用.为数学建模题,借助二次函数解决实际问题.18.【答案】(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=DECD,∴DECD =√33,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴GEFC =DECD=√33,∴FC=√3GE.【解析】(1)根据直角三角形斜边中线的性质得出CD=BD=AD,即可得出∠ACD=∠A=30°,进而根据三角形外角的性质得到∠EDA=30°;(2)解直角三角形求得DECD =√33,然后通过证得△FCD∽GED,求得FC=√3GE.本题考查了直角三角形斜边中线的性质,含30°角的直角三角形的性质,等边三角形的判定和性质,三角形外角的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.19.【答案】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4√5,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=√102−(4√5)2=2√5,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴ODBC =AOAC,即2√5=4√5,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=154,即MC=154.【解析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.20.【答案】解:(1)把A(−1,0),B(3,0),C(0,3)三点代入抛物线解析式{a −b +c =09a +3b +c =0c =3,即得:{a =−1b =2c =3,∴该抛物线的解析式为y =−x 2+2x +3;(2)由y =−x 2+2x +3=−(x −1)2+4,则顶点P(1,4),对称轴为直线x =1,∴H(1,0),∴PH =4,BH =2,∵B(3,0),C(0,3),∴直线BC 解析式为y =−x +3,∴点E(1,2),∵B(3,0),C(0,3),∴OB =OC ,∴∠CBO =45°,若点G 在直线AB 的上方时,∵PH ⊥AB ,∠CBO =45°,∴∠HEB =45°,∴∠PBE +∠BPE =45°,∵∠GBA +∠PBE =45°,∴∠BPE =∠GBA ,∴tan∠BPH =tan∠GBA =BH PH =OFOB ,∴24=OF 3,∴OF =32, ∴点F(0,32),∴直线BF 解析式为:y =−12x +32,联立方程组可得:{y =−12x +32y =−x 2+2x +3, 解得:{x 1=3y 1=0或{x 2=−12y 2=74, ∴点G 的坐标为(−12,74);若点G 在直线AB 的下方时,由对称性可得:点F′(0,−32),∴直线BF 解析式为:y =12x −32,联立方程组可得:{y =12x −32y =−x 2+2x +3, 解得:{x 1=−32y 1=−94或{x 2=3y 2=0, ∴点G′的坐标为(−32,−94),综上所述:点G 的坐标为(−12,74)或(−32,−94);(3)存在,∵点E(1,2),顶点P(1,4),∴PE =2,PH =4,∴EH =2=PE ,如图2,过点P 作PQ//BC ,交抛物线于Q ,此时△QEB 与△PEB 的面积相等,∵PN//BC ,点P 坐标(1,4),直线BC 解析式为y =−x +3,∴PQ 解析式为y =−x +5,联立方程组得:{y =−x +5y =−x 2+2x +3, 解得:{x 1=1y 1=4或{x 2=2y 2=3, ∴点Q(2,3),过点H 作HQ′//BC ,交抛物线于Q′,∴PQ//BC//HQ′,∵PE =EH ,∴PQ 与BC 之间的距离=BC 与HQ′之间的距离,∴△QEB 与△PEB 的面积相等,∵PQ//BC ,点H(1,0),直线BC 解析式为y =−x +3,∴直线Q′H 的解析式为:y =−x +1,联立方程组得:{y =−x +1y =−x 2+2x +3, 解得:{x 1=3−√172y 1=−1+√172或{x 2=3+√172y 2=−1−√172,∴点Q的坐标为(3−√172,−1+√172)或(3+√172,−1−√172),综上所述:点Q的坐标为(2,3)或(3−√172,−1+√172)或(3+√172,−1−√172).【解析】(1)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式;(2)分两种情况讨论,由锐角三角函数可求OF的长,可求点F坐标,可得BF解析式,联立方程组可求点G坐标;(3)由等底等高的两个三角形的面积相等,可求点Q的坐标.本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,三角形的面积公式,一次函数的性质,联立方程组求点的坐标是本题的关键.。

相关文档
最新文档