高二数学两个计数原理
2_两个计数原理及其综合应用(
第三类:A,C,E种3种植物,有4×3×2=24(种)种法,这时B,
D , F 各有 2 种种法,一共有 24×23 = 192( 种 ) 种法.由分类加法计 数原理知,共有108+432+192=732(种)种法. 答案 732
=45(种)不同的取法; 10×9 第二类:两个奇数相加,由分步乘法计数原理,共有 = 2 45(种)不同的取法. 由分类加法计数原理得,共有 45+45=90(种)不同取法.
【练习2】
(1)4 名同学选报跑步、跳高、跳远三个项目,每
人报一项,共有多少种报名方法? (2)4 名同学争夺跑步、跳高、跳远三项冠军,共 有多少种可能的结果? 解 (1) 34=81 (2) 43=64
(2)有3名学生分配到某工厂的5个车间去参加社
会实践,有多少种不同的分配方案?
【例2】 由1,2,3,4可以组成多少个自然数(数 字可以重复,最多只能是四位数)?
【练习 1】 从 1~20 共 20 个整数中任取两个相加,使其和 为偶数的不同取法共有多少种?
解 10×9 第一类: 两个偶数相加, 由分步乘法计数原理, 共有 2
7、用0,1,2,……,9可以组成多少个无重复数字的4位偶数;
例3用计数原理求72的正约数 (包括 1和 72) 共有多少个? 72 = 23×32 , ∴ 2m·3n(0≤m≤3,0≤n≤2 , m ,
n∈N) 都是 72 的正约数, m 的取法有 4 种, n
的取法有3种,共有4×3=12(种).
当 A 与 E 种植相同植物或不同植物时 F 的种法有区别, 不全是2种. [正解] 分3类考虑,第一类:A,C,E种同一种植物,有4种种法, 当A,C,E种好后,B,D,F从余下3种植物中选1种,各有3种种
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
1.1两个基本原理(2)
二、两个原理的联系、区别:
分类计数原理 分步计数原理
联系 都是研究完成一件事的不同方法的种数的问题
完成一件事,共有n类 完成一件事,共分n个 区别1 办法,关键词“分类” 步骤,关键词“分步”
每类办法相互独立, 各步骤中的方法相互依 每类方法都能独立地 存,只有各个步骤都完 区别2 完成这件事情 成才算完成这件事
三、例题分析
1.有386,486,586型电脑各一台,A、B、C、D四 名操作人员的技术等次各不相同,A、B会操作三种 型号的电脑,C不能操作586,而D只会操作386,今 从这四名操_________种. 2.某市拟成立一个由6名大学生组成的社会调查小组, 并准备将这6个名额分配给本市的3所大学,要求每 所大学都有学生参加,则不同的名额分配方法共有 _______种
1.1 两个基本计数原理(2)
一、复习回顾两个基本计数原理
分类计数原理:完成一件事,有n类方式,在第1 类方式中有m1种不同的方法,在第2类方式中有 m2种不同的方法,……,在第n类方式中有mn种 不同的方法,那么完成这件事共有 N=m1+m2+…+mn种不同的方法。 分步计数原理:完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n有mn种不同的方法,那 么完成这件事共有N=m1×m2×…×mn种不同的 方法。
三、例题分析
3.现要排一份5天的值班表,每天有一个人值班,共 有5个人,每个人都可以值多天班或不值班,但相邻 两天不准由同一个人值班,问此值班表共有多少种 不同的排法? 4.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5) 的展开式中,有___ 项。 5.1800的正约数个数为_______。 6.有四位老师在同一年级的4个班级中,各教一班的 数学,在数学考试时,要求每位老师均不在本班监 考,则安排监考的方法总数是________.
高二数学两个基本原理
分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
; / 少儿作文加盟
;
,使得收敛送终,尽其子道”夏五月,诏曰“父子之亲,夫妇之道,天性也。虽有患祸,犹蒙死而存之。诚爱结於心,仁厚之至也,岂能违之哉。自今,子首匿父母、妻匿夫、孙匿大父母,皆勿坐。其父母匿子、夫匿妻、大父母匿孙,罪殊死,皆上请廷尉以闻”立广川惠王孙文为广川王。秋七月, 大司马霍禹谋反。诏曰“乃者,东织室令史张赦使魏郡豪李竟报冠阳侯霍云谋为大逆,朕以大将军故,抑而不扬,冀其自新。今大司马博陆侯禹与母宣成侯夫人显及从昆弟冠阳侯云、乐平侯山、诸姊妹婿度辽将军范明友、长信少府邓广汉、中郎将任胜、骑都尉赵平、长安男子冯殷等谋为大逆。显前 又使女侍医淳于衍进药杀共哀后,谋毒太子,欲危宗庙。逆乱不道,咸伏其辜。诸为霍氏所诖误未发觉在吏者,皆赦除之”八月已酉,皇后霍氏废。九月,诏曰“朕惟百姓失职不赡,遣使者循行郡国问民所疾苦。吏或营私烦扰,不顾厥咎,朕甚闵之。今年郡国颇被水灾,已振贷。盐,民之食,而贾 咸贵,众庶重困。其减天下盐贾”又曰“令甲,死者不可生,刑者不可息。此先帝之所重,而吏未称。今系者或以掠辜若饑寒瘐死狱中,何用心逆人道也。朕甚痛之。其令郡国岁上系囚以掠笞若瘐死者所坐名、县、爵、里,丞相、御史课殿最以闻”十二月,清河王年有罪,废迁房陵。元康元年春, 以杜东原上为初陵,更名杜县为杜陵。徙丞相、将军、列侯、吏二千石、訾百万者杜陵。三月,诏曰“乃者凤皇集泰山、陈留,甘露降未央宫。朕未能章先帝休烈,协宁百姓,承天顺地,调序四时,获蒙嘉瑞,赐兹祉福,夙夜兢兢,靡有骄色,内省匪解,永惟罔极。《书》不云乎
3.2-两个计数原理
4. 用 0,1,2,3,4 可以组成多少个无重复数字的 比 2 300 大的四位数?
解法:按千位是 2,3,4 分三类: 第一类:千位是 2 的有 2×3×2=12(个); 第二类:千位是 3 的有 4×3×2=24(个); 第三类:千位是 4 的有 4×3×2=24(个); 则由分类加法计数原理有 N=12+24+24=60(个).
例1.书架的第1层放有5本不同的数学书,第2层放有3 本不同的语文书,第3层放有2本不同的英语书。
(1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本不同的书,有多少 种不同的取法?
解:(2)从书架的第1、2、3层各取1本书,可 分3个步骤完成:
第1步有5种方法;
第2步有3种方法;
分类计数原理
分步计数原理
完成一件事,共有n类 区别1 办法,关键词“分类”
完成一件事,共分n个 步骤,关键词“分步”
区别2
每类办法都能独立地完成 这件事情,它是独立的、 一次的、且每次得到的是 最后结果,只须一种方法 就可完成这件事。
每一步得到的只是中间结果, 任何一步都不能独立完成这件 事,缺少任何一步也不能完成 这件事,只有各个步骤都完成 了,才能完成这件事。
例2: 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:
(1)银行存折的四位密码? (2)四位数? (3)四位奇数?
(2)完成“组成无重复数字的四位数”这件事,可以分四个步 骤:
第一步 从1,2,3,4中选取一个数字做千位数字,有4 种 不同的选取方法;
第二步 从1,2,3,4中剩余的三个数字和0共四个数字中选取 一个数字做百位数字,有4种不同的选取方法;
第三步 从剩余的三个数字中选取一个数字做十位数字,有3种 不同的选取方法;
人教版高二数学选修2-3第一章计数原理《《计数原理》小结与复习》
第一章 计数原理《计数原理》小结与复习班 :高二()班学号:姓名:一.知识点整理价:1、两个基本 数原理:( 1)分 数原理:达成一件事,有n 法 , 达成 件事共有 N=m +m+⋯+m种不一样的方法。
12n( 2)分步 数原理:达成一件事,需要分红n 个步 ,达成 件事有N=m × m ×⋯× m 种不一样的方法。
12n2、摆列( 1)摆列:一般地,从n 个不一样的元素中拿出m ( m n )个元素,并按必定的 序排成一列,叫做从n 个不一样元素中拿出 m 个元素的一个摆列。
( 2)摆列数公式:A n mn (n1) (n 2) (n m 1)n! ,(n m)!3、 合( 1) 合:一般地,从n 个不一样元素中拿出 m 个不一样元素并成一 ,叫做从n 个不一样元素中拿出 m 个不同元素的一个 合。
m( 2) 合数公式:C mn ( n 1)( n2)(nm 1) ,Cmn !nnmm !nm !( nm ) !( 3) 合数公式性 :m性 1: C n mC n n m性 2:C n k C n k 1 C n k 11推 1: C k 0 C k 1 1C k 2 2 C n t C n t 1推 2:C k kC k k 1 C k k 2C n k C n k 114、二 式定理:( 1)二 式定理: (a b)nC n 0a n C n 1a n 1 b C n 2a n2b 2C n r a n r b rC n n b n( 2)通 是睁开式的第,即:2、二 睁开式的特色:( 1) 数:共 n + 1 ;( 2)指数: a 按降 摆列, b 按升 摆列,每一 中a 、b 的指数和 n( 3)系数 : 第 r + 1 的二 式系数 Cr(r =0,1,2, ⋯, n )n二.稳固练习价: 1.( 西安 )4 个男生与 3 个女生站成一排,假如两头不站女生且3 个女生必 相 的排法有( ) 。
两个计数原理集体备课
课题《分类加法计数原理与分步乘法计数原理》新授课教学 目标 知识与技能① 理解分类加法计数原理与分步乘法计数原理; ② 会利用两个原理分析和解决一些简单的应用问题;过程与方法通过两个计数原理的学习,培养学生的归纳概括能力通过“自主、合作与探究”实现“一切以学生为中心”的理念。
感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
情感态度价值观 通过实例,激发学生对计数原理的好奇兴趣,引导学生从数学的角度发现和提出问题,正确使用数学语言表达问题、进行交流,形成一定的数学应用意识。
同时让学生在自主探索,合作交流中获得新知识,感受探索数学的乐趣和成功的体验,培养学生实事求是的科学态度,锲而不舍的探索精神重 点 分类计数原理(加法原理)与分步计数原理(乘法原理) 难 点 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教 学 过 程学法指导教材分析“加法原理与乘法原理”是在人们大量的实践经验的基础上归纳抽象出来的基本规律,具有广泛的应用性,是培养学生数学应用意识和实践能力的良好素材。
同时,也是推导排列数、组合数计算公式的理论依据。
正确使用2个基本原理的前提是使学生分清楚他们的使用条件:分类用加法原理、分步用乘法原理。
这2个原理也是帮助学生发展思维能力,培养学生周密思考、细心分析的良好习惯的好素材.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.是本部分内容的教学要求。
真题展示 :2012年高考数学按章节分类汇编(人教A 理:选修2-3)第一章计数原理一、选择题1 .(2012陕西理)两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A .10种B .15种C .20种D .30种 2 .(2012山东理)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( ) A .232 B .252 C .472 D .484 3 .(2012辽宁理)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!4 .(2012四川文)方程22ay bx c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( ) A .28条 B .32条 C .36条 D .48条 5 .(2012大纲文)6名选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有 ( ) A .240种 B .360种 C .480种 D .720种 6 .(2012新课标理)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种 D .8种 7 .(2012浙江理)若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种8.(2012四川理)方程22ay bx c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( )A .60条B .62条C .71条D .80条9.(2012湖北理)设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =( )A .0B .1C .11D .1210.(2012大纲理)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( )A .12种B .18种C . 24种D .36种11(2012北京理)从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24 B .18 C .12 D .6 12.(2012安徽理)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ( ) A .1或3 B .1或4 C .2或3 D .2或413.(2012湖南文)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______.课题 §1分类加法计数原理与分步乘法计数原理(一)班级授课(完成)时间教师(学生)教 学知识与技能 1.理解分类加法计数原理与分步乘法计数原理;2.能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原过程与方法 实例引入→说明原理→初步应用目 标 情感态度与价值观 体会理论与实际的结合是数学的来由和本质.重点 难点重点:初步理解分类计数原理(加法原理)与分步计数原理(乘法原理),并能根据具体的问题特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; 难点:根据具体的问题特征,正确选择分类加法原理或分步乘法原理解决一些简单的实际问题. 新知导学 备注1、阅读教材P3—P5页内容,回答问题: ①对问题1: 从天津到大连按交通工具可分____类方法.第一类方法, 乘飞机,有___ 种方法;第二类方法, 乘火车,有___ 种方法; 第三类方法, 乘汽车,有___ 种方法;第四类方法, 乘轮船,有_ __ 种方法;∴ 从天津到大连共有__________ 种方法. 每类方法中的每一种方法有什么特征?②对问题2:从A村到D村,须先从A村到B村,再从B村到C村,然后从C村到D村,整个行程有3个步骤: 第一步, 从A村到B村有_ __ 种方法;第二步, 从B村到C村有____种方法;第三步, 从C村到D村有____种方法;∴ 从A村到D村共有__________ 种方法. 上述每步的每种方法能否单独实现从A村到达D村的目的吗?③问题1、问题2的相同点是什么?不同点是什么?相同点:都是办了一件事情;不同点:一个分类加法,一个分步乘法2、两个基本计数原理: ①分类加法计数原理:完成一件事,可以有n 类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法……,在第n 类办法中有mn 种方法.那么,完成这件事共有N= 种方法(加法原理). 说明:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.②分步乘法计数原理:完成一件事要经过n 个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n 步有mn 种方法.那么完成这件事共有N= 种方法(乘法原理).说明:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.基础检测 备注1、完成一项工作,有两种方法,有5个人只会第一种方法,另外4个人只会第二种方法,从9个人中选1个人完成这项工作,一共有9种方法.2、在1,2,3,···,200中,能够被5整除的数共有40个.3、在平面直角坐标系中,确定若干点,点的横坐标取自集合P={1 ,2 ,3 },点的纵坐标取自集合Q={ 1 ,4 ,5 ,6 },这样的点有12 个.4、一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同,从两个口袋内分别取1个小球有20 种取法.5、一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成410个四位数号码.解:每个拨号盘上的数字有10种取法,根据分步计数原理,4个拨号盘上各取1个数字组成的四位数字号码的个数是1010101010000N =⨯⨯⨯=,所以,可以组成10000个四位数号码 合作探究、课堂互动(核心知识突破) 1、在所有的两位数中,个位数字大于十位数字的两位数共有多少个? 解法一:按个位数字是2,3,4,5,6,7,8,9分成8类, 在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个.则共有1+2+3+4++7+8=36(个).解法二:按十位数字是1,2,3,4,5,6,7,8分成8类, 在每一类中满足条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.则共有8+7+6+5+4+3+2+1=36(个).2、已知a ∈{3,4,6},b ∈{1,2,7,8},r ∈{8,9},求方程(x -a)2+(y -b)2=r2 可表示多少个不同的圆.3、有一项活动需在3名老师,8名男同学和5名女同学中选人参加. (1) 若只需一人参加,有多少种不同的选法? (2) 若只需老师,男同学,女同学各一人参加,有多少种不同的选法? (3) 若需一名老师,一名学生参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种. (2) “完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.(3) “完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有3×13=39种方法.小结:辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事.当堂检测1、一个书包内装有5本不同的小说,另一书包内有6本不同学科的教材,从两个书包中任取一本书的取法共有11种.2、在1,2,3,···,200中,能够被5除余1的数共有40个.3、要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有6种不同的选法.解:从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班两个步骤完成,先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法根据分步技数原理,不同的选法数是326N=⨯=种4、商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_33_种不同的选法.要买上衣、裤子各一件,共有270种不同的选法.5、高二(1)班有男生28名、女生20名,从该班中选出学生代表参加学校组织的调查团.①若学校分给该班一个名额,则选取代表的方法有 48 种②若学校分给该班男、女生各一个名额,则选取代表的方法有 560种解:(1)28+20=48 (2)28×20=5606、①若1≤x≤4,1≤y≤5,则以有序整数对(x、y)为坐标的点共有多少个?②若x,y∈N且x+y≤6,则有序自然数对有多少个?答案① 20 ② 28§1.1分类加法计数原理与分步乘法计数原理(二)【教学目标】:(1)知识与技能掌握分类计数原理和分步计数原理,并能够运用这两个原理解决简单的应用问题;(2)过程与方法通过实例,理解两个基本原理的运用,从而提高分析问题、解决问题的能力,提高学生综合、归纳的能力.(3)情感、态度与价值观通过了解基本原理在生产,生活实际中的应用,使得学生认识数学知识与现实生活的内在联系,增强在现实生活中面对复杂的事物和现象时作出正确分析和准确判断的能力. 【教学重点】两个基本原理的运用【教学难点】正确运用两个原理解决问题备注一、复习书架上层放4本不同的语文书,中层放5本不同的数学书,下层放6本不同的英语书,(1)如果从中任取一本书,有多少种不同的取法?(2)如果从中任取三本书,其中包括语文书、数学书、英语书各一本,有多少种不同的取法?解:(1)本题要完成取出一本书这一件事,可以分三类不同的取法:第一类:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;上述取法均能独立完成这件事,所以有4+5+6=18种(2)本题要分成三个步骤:第一步:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;只有三个步骤全部完成才能完成从各取一本书这件事,故完成这件事的方法种数有4×5×6=120种二、例题例1.给程序模块命名,需要用3个字符,其中首字符要求用字母A—G或U—Z,后两个要求用数字,问最多可以给多少个程序命名?分析:可以分成三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后字符。
两个基本计数原理教案共5页
第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。
但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
江苏省高二数学下册 第一单元《计数原理》全套教案
1.1 两个基本计数原理1.分类计数原理完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.分类计数原理又称为加法原理.预习交流1应用分类计数原理的原则是什么?提示:做一件事有n 类方式,每一类方式中的每一种方法均完成了这件事. 2.分步计数原理完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.分步计数原理又称为乘法原理.预习交流2应用分步计数原理的原则是什么?提示:做一件事要分n 个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事.一、分类计数原理问题从甲地到乙地每天有火车3班,汽车8班,飞机2班,轮船2班,问一天内乘坐班次不同的运输工具由甲地到乙地,有多少种不同的走法?思路分析:由于每班火车、汽车、飞机、轮船均能实现从甲地到乙地,因此利用分类计数原理.解:根据运输工具可分四类:第1类是乘坐火车,有3种不同的走法;第2类是乘坐汽车,有8种不同的走法;第3类是乘坐飞机,有2种不同的走法;第4类是乘坐轮船,有2种不同的走法;根据分类计数原理,共有不同的走法的种数是N=3+8+2+2=15.设有5幅不同的油画,2幅不同的国画,7幅不同的水彩画.从这些画中只选一幅布置房间,有__________种不同的选法.答案:14解析:根据分类计数原理,不同的选法有N=5+2+7=14种.如果完成一件事有n类方式,每类方式彼此之间是相互独立的,无论哪一种方式的每种方法都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理(加法原理).二、分步计数原理问题有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各1个,有多少种不同的取法?思路分析:要从盒子里取到红、白、黄小球各1个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故应用分步计数原理.解:分三步完成:第1步是取红球,有6种不同的取法;第2步是取白球,有5种不同的取法;第3步是取黄球,有4种不同的取法;根据分步计数原理,不同取法的种数为N=6×5×4=120.现有高一学生9人,高二学生12人,高三学生7人自发组织参加数学课外活动小组,为便于管理,每年级各选一名组长,有__________种不同的选法.答案:756解析:根据分步计数原理有N=9×12×7=756种不同的选法.如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有步骤才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数就用分步计数原理(乘法原理).1.两个书橱,一个书橱内有7本不同的小说,另一个书橱内有5本不同的教科书.现从两个书橱任取一本书的取法有__________种.答案:12解析:根据分类计数原理,不同的取法有N=7+5=12种.2.教学大楼有5层,每层均有2个楼梯,由1楼到5楼的走法有__________种.答案:16解析:根据分步计数原理,不同的走法有N=2×2×2×2=16种.3.现有高一学生9人,高二学生12人,高三学生7人,从中推选两名来自不同年级的学生做一次活动的主持人,共有__________种不同的选法.答案:255解析:分三类:第1类是从高一和高二各取1人,有9×12=108种选法;第2类是从高一和高三各取1人,有9×7=63种选法;第3类是从高二和高三各取1人,有12×7=84种选法;由分类计数原理,不同的选法有N=108+63+84=255种.4.某体育彩票规定,从01~36共36个号中抽出7个号为一注,每注2元,某人想选定吉利号18,然后从01~17中选3个连续的号,从19~29中选2个连续的号,从30~36中选1个号组成一注,若这个人要把这种号全买下来至少要花多少钱?解:分三步选号:第1步从01~17中选3个连续的号共有15种选法;第2步从19~29中选2个连续的号共有10种选法;第3步从30~36中选1个号共有7种选法;因此由分步计数原理知共有N=15×10×7=1 050(注),故要花1 050×2=2 100(元).5.有四位同学参加三项不同的竞赛.(1)每位同学必须只参加一项比赛,有多少种竞赛方案?(2)每项竞赛只允许一位同学参加,有多少种竞赛方案?解:(1)同学可以选择竞赛项目,而竞赛项目对于同学无条件限制,所以每位同学均有3个不同的机会,要完成这件事必须是每位同学参加竞赛的项目全确定下来.因此分四步,所以根据分步计数原理,共有N=3×3×3×3=34=81种不同的方案.(2)竞赛项目可挑选同学,而同学无选择项目的机会,每一个项目可挑选4个不同的同学中的一个,要完成这件事须每项竞赛所参加的同学全部确定下来才行.因此需分三步,根据分步计数原理,共有M=4×4×4=64种不同的方案.1.2 排列1.排列的概念一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.预习交流1如何判断一个问题是否是排列问题?提示:排列问题与元素的排列顺序有关,是按一定的顺序排成一列,如果交换元素的位置,其结果发生了变化,叫它是排列问题,否则,不是排列问题.2.排列数的概念一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.根据分步计数原理,我们得到排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.在排列数公式中,当m=n时,即有A m n=n(n-1)(n-2)·…·3·2·1,A n n称为n的阶乘(factorial),通常用n!表示,即A n n=n!.我们规定0!=1,排列数公式还可以写成A m n=! ()!nn m.预习交流2如何理解和记忆排列数公式?提示:A m n是m个连续自然数的积,最大一个是n,依次递减,最后一个是(n-m+1).一、排列问题下列三个问题中,是排列问题的是__________.①在各国举行的足球联赛中,一般采取“主客场制”,若共有12支球队参赛,求比赛场数;②在“世界杯”足球赛中,采用“分组循环淘汰制”,共有32支球队参赛,分为八组,每组4支球队进行循环,问在小组循环赛中,共需进行多少场比赛?③在乒乓球单打比赛中,由于参赛选手较多,故常采用“抽签捉对淘汰制”决出冠军.若共有100名选手参赛,待冠军产生时,共需举行多少场比赛?思路分析:交换元素的顺序,有影响的是排列问题,否则,不是.答案:①解析:对于①,同样是甲、乙两队比赛,甲作为主队和乙作为主队是两场不同的比赛,故与顺序有关,是排列问题;对于②,由于是组内循环,故一组内的甲、乙只需进行一场比赛,与顺序无关,故不是排列问题;对于③,由于两名选手一旦比赛后就淘汰其中一位,故也与顺序无关,故不是排列问题.下列问题是排列问题吗?并说明理由.①从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?②从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?解:①不是排列问题;②是排列问题.理由:由于加法运算满足交换律,所以选出的两个元素做加法时,与两个元素的位置无关,但做除法时,两个元素谁是除数,谁是被除数不一样,此时与位置有关,故做加法不是排列问题,做除法是排列问题.判断排列问题的原则:①与顺序有关;②元素互不相同;③一次性抽取. 二、排列数问题解方程:3A 3x =2A 2x +1+6A 2x .思路分析:先把式中的排列数转化为关于x 的表达式,并注意A mn 中m ≤n ,且m ,n 为正整数这些限制条件,再求解关于x 的方程.解:由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1).∵x ≥3,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0.解得x =5或x =23(舍),故x =5.解不等式:A x 9>6A x -26.解:由排列数公式,原不等式可化为:9!-x !>6×6!-x +!,∴9×8×79-x>6,解得x >-75.又⎩⎪⎨⎪⎧x -2≥0,x ≤9,6≥x -2,∴2≤x ≤8.又∵x 为整数,∴原不等式的解集为{2,3,4,5,6,7,8}. 有关以排列数公式形式给出的方程、不等式,应根据有关公式转化为一般方程、不等式,再求解,但应注意其中的字母都是满足一定条件的自然数.三、数字排列问题用1,2,3,4,5,6,7这7个数字组成没有重复数字的四位数,如果组成的四位数必须是偶数,那么这样的四位数有多少个?思路分析:先排个位数,再排千、百、十位数,再由分步计数原理求得适合条件的四位数的个数.解:第一步排个位上的数,因为组成的四位数必须是偶数,个位数字只能是2,4,6之一,所以有A 13种排法,第二步排千、百、十这三个数位上的数,有A 36种排法.根据分步计数原理,适合条件的四位数的个数为N =A 13A 36=360,所以这样的四位数有360个.由0,1,2,3,4,5这六个数字组成没有重复数字的六位数,其中小于50万,又不是5的倍数的数有多少个?解:法一:因为0和5不能排在首位和个位,先将它们排在中间4个数位上有A 24种排法,再排其他4个数位有A 44种排法,由分步计数原理得,共有A 24·A 44=12×24=288个数符合要求.法二:六个数位的全排列共有A 66个,其中0排在首位或个位有2A 55个,还有5排在首位或个位上的也有2A 55个,这两种情况都包含0和5分别在首位或个位上的排法有2A 44种,所以符合条件的数字个数有A 66-4A 55+2A 44=288个.关于数字问题要注意首位数字不能为0,其次注意特殊位置或特殊数字,再考虑其他位置或其他数.也可用全排列数减去不合要求的排列数.1.已知A 2n =7A 2n -4,则n =__________. 答案:7解析:由排列数公式得,n (n -1)=7(n -4)(n -5),∴3n 2-31n +70=0,解得n =7或n =103(舍).∴n =7. 2.将五辆车停在5个车位上,其中A 车不停在1号车位上的停车方案有__________种. 答案:96解析:因为A 车不停在1号车位上,所以可先将A 车停在其他四个车位上,有A 14种停法;然后将另外四辆车在剩余的四个车位上进行全排列,有A 44种停法,由分步计数原理得,共有N =A 14·A 44=4×24=96种不同的停车方案.3.用1,2,3,4,5这5个数字,组成没有重复数字的三位数,其中奇数有__________个. 答案:36解析:当个位数字分别为1,3,5时,百位、十位上数字的排列总数均为A 24=12个.由分类计数原理知,没有重复数字的三位奇数共有12+12+12=36个.4.从甲、乙、丙、丁4种蔬菜品种中选出3种,分别种在不同土质的三块试验田上进行试验,其中甲品种必须入选,则不同的种植方法有多少种?解:本题相当于从4个元素中取出3个元素的排列,其中甲元素必取,优先考虑甲元素,先排甲,有A 13种方法,再从乙、丙、丁三个元素中选出两个元素的排列数为A 23.则由分步计数原理得,满足条件的排列有A 13·A 23=18种不同的种植方法.5.从7名运动员中选出4人参加4×100米接力赛,求满足下列条件的方案种数. (1)甲、乙二人都不跑中间两棒; (2)甲、乙二人不都跑中间两棒.解:(1)从甲、乙之外的5人中选2人安排在中间两棒,有A 25种方法,再从余下的5人中安排首末两棒,有A 25种方法,由分步计数原理知共有A 25·A 25=400种不同的安排方案.(2)从7人中选4人安排接力赛有A 47种方法,而甲、乙都跑中间两棒有A 25A 22种方法,因此符合条件的方案有A 47-A 25A 22=800种.1.3 组合1.组合的概念一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.预习交流 1如何区分排列问题和组合问题?提示:区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;而交换任意两个元素的位置对结果没有影响,则是组合问题.2.组合数从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C m n 表示.C mn =A mn A m m =n n -n -n -m +m !=n !m !n -m !.预习交流2如何理解和记忆组合数公式?提示:同排列数公式相类比,在排列数公式的基础上,分母再乘以m !. 3.组合数的性质性质1:C m n =C n -m n ,性质2:C m n +1=C m n +C m -1n . 预习交流3如何理解和记忆组合数的性质?提示:从n 个元素中取m 个元素,就剩余(n -m )个元素,故C m n =C n -mn .从n +1个元素中取m 个元素记作C m n +1,可认为分作两类:第一类为含有某元素a 的取法为C m -1n ;第二类不含有此元素a ,则为C m n ,由分类计数原理知:Cm n +1=C m n +C m -1n .一、组合问题判断下列问题是组合问题,还是排列问题.①设集合A ={a ,b ,c ,d },则集合A 的含3个元素的子集有多少个? ②一个班中有52人,任两个人握一次手,共握多少次手?③4人去干5种不同的工作,每人干一种,有多少种分工方法?思路分析:交换两个元素的顺序,看结果是否有影响,如无影响则是组合问题. 解:①因为集合中取出的元素具有“无序性”,故这是组合问题; ②因为两人握手是相互的,没有顺序之分,故这是组合问题; ③因为5种工作是不同的,一种分工方法就是从5种不同的工作中选出4种,按一定的顺序分配给4个人,它与顺序有关,故这是排列问题.下列问题中,是组合问题的有__________.①从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法;②从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法; ③a ,b ,c ,d 四支足球队进行单循环赛,共需多少场比赛; ④a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果. 答案:①③解析:①2名学生完成的是同一件工作,没有顺序,是组合问题; ②2名学生完成两件不同的工作,有顺序,是排列问题;③单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题; ④冠亚军是有顺序的,是排列问题.组合问题与顺序无关,而排列问题与顺序有关. 二、组合数公式及组合数的性质(1)计算C 98100+C 199200;(2)已知C 3n +618=C 4n -218,求n ;(3)化简C 45+C 46+C 47+C 48+1.思路分析:先把组合数利用性质化简或利用组合数性质直接求解.解:(1)C 98100+C 199200=C 2100+C 1200=100×992+200=5 150.(2)由C 3n +618=C 4n -218,知3n +6=4n -2或3n +6+(4n -2)=18,解得n =8或2.而3n +6≤18且4n -2≤18,即n ≤4且n ∈N *,∴n =2.(3)C 45+C 46+C 47+C 48+1=1+C 45+C 46+C 47+C 48=C 55+C 45+C 46+C 47+C 48=C 56+C 46+C 47+C 48=C 57+C 47+C 48=C 58+C 48=C 59=C 49=9×8×7×64×3×2×1=126.(1)C 34+C 35+C 36+…+C 310=__________;(2)(C 98100+C 97100)÷A 3101=__________.答案:(1)329 (2)16解析:(1)原式=C 44+C 34+C 35+…+C 310-C 44=C 45+C 35+…+C 310-1=…=C 410+C 310-1=C 411-1=329.(2)原式=C 98101÷A 3101=C 3101÷A 3101=A 31013!÷A 3101=16.利用组合数的性质解题时,要抓住公式的结构特征,应用时,可结合题目的特点,灵活运用公式变形,达到解题的目的.三、组合知识的实际应用现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?思路分析:由于选出的教师不需要考虑顺序,因此是组合问题.第(1)小题选2名教师不考虑男女,实质上是从10个不同的元素中取出2个的组合问题,可用直接法求解.第(2)小题必须选男、女教师各2名,才算完成所做的事,因此需要分两步进行,先从6名男教师中选2名,再从4名女教师中选2名.解:(1)从10名教师中选2名参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种.(2)从6名男教师中选2名的选法有C 26,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,因此共有不同的选法C 26·C 24=6×52×1·4×32×1=90种.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法有多少种?解:方法一:(直接法)至少1名女生当选可分为两类:第一类:1名女生1名男生当选代表,有C 13·C 17种方法,第二类:2名女生当选代表,有C 23种方法.由分类加法计数原理,至少有1名女生当选的不同选法有C 13·C 17+C 23=21+3=24种.方法二:(间接法)10名学生中选2名代表有C 210种选法,若2名代表全是男生有C 27种选法,所以至少有1名女生当选代表的选法有C 210-C 27=24种.利用组合知识解决实际问题要注意:①将已知条件中的元素的特征搞清,是用直接法还是间接法; ②要使用分类方法,要做到不重不漏;③当问题的反面比较简单时,常用间接法解决.1.给出下面几个问题,其中是组合问题的有__________. ①某班选10名学生参加拔河比赛;②由1,2,3,4选出两个数,构成平面向量a 的坐标; ③由1,2,3,4选出两个数分别作为双曲线的实轴和虚轴,焦点在x 轴上的双曲线方程数; ④从正方体8个顶点中任取两个点构成的线段条数是多少? 答案:①④ 解析:由组合的概念知①④是组合问题,与顺序无关,而②③是排列问题,与顺序有关.2.C 9798+2C 9698+C 9598=__________. 答案:161 700解析:原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100=C 3100=161 700.3.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这几个点中的每三个点作圆,共可作__________个圆.答案:220解析:由题意知,可作C 312=12×11×103×2×1=220个不同的圆.4.解方程:C x 17-C x 16=C 2x +216.解:∵C x 17=C x 16+C x -116,∴C x 17-C x 16=C x -116,∴C x -116=C 2x +216.由组合数的性质得x -1=2x +2或x -1+2x +2=16,解得x =-3(舍)或x =5.∴x =5.5.平面内有10个点,其中任何3点不共线,以其中任意2点为端点,试求:(1)线段有多少条?(2)有向线段有多少条?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C 210=10×92×1=45条不同的线段.(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A210=10×9=90条不同的有向线段.1.4 计数应用题1.简单计数问题的处理原则解简单计数问题,应遵循三大原则:先特殊后一般的原则;先选后排原则;先分类后分步的原则.分类计数原理和分步计数原理是解决计数应用题的两个基本原理.预习交流1你对“特殊”“一般”有怎样的理解?试谈谈先特殊后一般的原则.提示:“特殊”指元素特殊或场所特殊或特殊条件限制;先特殊后一般原则是先考虑“特殊元素”“特殊位置”,再考虑一般元素或一般位置.2.简单的常见计数问题的解题策略剔除:对有限制条件的问题,先以总体考虑,再把不符合条件的所有情况剔除.捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列.插空:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好的元素之间.预习交流2剔除、捆绑、插空主要是为了解决何种计数问题?提示:剔除主要用在有限制条件的计数问题上,或问题的正面情况较多,而反面情况较少的计数问题上;捆绑主要用在相邻问题上;插空用在不相邻问题上.一、剔除问题四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点,不同取法有__________种.思路分析:在这10个点中,不共面的不易寻求,而共面的容易找,由10个点中取出4个点的组合数C410减去4个点共面的个数即为所求.答案:141解析:如图,从10个点中任取4个点有C410种不同的取法,其中4个点共面的情形可分三类:第一类:4个点在四面体的同一个面内,有4C46种;第二类:4个点位于相对的棱上,即一条棱上三点与对棱的中点共面,有6种;第三类:从6条棱的中点中取4个点时有3种共面.综上所述可知:不同的取法共有:C410-(4C46+6+3)=141种.从正方体的6个面中选取3个面,其中2个面不相邻的选法共有多少种?解:联想一空间模型,注意到“有两个面不相邻”即可从相对平行的平面入手正面构造,即有C16·C12=12种不同的选法,也可从反面入手剔除8个角上3个相邻平面,即有C36-C18=12种不同的选法.利用剔除法要把不满足条件的情况剔除干净或把问题的全部情况考虑清楚,做到不重不漏.二、捆绑问题(相邻问题)从单词“equation”中选取5个不同的字母排成一列,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有__________种.思路分析:先将“qu”捆绑成一个元素,再从剩余的6个元素中取3个,再进行全排列.答案:480解析:先将“qu”捆绑成一个元素,再从剩余的6个元素中取3个元素,共有C36种不同的取法,然后对取出的4个元素进行全排列,有A44种方法,由于“qu”顺序不变,根据分步计数原理共有C36·A44=480种不同排列.停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有多少种?解:将4个空车位视为一个元素,与8辆车共9个元素进行排列,共有A99=362 880种不同的停车方法.对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来看作一个元素与其他元素排列,然后再对相邻元素之间进行排列.三、插空问题(不相邻问题)7人站成一行,如果甲、乙两人不相邻,则不同的排法种数是__________.思路分析:先将除甲、乙两人之外的5人排成一行,再对5个人之间的六个间隙插入甲、乙两人.答案:3 600解析:先让甲、乙之外的5人排成一行,有A55种排法,再让甲、乙两人在每两人之间及两端的六个间隙中插入甲、乙两人,有A26种方法,故共有A55·A26=3 600种不同的排法.晚会上有8个唱歌节目和3个舞蹈节目,若3个舞蹈节目在节目单中都不相邻,求不同的节目单的种数.解:先排8个唱歌节目共有A88种不同方法,然后从唱歌节目之间及两端共有9个间隙中选3个,将3个舞蹈节目插入,有A39种方法,由分步计数原理知,不同的节目单的种数为A88·A39=20 321 280.解决不相邻问题常用插空法,要先把不相邻的元素抽出来,剩余的元素进行全排列,然后把抽出来的元素插入全排列时元素之间及两端形成的空隙中,注意两端也是“空隙”.1.记者要为5名志愿者和他们帮助过的2位老人拍照,要求排成一排,2位老人相邻但不在两端的排法有__________种.答案:960解析:5名志愿者先全排有A55种,2位老人作为一个元素插空,并且两位老人左右有别,故共有A55·C14·A22=960种不同的排法.2.由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数有__________个.答案:108解析:插空法,先排2,4,6共有A33种方法;若1,3,5都不相邻,则有A33种方法,若1,3相邻,则有A22A33种方法;∴共有A33(A33+A22A33)=108种不同的排法.3.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的排法有__________种.答案:1 008解析:若丙排在10月1日,共有A55·A22=240种不同的排法,若丁排在10月7日,共有A55·A22=240种不同的排法,若丙排在1日且丁排在7日,共有A44A22=48种不同的排法,若不考虑丙丁的条件限制,共有A66·A22=1 440种不同的排法,∴符合题意的排法的种数为1 440-240-240+48=1 008.4.有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名英、日都精通,从中找出8人,使他们可以组成两个翻译小组,其中4人翻译英语,另外4人翻译日语,这两个小组能同时工作,问这样的8人名单可开出几张?解:按英、日语都会的翻译人员的参与情况,分成三类:第1类,“英、日都会的翻译人员”不参加,有C45C44种;第2类,“英、日都会的翻译人员”有一人参加,该人可参加英语,也可参加日语,因而有(C12C35C44+C12C45C34)种;第3类,“英、日都会的翻译人员”均参加,这时又分三种情况:两人都译英语,两人都译日语,一人译英、一人译日,因而有(C25C44+C45C24+C12C35C34)种.由分类计数原理知,可开出名单共有C45C44+C12C35C44+C12C45C34+C25C44+C45C24+C12C35C34=185种.5.7位同学站成一排合影留念,(1)其中甲不站排头,乙不站排尾的排法有多少种?(2)甲、乙和丙三位同学必须相邻的排法共有多少种?(3)甲、乙和丙三位同学都不能相邻的排法共有多少种?解:(1)用剔除法:总排有A77种,不符合条件的甲在排头和乙在排尾的排法均为A66,但这两种情况均包含了甲在排头同时乙在排尾的情况共有A55种.∴甲不站排头,乙不站排尾的排法有A77-2A66+A55=3 720种.(2)用捆绑法:第一步,将甲、乙和丙三人“捆绑”成一个大元素与另外4人的排列为A55种,第二步,“释放”大元素,即甲、乙和丙在捆绑成的大元素内的排法有A33种,∴甲、乙和丙三位同学必须相邻的排法共有A55·A33=720种.(3)用插空法:第一步,先排除甲、乙和丙之外的4人的全排列有A44种排法,第二步,把甲、乙和丙三人插入前4人中间及两端形成的5个空隙中,共有A35种排法.∴甲、乙和丙三位同学都不能相邻的排法共有A44·A35=1 440种.1.5 二项式定理。
计数原理-完整版课件
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
高二数学两个计数原理
完成一件事,有n类办法. 在第1类办法 中有m1种不同的方法,在第2类办法中有m2种 不同的方法,……,在第n类办法中有mn种不 同的方法,则完成这件事共有 种不同的方法。 N= m1+m2+… +mn
分步计数原理
完成一件事,需要分成n个步骤。做第1 步有m1种不同的n种不同的方法,则 完成这件事共有 N= m ×m ×… ×m
变式.用五种不同的颜色给图中四个区域涂色, 每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色, 那么共有多少种不同的涂色方法?
数学应用
例3(1)在图Ⅰ的电路中,只合上一只开 关以接通电路,有多少种不同的方法? (2)在图Ⅱ的电路中,合上两只开关 以接通电路,有多少种不同的方法?
练习
我们班级里有4名同学参加学校里的足 球队、篮球队、乒乓球队,每人限报 其中的1个运动队,不同的报名方法有 多少种? N=3×3 ×3 × 3=81
数学应用 例2. 用四种颜色给如图所示的地图着色 (按①②③④的次序填涂),相邻两块涂 不 同的颜色,共有多少种不同的涂法?
变换涂色顺序呢?
数学应用
(4)由数字0,l,2,3,4,5可组成多 少个没有重复数字且大于30000的五位 数?
练习 由0-9这10个数字可以组成多少个没 有重复数字的三位数?可组成多少 个没有重复数字的且能被5整除的三 位数?
门闩。《北齐书·窦泰传》:“其人入数屋,俄顷而去。旦视关键不异,方知非人。”指装在物体上作关闭用的器件。 宋周煇《清波杂志》卷二:“ 元丰 间,亦有守边者,一夕失城门锁,亦不究治,但亟令易而大之。继有得元 锁来归者,乃曰:‘初不失也。’ 使持往合关键,蹉跌不相入。” 机关,机械装置。清袁枚《新齐谐·铜人演<;西厢>;》:“西洋贡铜伶十八人,能演《西厢》一部。人长尺许,身躯耳目手足悉铜铸成。其心 腹肾肠皆用关键凑接,如自鸣钟法。” ; /s/blog_13002ab1a0102xg8o.html jeh50mcg 比喻事物最关紧要的部分;对事情起决定作用的因素。秦牧《艺海拾贝·鹦鹉与蝴蝶鸟》:“而这里面有一个关键性的问题,就是作品应该有荡 气回肠的感人力量。” 比喻禁约。《魏书·萧宝夤传》:“如不限以关键,肆其傍通,则蔓草难除,涓流遂积。”比喻诗文的结构。宋周必大《二老堂诗话·东坡寒碧 轩诗》:“苏文忠公 诗,初若豪迈天成,其实关键甚密。” 明胡应麟《少室山房笔丛·九流绪论下》:“古今文章之关键,亦间有相通者。”比喻咽喉要地。《清史稿·兵志九》:“李宗羲以苏松之门户, 吴淞为要,长江之关键,江阴为先。” 凝总会主动在爹娘面前自揽责任;而二公子无论是得了什么好吃的,好玩的,自己舍不得吃舍不得玩,都会带回府里先交给冰凝。因此,兄妹情 深四个字,根本表达不了他们兄妹两人的全部情谊。要不是到京城任职,二公子才不会舍了妹妹壹个人在湖广。二公子真是少年得志!五年前, 才二十来岁就任翰林院检讨。这翰林院号称“玉堂清望之地”,能够跻身其中,绝对是非同凡响的人物,更何况是壹个才二十出头的青年才俊。 当年二公子赴京任职的时候,年老夫人担心他的妻子身体不好,侍妾张氏刚刚进门,不想被那个侍妾借机夺了年二少奶奶的管家权,思前想后, 决定派养女玉盈随他壹同进京。第壹卷 第六章 玉盈玉盈6岁的年纪来到年总督府上。她的父亲是年总督大人的多年故交,在她6岁那年,父母双 双因染时疫病故,年总督就派人将她从苏州接到湖广的总督府,虽然比冰凝大两岁,但正好两个女娃娃可以做个伴。于是两个半路丫鬟妹开始了 壹起读书,壹起学女红,壹起玩耍的年府生活,慢慢地,两个人就好得像两个双生子似的。年老夫人也乐得两个姑娘形影不离的样子,无论是衣 裳、首饰,还是规格、用品,也从来都是两人壹模壹样的,从不因玉盈是养女而有什么不同。然后,就是壹眨眼的功夫,两个女娃娃就长成了大 姑娘。大姑娘了,两姐妹的脾气、禀性、样貌、才学也越发地各不相同起来。冰凝是外表柔弱,内心刚强,任谁也想不出,这么壹个貌美如仙女、 柔弱如杨柳的小姑娘,却是个倔强、不服输、侠肝义胆、嫉恶如仇的硬脾气。那玉盈却是正正好相反,表面上风风火火、办事干净麻利,内心却 是极为敏感,脆弱得不行。也难怪,她是养女,虽然年老夫妇壹直将她当亲生女儿看待,但她总是没来由地有壹种自卑感。玉盈比冰凝大三岁, 但生得没有冰凝漂亮,冰凝是万里挑壹的没钕,玉盈是清秀可人的小家碧玉:也是鹅蛋小脸,弯弯细眉,与冰凝那双水汪汪的大眼睛不相同的是, 玉盈长着壹双凤眼,此外,她还操有壹口吴侬软语,煞是动听。这玉盈样貌没有冰凝好、学业没有冰凝好,但是,她的管家本领却是与生俱来, 好得很。她办事既利落又公道,年夫人偶尔不在府的时候,才十来岁的娃娃,竟是将诺大个年总督府维持得井井有条。这也是年夫人决定派她随 二公子壹同进京的原因,有玉盈这么壹个精通府务的人照料二公子,她就放心踏实多了。在京城期间,年二公子衙门当差,二嫂踏实养病,玉盈 管家,过得还算顺利。可是好景不长,也是二嫂没有福份,养了多年的病,终究也是没有好起来,突然就故去了。这二嫂是大学士明珠的孙女, 纳兰性德的侄女。年家和明珠府都是豪门望族,因此,丧事的规格极高,礼仪非常隆重。而承担这个重任的,就是
高二数学两个基本计数原理
课Hale Waihona Puke 小结课堂小结1. 分类计数与分步计数原理是两个最基本,也是 最重要的原理,是解答排列、组合问题,尤其是 较复杂的排列、组合问题的基础. 2.辨别运用分类计数原理还是分步计数原理的关 键是“分类”还是“分步”,也就是说“分类” 时,各类办法中的每一种方法都是独立的,都能 直接完成这件事,而“分步”时,各步中的方法 是相关的,缺一不可,当且仅当做完个步骤时, 才能完成这件事.
制作人
/ 彩99注册
您切勿让朕失望,得胜归来,朕另有封赏/"川布听咯更是大喜,豪然回道:"请皇上放心,末将定直捣襄阳,生擒东舌小儿/"董卓与木儒相望壹眼,眼中尽是欣喜,想否到汤广否仅将兵权交给咯川布,更是派来叁员彪将相助,如此壹来,何事否成?宇文成都满脸否解,明明是自己占咯上风,却为何要把兵 权交给川布,便上前问道:"皇上,成都为何否能统兵而要将兵权交给他?"汤广将视线抛到宇文成都の身上,捋咯捋须髯,若有所思地回答:"天宝将军,您是朕大隋の顶梁柱,您必须留守洛阳,方才可以保朕皇都无忧.""成都明白咯."宇文成都虽然心里否服,但是皇命在前,也就只能硬生生地回应壹句, 转身退下.宇文化及却阴沉着那长老脸,壹言否发,突然眼神中闪过壹丝异色,走到汤广面前开口说."皇上,臣有壹人想要举荐,可随大军壹起出征,此人有万夫否当之勇."汤广壹脸好奇地问道:"丞相所言何人?""光禄大夫裴仁基之第叁子,裴元庆."O(∩_∩)O)壹百五十九部分裴元庆力举千斤鼎封 神之战,终于落下咯帷幕.汤广脑江中思绪翻滚如潮,壹脸否解地问道:"裴仁基此人真倒是有所耳闻,便是那之前加封の光禄大夫,否过那裴元庆是什么人物?"宇文化及目露异色,清咯清嗓子,旋即回道:
计数原理
第一章.计数原理一.两个基本计数原理分类计数原理(加法原理):完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…..在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+….mn种不同的方法。
分布计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1个有m1种不同的方法,做第2步有m2种不同的方法,….做第n步有mn种不同的方法,那么完成这件事共有N=m1+m2+….+mn种不同的方法。
二.排列一般的,从n个不同的元素中取出m(m≦n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。
排列数三.组合一般的,从n个不同的元素中取出m(m≦n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合数㈠简单问题直接法例一.某班级有男生40人,女生20人,⑴从中任选一人去领奖,有多少种不同的选法?60⑵从中任选男女各一人去参加座谈会,有多少种不同的选法?800例二.五名学生报名参加思想体育比赛,每人限报一项,报名方法的种数为多少?1024例三.七个人做两排座位,第一排坐3人,第二排坐4人,有多少种不同的坐法?5040㈡相邻问题捆绑法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要站在一起,有多少种不同的排法720⑵若三个女孩要站在一起,四个男孩也要站在一起,则有多少种排法288㈢不相邻问题插空法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要互不相邻,有多少种排法1440⑵若三个女孩互不相邻,四个男孩也互不相邻,有多少种排法144例二.8张椅子排成一排,有四个人就坐,每个人一个座位,恰有3个连续的空位的做法共有几种480例三.5名学生和2位老师站成一排合影,2位老师不相邻的排法有几种例四.七人排成一排,甲乙两人必须相邻,且甲乙都不与丙相邻,则有不同的排法几种?960㈣特殊元素或特殊位置的优先考虑例一.4个男生,3个女生排队,⑴甲不站中间也不站两端,共有多少种排法?2880⑵甲乙中间至少有2个人,有多少种排法2400⑶甲必须在已的右边,有多少种排法2520例二.从6人中选出4人分别到莨山,韶山,衡山,张家界4个旅游景点游览,要求每个景点只有一人游览,每人只游览一个景点,且这6人中甲不去衡山景点,乙不去韶山景点,则不同的安排方法有几种252例三.从6名运动员中选出4人参加4*100米接力,⑴若甲不跑第一棒,乙不跑第四棒,则有多少种排法252⑵若甲乙都不跑第一棒,则有多少种排法240⑶若甲乙不跑中间两棒,则有多少种排法144例四.将五列车停在5条不同的轨道上,其中a列车不停在第一轨道,b列车不停在第二轨道,那么不同的停车方法有几种78例五.要排出某一天中语文,数学,政治,英语,体育,艺术,6门课各一节的课程表,要求数学课排在前三节,英语课不排在第六节,则不同的排法有几种?288㈤涂色问题例一.在矩形的绿地四角各方一盆花,现有6种不同颜色的花,若要求同一边的两端摆放不同的颜色,则不同的摆放方式有多少种630例二.将三种作物种在5块试验田里,每块种植一种作物,且相邻的试验田不能种植同一作物,不同的种植方法有多少种□□□□□42例三.在田字格中用四种颜色涂,要求相邻的格子颜色不能相同,有多少种不同的涂法㈥几何问题例一.平面内有12个点,任何3点不在同一直线上,以每3点为顶点画一个三角形,一共可画多少个三角形220例二.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得到多少个不同的三角形216例三.∠A的两条边除A点分别有3给点和四个点,则有这些点,共能构成多少个不同的三角形42例四.从正方体的八个顶点中任取三个点为顶点作为三角形,其中直角三角形有多少个?48例五.共有11层台阶,一个人可以一次走一个台阶或两个台阶,⑴若他恰在第七步走完,共可以有多少种走法35⑵若他要在7步内走完,共可以有多少种走法41例六.甲乙丙3人到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上得人不区分站的位置,则不同的站法有几种?例七.某市有7条南北向街道,5条东西向街道,⑴图中共有多少个矩形210⑵从A点到B点最短路线的走法有多少种?210㈦分组分配例一.对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能576例二.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级,且每班安排两名,则不同的安排方案有几种?90例三.从7名男运动员和5名女运动员中,选出4名进行男女混合双打乒乓球比赛,则不同的配组方法有几种420例四.共有8个人,其中6个人会英语,有5个人会法语,现从中选出6个人,3个人翻译英语,3个人翻译法语,共有多少种可能?55例五.若7个人身高都不同,从中取出6人,站成2排,每排3人,要求每一列前排比后排的人矮,共有几种站法?630㈦至多至少恰好间接法例一.袋中有5双不同的鞋子,从中取出4只⑴恰好有2双,共有几种可能?10⑵恰好有2只成双,共有几种可能120⑶至少有2只成双,有几种可能130⑷每只都不成双,有几种可能?80例二.将7名学生分配到甲乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的分配方式有几种?112例三.设有编号12345的五个球和编号为12345的五个盒子,现将五个球放入盒子内,要求每个盒子内放一个球,⑴若恰有两个球的编号与盒子编号相同,则这样的投放方法有几种20⑵若至多有两个球的编号与盒子相同,则这样的投放方法有多少种?109三个人站成一排,要调整位置,每个人都不站在自己的位置上,有2种方法。
《计数基本原理》高二数学教案
《计数基本原理》高二数学教案一、教学目标1.理解分类计数原理与分步计数原理的基本概念。
2.能够运用分类计数原理与分步计数原理解决实际问题。
3.培养学生的逻辑思维能力及解决问题的能力。
二、教学重难点1.教学重点:分类计数原理与分步计数原理的理解和应用。
2.教学难点:实际问题的分析及解题策略的运用。
三、教学过程第一环节:导入新课1.引导学生回顾排列组合的基本概念,如排列数、组合数等。
2.提问:在实际问题中,如何运用排列组合知识进行计数?第二环节:新课讲解1.讲解分类计数原理:当完成一个任务有几种不同的分类方式时,每种分类方式中的方法数相加即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?2.讲解分步计数原理:当完成一个任务需要分成几个步骤时,每个步骤中的方法数相乘即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?3.对比讲解分类计数原理与分步计数原理的区别和联系。
第三环节:案例分析1.分析案例1:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?引导学生运用分类计数原理进行解答。
2.分析案例2:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?引导学生运用分步计数原理进行解答。
第四环节:课堂练习(1)从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?(2)从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?2.老师对学生的解答进行点评,指出错误和不足之处。
第五环节:巩固拓展1.引导学生思考:如何运用分类计数原理与分步计数原理解决更复杂的问题?2.举例讲解:某学校举办运动会,有100名学生报名参加,其中跳远项目有20人报名,100米短跑项目有30人报名,200米短跑项目有50人报名。
现在需要从这三个项目中各选一名运动员参加比赛,共有多少种选法?第六环节:课堂小结2.强调在实际问题中,如何灵活运用这两个原理进行计数。
人教B版选修2-3第一章计数原理全部教案---两个计数原理
1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习〞与“合作学习〞等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规那么做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理〔1〕提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?〔2〕发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有=nN+m种不同的方法.〔3〕知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9〔种〕.变式:假设还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理〔1〕提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的?用列举法可以列出所有可能的:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个,而且它们各不相同,因此共有 6×9 = 54 个不同的.探究:你能说说这个问题的特征吗?〔2〕发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.〔3〕知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?[分析]①要完成的事是“取一本书〞,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书〞,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书〞,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 〕从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .〔3〕26232434=⨯+⨯+⨯=N 。
高二数学两个基本计数原理及排列组合
一、两个基本计数原理(一)知识点1.分类计数原理完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+...+m n种不同的方法.2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有mn种不同的方法,那么完成这件事共有N=m1*m2*...*m n种不同的方法.(二)运用与方法检测:1、要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少中不同的选法?从3名工人中选1名上白班和1名上晚班,可以分成先选1名上白班,再选1名上晚班这两个步骤完成.先选1名上白班,共有3种选法;上白班的人选定后,上晚班的工人有2种选法.根据分步计数原理,所求的不同的选法数是3×2=6(种).2、有5封不同的信,投入3个不同的信箱中,那么不同的投信方法总数为多少?3的五次3、(1)一件工作可以用两种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的总数是分两类.第一类有5种选法;第二类有4种选法.共9种(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经过B 村去C村不同走法的总数是 3×2=6所有六条路*4、从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有多少个?这样的等比数列有:1、2、4;4、2、1;2、4、8;8、4、2;1、3、9;9、3、1;4、6、9;9、6、4,共计8个,故答案为:8.5、有不同的中文书9本,不同的英文书7本,不同的日文书5本,欲从中取出不是同一国文字的两本书,共有多少种不同的取法?取中文和英文:9*7=63取中文和日文:9*5=45取英文和日文:7*5=35总共:63+45+35=143二、排列与组合(一)知识点1.排列(1)排列的定义:一般地,从n个不同的元素中取出m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数的定义:一般地,从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.(4)从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。
高二数学 两个原理.ppt
点击图片演示动画
问题二:在由电键组 A与B所组成的并 联电路中,如图,要接通电源,使电灯发 光的方法有多少种?
分类计数原理
分类计数原理 完成一件事,有n 类办法, m1 在第1类办法中有 种不同的方法,在第 2类办 m2 n 法中有 种不同的方法, …,在第 类办法中 mn 有 种不同的方法,那么完成这件事共有:
问题四:在由电键组A、B组成的串联 电路中,如图,要接通电源,使电灯发 光的方法有几种?
分步计数原理
分步计数原理 完成一件事,需要分成 n 类办法,做第1步有 m1种不同的方法,做第2步 有 m2种不同的方法,…,做第 n 步有 mn种不同 的方法,那么完成这件事共有: N = m1 m 2
根据分类计数原理,不同取法的种数是 N=m1+m2+m3=4+3+2=9 答:从书架上任取1本书,有9种不同的取法。 (2)从书架的第1、2、3层各取1本书,可分3 个步骤完成: 第一步从第1层取1本计算机书,有4种方法; 第二步从第2层取1本文艺书,有3种方法; 第三步从第3层取1本体育书,有2种方法。 根据分步计数原理,从书架的第1、2、3层取1 本书,不同取法的种数是 N=m1m2 m3 =4 3 2=24. 答:略
练习题
1.现在高中一年级学生3名,高中二年级学生5 名,高中三年级学生4名。 (1)从中任选1人参加接待外宾的活动,有多 少种不同的选法? (2)从3个年级的学生中各选1人参加接待外 宾的活动,有多少种不同的选法? 2.如图,从甲地到乙地有2条路,从乙地到丁地 有3条路,从甲地到丙地有4条路,从丙地到 丁地有2条路.从甲地到丁地共有多少种不同 的走法?
授课:防城三官学校 奎
梁柱
实际问题
1.1两个基本计数原理(1)
例题: 例题: 用四种颜色给如图所示的地图上色, 用四种颜色给如图所示的地图上色, 要求相邻两块涂不同的颜色, 要求相邻两块涂不同的颜色,共有 多少种不同的涂法? 多少种不同的涂法?
练习: 练习: 书架上原来并排放着5 书架上原来并排放着5本不同的 现要插入三本不同的书, 书,现要插入三本不同的书,那么 不同的插法有多少种? 不同的插法有多少种?
因为一天中乘火车有3种走法,乘汽车有2 解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地, 种走法,每一种走法都可以从甲地到乙地,所 种不同的走法。 以共有 3+2=5 种不同的走法。
加法原理) 分类计数原理 (加法原理)
做一件事,完成它可以有n类办法, 做一件事,完成它可以有n类办法, 在第一类办法中有m 种不同的方法, 在第一类办法中有m1种不同的方法,在 第二类办法中有m 种不同的方法, 第二类办法中有m2种不同的方法,……, , 在第n类办法中有m 种不同的方法. 在第n类办法中有mn种不同的方法. 那么完成这件事共有 ____________________种不同的方法 种不同的方法. ____________________种不同的方法. N=m1十m2十…十mn = 十 要点: 分类, 要点: (1)分类, 相互独立(并联) (2)相互独立(并联) (3)各类办法之和
3.把四封信任意投入三个信箱中, 3.把四封信任意投入三个信箱中,不同投法种数是 把四封信任意投入三个信箱中 ( A. 12 B.64 C.81 ) D.7
4.火车上有10名乘客,沿途有5个车站,乘客下车 4.火车上有10名乘客,沿途有5个车站, 火车上有10名乘客 的可能方式有 ( )种 A. C. 510 50 B. 105 D. 以上都不对
两个基本计数原理
能种植同一种作物,不同的种植方法共有
种(以数字作答)
42
四、子集问题
规同律子:集n有元个集2 合n。A{a1,a2,...,an}的不
例:集合A={a,b,c,d,e},它的子集个数 为 ,真子集个数为 ,非空 子集个数为 ,非空真子集个数为
。
五、综合问题:
例4 若直线方程ax+by=0中的a,b可以从 0,1,2,3,4这五个数字中任取两个不同的数字, 则方程所表示的不同的直线共有多少条?
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三 位, 需分为三步完成;
第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置
N = 10×10×10 = 103 种三位数的密码。
变式训练:各位上的数字不允许重复又怎样?
课堂小结
1、分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法……在第n类办法中有mn种不同的方法. 那么 完成这件事共有 N m 1 m 2 种不 同m 的n方法.
最后结果,只须一种方法 这件事,只有各个步骤都完成
就可完成这件事。
了,才能完成这件事。
区别3 各类办法是互相独立的。 各步之间是互相关联的。
即:类类独立,步步关联。
3.如图,用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域 只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有 种。
分析:如图,A、B、C三个区域两两相邻,
A
B
A与D不相邻,因此A、B、C三个区域的颜色
两两不同,A、D两个区域可以同色,也可以不 同色,但D与B、C不同色。由此可见我们需根
排列组合及二项式定理复习计数原理(课件)2022-2023学年高二下学期数学人教A版选择性必修第三册
组合数性质:
C
m n
C nm n
C
m n
C
m n
1
Cm n1
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
解:由于末位和首位有特殊要求,应该优先安 位题主置最,排先然需分常,排后以先析用末排免安法也位首不排和是共位合特元最有共要殊素基_有求元_分本_的_素_析的_元,法方再素C是法处占31C解,理了若41 决其这以排它两元列元个素组素位分合.置析若问为以
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共 有 A55 种,第二步将4舞蹈插入第一步排
好的6个元素中间包含首尾两个空位共有
种 A64不同的方法 由分步计数原理,节目的 不同顺序共有A55 A64 种
一般地,元素分成多排的排列问题, 可归结前排为一排考虑后,再排分段研究.
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法.
解:第一步从5个球中选出2个组成复合元共
有C__52种方法.再把5个元素(包含一个复合
元素)装入4个不同的盒内有_A__44__种方法.
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果
解含有约束条件的排列组合问题,可按元素 的性质进行分类,按事件发生的连续过程分 步,做到标准明确。分步层次清楚,不重不 漏,分类标准一旦确定要贯穿于解题过程的 始终。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。