世界数学难题——四色猜想

合集下载

四色问题又称四色猜想,是世界近代三大数学难题之一

四色问题又称四色猜想,是世界近代三大数学难题之一

四色问题又称四色猜想,是世界近代三大数学难题之一。

四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。

”(右图)这里所指的相邻区域,是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点,就不叫相邻的。

因为用相同的颜色给它们着色不会引起混淆。

四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。

”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。

汉密尔顿接到摩尔根的信后,对四色问题进行论证。

但直到1865年汉密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。

如为正规地图,否则为非正规地图(右图)。

一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。

二、四色猜想与证明

二、四色猜想与证明

四色猜想:“任何一张地图只用四种颜色就能使具有共同边界的国家填上不同的颜色。


数学语言表示:“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。

”这里所指的相邻区域是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点就不叫相邻的。

因为用相同的颜色给它们着色不会引起混淆。

1852年,毕业于伦敦大学的格斯里发现每幅地图都可以只用四种颜色着色。

和其弟弟研究没成功。

1852年,格斯里的弟弟请教其老师著名数学家德·摩尔根但未能证明,摩尔根后向著名数学家哈密顿爵士请教,仍未证明。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题后,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

电子计算机问世后,演算速度迅速提高,加快了对四色猜想证明的进程。

在1976年,美国伊利若斯大学的两台不同的电子计算机,用1200个小时,作100亿个判断,结果没有一张地图是需要五色的,最终证明了四色定理,轰动了世界。

这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时,当地的邮局在当天发出的所有邮件上都加盖了四色足够的特制邮戳,庆祝这一难题获得解决。

但证明并未止步,计算机证明无法给出令人信服的思考过程。

在长期的论证过程中,其他发现,人们证明,三种颜色是不够用的,五种颜色肯定够用,人们还证明,二维平面内无法构造五个或五个以上两两相邻区域。

四色猜想

四色猜想

四色猜想1852年,刚从伦敦大学毕业的哥斯尼在给他的兄弟弗雷赘克的一封信中提出了这样的猜想:在一幅正规地图中。

凡是有共同边界结的国家,都可以最多只用四种颜色着色,就能把这些国家区别开来。

弗雷赘克读了这封信后,就企图用数学品质方法来加证明。

但是,他花了许多时间,仍是毫无头绪,他只好去请教他的教师摩尔根。

但摩尔根也无法证明这个问题。

同时也无法推翻,就把它交给了英国著名的数学家哈密顿。

从此,这个问题在一些人中间传来似去,直到1865年哈密顿逝世为止,这个问题还没有得到解决。

于是这个问题便以"四色猜想"的名字留在了近代数学史上。

1878年,著名的英国数学家凯来把"四色猜想"通报给伦敦的数学学会会员,征求解答。

数学界顿时活跃起来,很多人挥戈上阵,企图试一试自己的能力。

1879年,肯普首先宣布证明了四色定理,接着在1880年,泰特也宣布证明四色定理的问题已经解决,从此就很少有人过问它了。

然而还有一个数学家赫伍德,并没有放弃对四色问题的研究,他从表少年时代一直到成为白发苍苍的老者,花费了毕生的精力致力于四色研究,前后整整60年。

终于在1890年,也就是肯普宣布证明了四色定理的11年之后,赫伍德发表文章,指出了肯普证明中的错误,不过,赫伍德却成功地运用肯普的方法证明了五色定理,即一张地图一公平能用和种颜色正确地染色。

五色定理被证明了。

但四色定理却又回到未被证明的四色猜想的地位了,这不仅由于赫伍德推翻了肯普的证明,而且离开泰特发表论文66年后的1946年,加拿大数学家托特又举出反例,否定了泰特的证明。

肯普的证明,虽然在11年后被推翻了,但是,人们认为他的证明思路有很多可取的地方。

因此,数学家,有不少人一直在沿着他的思路,推进着四色问题的证明工作,并且有了新的进展。

然而,这些成就所提供的检验办法太复杂了,人们难以实现。

就拿1970年有些人的方案来说,用当时的计算机来算也需要连续不断地工作10万小时(即11年以上),才能得出结论,这显然是不可能的。

数学经典问题-四色问题

数学经典问题-四色问题

数学经典问题·四色猜想世界近代三大数学难题之一――四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。

哈密尔顿接到摩尔根的信后,对四色问题进行论证。

但直到1865年哈密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。

不久,泰勒的证明也被人们否定了。

后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。

于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。

1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。

1950年,有人从22国推进到35国。

1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。

看来这种推进仍然十分缓慢。

选修课之四色问题课件

选修课之四色问题课件
时间表安排
在学校或企业的时间表安排中,为避免同一时间段内的冲突,可以 将时间段视为节点,利用四色定理进行着色,从而合理安排各项活 动。
交通规划
在交通规划中,可以利用四色定理对交通网络进行划分和着色,以便 更有效地组织交通流,降低交通拥堵的风险。
05
课程总结与回顾
课程知识点总结
四色问题的提出与背景
四色学史上的一个著名 难题,其解决过程推动了数学理 论和方法的发展,尤其是图论和
组合数学领域。
实际应用
四色问题的解决方案在地图制作 、电路板设计、时间表安排等方 面有着广泛的应用,提高了这些
领域的效率和优化程度。
计算机科学价值
在证明四色问题的过程中,数学 家们开创了使用计算机辅助证明 数学定理的先河,对计算机科学
• 证明难点:四色问题的证明是数学史上的一个著名难题,难点在于如何找到一 种普遍适用的着色方法,以及如何严格证明该方法的正确性。
• 早期尝试:早期的研究者通过大量的实验和观察,提出了一些猜想和局部证明 ,但均未能给出完整的解决方案。
• 现代证明:借助计算机技术和高级数学理论,Appel和Haken在1976年提出 了一种基于计算机辅助的证明方法,被公认为是四色问题的首个完整证明。但 此方法涉及大量计算和复杂的数学理论,难以被一般人所理解。
相关定理与推论
介绍与四色问题相关的定理和推论, 如五色定理、六色定理等,拓展学生 的视野。
课程学习过程中的回顾与反思
1 2 3
学习方法的探索
回顾在学习过程中尝试的不同方法,如阅读教材 、听讲座、与同学讨论等,分析各种方法的优缺 点。
遇到的挑战与解决策略
反思在学习过程中遇到的挑战,如概念理解困难 、证明过程复杂等,并分享解决这些挑战的策略 。

四色问题

四色问题

四色问题
英国人格思里于1852年提出四色问题(four colour problem,亦称四色猜想),即在为一平面或一球面的地图着色时,假定每一个国家在地图上是一个连通域,并且有相邻边界线的两个国家必须用不同的颜色,问是否只要四种颜色就可完成着色。

1878年英国数学家凯莱重新提出这问题,引起人们关注。

次年,英国数学家肯普提出用可约构形证明四色问题,虽然他的证明过程有漏洞,但为该问题的解决指出方向。

1890年英国人希伍德沿着这方向证明了任何地图只用五种颜色着色便够了,取得初步进展。

1913年美国数学家伯克霍夫发现一些新的可约构形。

1968年挪威数学家奥雷等人证明了用四种颜色一定可以把不超过四十个国家的地图着色,推进了四色问题的研究。

70年代初人们努力寻找可约构形中的不可免完备集,因为用它可以通过数学归纳法证明四色问题。

1976年美国数学家哈肯和阿佩尔花了1200多小时的电子计算器工作时间,找到一个由1936个可约构形所组成的不可免完备集,因而在美国数学会通报上宣称证明了四色猜想。

后来他们又将组成不可免完备集的可约构形减至1834个。

四色问题的研究对平面图理论、代数拓扑论、有限射影几何和计算器编码程序设计等理论的发展起了推动作用。

四色猜想

四色猜想

COLORS SUFFICE),加盖在当时的信件上。
拓展了人们对“证明”的理解
• 由于这是第一次用计算机证明数学定理,所以哈肯
和阿佩尔的工作,不仅是解决了一个难题,而且从
根本上拓展了人们对“证明”的理解,引发了数学
家从数学及哲学方面对“证明”的思考。

德•摩根很容易地证明了三种颜色是不够的,至少
要四种颜色。下图就表明三种颜色是不够的。
• 但德· 摩根未能解决这个问题,就又把这个问题转给了其他数
学家,其中包括著名数学家哈密顿。
• 但这个问题当时没有引起数学家的重视。 • 直到1878年,英国数学家凯莱对该问题进行了一番思考后, 认为这不是一个可以轻易解决的问题,并于当年在《伦敦数 学会文集》上发表了一篇《论地图着色》的文章,才引起了
更大的注意。
• 1879年,一位英国律师肯泊在《美国数学杂志》上 发表论文,宣布证明了“四色猜想”。
• 但十一年后,一位叫希伍德的年轻人指出,肯泊的 证明中有严重错误。
• 一个看来简单,且似乎容易说清楚的问题,居然如此困难,
这引起了许多数学家的兴趣,体现了该问题的魅力。 • 实际上,对于地图着色来说,各个地区的形状和大小并不重 要,重要的是它们的相互位置。 • 下图中的三个地图对地图着色来说都是等价的。从数学上看,
Hale Waihona Puke 四色问题的解决• 直到1972年,美国依利诺大学的哈肯和阿佩尔在前
人给出算法的基础上,开始用计算机进行证明。
• 到1976年6月,他们终于获得成功。他们使用了3台
IBM360型超高速电子计算机,耗时1200小时,终于证
明了四色猜想。
• 这是一个惊人之举。当这项成果在1977年发表时, 当地邮局特地制作了纪念邮戳"四色足够"(FOUR

四色猜想简介

四色猜想简介

四色猜想
四色问题,又称四色定理,是一个著名的图论问题,提出的问题是:是否可以使用四种颜色来给地图上的每两个相邻的国家着色,使得相邻的国家颜色不同?以下是对四色问题的详细介绍:
历史:四色问题最早可以追溯到19世纪,当时英国数学家弗朗西斯·格斯特提出了这个问题。

随后,数学家们开始尝试寻找问题的解决方法。

这个问题一直引发数学家和研究人员的兴趣,成为了数学领域中的一个经典问题。

问题陈述:四色问题的陈述是,给定一个平面地图,可以使用四种颜色来着色地图上的每一个国家,使得任意相邻的两个国家使用的颜色不同。

研究和尝试:四色问题在长时间内没有得到解决。

许多数学家试图寻找解决方法,但都没有成功。

该问题被证明是非常复杂的,需要复杂的图论和计算方法。

定理证明:直到1976年,美国数学家肯尼斯·阿佩尔(Kenneth Appel)和沃夫冈·哈肯(Wolfgang Haken)使用计算机辅助证明了四色问题的一个特殊情况,也就是每个地图都可以用四种颜色来着色。

这个证明引发了一些争议,因为它涉及到大规模的计算机搜索,不是传统的数学证明方法。

尽管如此,该证明被广泛接受,四色问题也被认为已经解决。

问题的一般化:尽管四色问题的一个特殊情况已经得到解决,但问题的一般化仍然是一个开放的数学问题。

研究人员继续探讨类似的问题,例如在三维空间中的着色问题。

总的来说,四色问题代表了数学中一个重要的解决问题的历程。

虽然该问题的证明涉及了计算机的使用,但它引导了图论和离散数学等领域的研究,对计算机科学和数学有着深远的影响。

四色问题的解决也是数学中的一个重要里程碑。

2。

四色定理

四色定理

四色定理四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。

德·摩尔根(Augustus De Morgan,1806~1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。

四色问题又称四色猜想,是世界近代三大数学难题之一。

基本介绍四色问题又称四色猜想、四色定理是世界近代三大数学难题之一。

地图四色定理(Four color theorem)最先是由一位叫古德里FrancisGuthrie的英国大学生提出来的。

德·摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。

他在信中简述了自己证明四色定理的设想与感受。

一个多世纪以来数学家们为证明这条定理绞尽脑汁所引进的概念与方法刺激了拓扑学与图论的生长、发展。

1976年美国数学家阿佩尔K.Appel与哈肯W.Haken宣告借助电子计算机获得了四色定理的证明又为用计算机证明数学定理开拓了前景。

地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来的。

四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。

”这里所指的相邻区域是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点就不叫相邻的。

因为用相同的颜色给它们着色不会引起混淆。

四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史:来自地图的启示相传四色问题是一名英国绘图员提出来的此人叫格思里。

世界难题数学[世界数学难题--四色猜想]

世界难题数学[世界数学难题--四色猜想]

世界难题数学[世界数学难题--四色猜想]世界数学难题——四色猜想平面内至多可以有四个点构成每两个点两两连通且连线不相交。

可用符号表示:K (n) ,n=、四色原理简介这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。

着色着色时要使得不会两个相邻(即有公共边界线段)的区域有相同的颜色。

1852年英国的格思里推测:四种颜色是充分必要的。

1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。

直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速运算了1200个小时,才证明了格思里的推测。

20世纪80-90世纪曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。

四色问题的解决在数学研究方法上的突破,开辟了确凿机器证明的美好前景。

四色定理的诞生过程当今世界世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想) 。

四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie) 来到一家科研单位搞地图着色工作时,发现了第二种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同颜色。

”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这九个数字之一来标记,而无法使相邻的数字两个区域得到相同的数字。

”这个结论能不能从数学上加以严格呢?他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一但此问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教他求教的老师、著名数学家德·摩尔根,摩尔根也没有有效途径能找到解决这个问题的途径,于是写信向自己的表哥、著名数学家哈密尔顿爵士查理斯请教。

哈密尔顿收到摩尔根的信后,对微积分进行论证。

但直到1865年哈密尔顿逝世为止,问题也没有能够加以解决。

轰动全球的四色问题

轰动全球的四色问题

轰动全球的四色问题1、“四色猜想”的由来1852年,刚从大学毕业的学生弗南西斯·葛斯里,在对英国地图着色的时候,发现一个很有趣的现象。

对无论多么复杂的地图,只消用四种色调就足以将相邻区域分开。

弗南西斯感到这绝不是一个偶然现象,其中说不定隐藏着某种深刻的科学道理哩。

他把自己的想法告诉胞兄弗德雷克·葛斯里,请他解决。

后者是著名数学家德·摩根教授的学生。

他对弟弟提出的问题很感兴趣,并敏锐地感到,这个地图着色问题很可能是个数学问题,于是准备给出数学证明。

尽管他绞尽脑汁,却百思不得其解。

当年10月23日,弗德雷克第一次用数学的形式作为“四色定理”请求德·摩根给以证明。

摩根教授对自己的学生所提出的定理有着浓厚的兴趣,当即写信将这事告诉了他在三一学院时的学友、著名数学家和物理学家哈密尔顿爵士: “我的一个学生今天要我为他提供一个充分的理由,来说明一件我自己还无法判明究竟是对的还是错的事实。

他说,如果画一张图,图上任意分成许多部分,凡是有共同边界线的两部分要涂上不同的颜色。

那么,大概需要四种颜色,而不需要更多的颜色就可以了。

请问:难道不能够构造出一个需要五种或者更多种颜色的图么?图1摩根教授期望这位智慧超人的超复数的缔造者能够给出答案。

哈密尔顿爵士根本没有想到,一个学生提出的这样一个简简单单的问题,居然会如此意想不到的困难。

他经过长达13年的冥思苦索,直到1865年逝世为止,对此染色定理,始终一筹莫展,毫无结果。

哈氏死后13年,1878年6月13日,一位当时很有名望的数学家凯莱,在数学年会上宣读他曾在伦敦数学会会刊上发表过的一篇文章时,将上述问题归纳为“四色猜想”。

并在 1879年英国皇家地理会创办的第一期会刊上,再次提及这个“猜想”,征求对这一“猜想”的正确解答。

川凯莱的文章和讲话,引起了很大的反响,吸引了一大批很有才华的有志之士去探索这一难题的奥秘。

值得一提的是,在这群有志之士中,有的人并不是以数学为专业的,而仅仅是对“四色猜想”着了迷而改攻数学的。

世界三大数学猜想

世界三大数学猜想

世界三大数学猜想
1、哥德巴赫猜想
2、费玛大定理——内容:他断言当整数n \ue2时,关于x, y, z的方程x +-y = z 没有正整数解。

3、四色问题——又称四色悖论、四色定理,就是世界近代三小数学难题之-。

地图四色定理最先就是由一
位毕业于伦敦大学叫格里斯的英国大学生提出来的。

1、哥德巴赫猜想
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7; 再任取一个奇数,比如,可以表示成=+7+5,也是三个素数之和,还可以写成++5,仍然是三个素数之和。

例子多了,即发现“任何大于5的奇数都是三个素数之和。

2、费玛小定理
简述:费玛大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶德费玛提出。

费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在年,英国数学家安德鲁怀尔斯宣布自己证明了费马大定理。

3、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。

地图四色定理最先是由一
位毕业于伦敦大学叫做格里斯的英国大学生明确提出去的。

内容:任何一-张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

也就是说在不
引发混为一谈的情况下一-张地图只需四种颜色去标记就行及。

用数学语言则表示:将平面任一地细分为
不相重叠的区域,每一个区域总可以用这四个数字之- 来标记而不会使相邻的两个区域
获得相同的数字。

四色问题 四色

四色问题    四色

著名数学家奥古斯都·德·摩根也没有能找到解决这个问题的途径,著 名数学家威廉·哈密顿对四色问题进行论证。但直到1865年哈密顿逝世为 止,问题也没有能够解决。

1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交 了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从 此也就解决了。
“四色问题”的被证明仅解决了一个历时100多年 的难题,而且成为数学史上一系列新思维的起点。
在“四色问题”的研究过程中,不少新的数学理论随之产生, 也发展了很多数学计算技巧。如将地图的着色问题化为图论 问题,丰富了图论的内容。
不仅如此,“四色问题”在有效地设 计航空班机日程表,设计计算机的编码 程序上都起到了推动作用。
数学语言:将平面任意地细分为不相重叠的区域,每一个 区域总可以用1,2,3,4这四个数字之一来标记,而不会使相 邻的两个区域得到相同的数字。 (相邻区域,是指有一整段边界是公共的。如果两个区域 只相遇于一点或有限多点,就不叫相邻的。)
四色猜想的提出:
英国毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色 工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着 色,使得有共同边界的国家都被着上不同的颜色。他和在大学读书的弟弟 格里斯决心试一试,可是研究工作没有进展。
实际应用
虽然任何平面地图可以只用四个颜色着色, 但是这个定理的应用是有限的 现实中的地图常会出现飞地,即两个不连 通的区域属于同一个国家的情况(例如美国的 阿拉斯加州),而制作地图时我们仍会要求这 两个区域被涂上同样的颜色,在这种情况下, 只用四种颜色将会造成诸多不便。 实际中用四种颜色着色的地图是不多见的, 而且这些地图往往最少只需要三种颜色来染色。 此外,即便地图能够只用四种颜色染色,为了 区分起见,也会采用更多的颜色,以提示不同 地区的差别。

四色猜想

四色猜想

世界近代三大数学难题之一。

四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。

哈密尔顿接到摩尔根的信后,对四色问题进行论证。

但直到1865年哈密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。

不久,泰勒的证明也被人们否定了。

后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。

于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。

1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。

1950年,有人从22国推进到35国。

1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。

四色定理

四色定理

定理的提出
1872年,英国当时最著名的数学家凯利正式向伦敦数学学 会提出了这个问题,于是四色猜想成了世界数学界关注的问题。 世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1878~1880年两年间,著名的律师兼数学家肯普(Alfred Kempe) 和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文, 宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 肯普的证明是这样的:首先指出如果没有一个国家包围其 他国家,或没有三个以上的国家相遇于一点,这种地图就说是 “正规的”(左图)。如为正规地图,否则为非正规地图(右 图)。一张地图往往是由正规地图和非正规地图联系在一起, 但非正规地图所需颜色种数一般不超过正规地图所需的颜色, 如果有一张需要五种颜色的地图,那就是指它的正规地图是五 色的,要证明四色猜想成立,只要证明不存在一张正规五色地 图就足够了。
利用三角形和数学归纳法证明
利用三角形和数学归纳法证明
证明 在平面图中,不在同一直线上的三点决定一个平面,那么 三点构成的三角形是平面图中最基本、最简单、最稳定、密闭 的图形。 由于在对地图着色过程中不考虑图的具体形状只考虑点是 否相邻,将平面图的不相连点使其相连(这样增加着色难度), 形成有许多三角形相连的平面图(三点以下肯定成立)。如图1: 添加辅助线(不相邻的点使其相邻,这样就增加了着色的色数, 有利于证明),将图1分解为4个△ABC。 在平面图中的无数点中,任取相邻三点构成各点相邻的 △ABC(见图2),则需3种颜色A B C,在平面图中再任取一点 D 与 A B C 三点相邻,同时D又与A B C三点相连后形成三角形。任取 一点E与 A、B、C、D四色相连,E必与四色之一色相同即E点在 △ABD中与C色相同、在△ACD中与B色相同、在△BCD中与A色相 同、在△ABC外与D色相同,E与另外三色相连形成新的三角形。 在三角形的三点之外任取一点只有在三角形的内部和外部 两种情况且这两种情况的点不会相邻,该点最多与三角形的三 点相连且又形成新的三角形。

最终被计算机所证明的百年数学难题——四色定理

最终被计算机所证明的百年数学难题——四色定理

和费马大定理,庞加莱猜想一样, 四色定理 也是那种叙述起来非常简单,证明起来却极其困难的百年数学难题。

但四色定理非常特殊的一点在于,它的最终证明并不是传统的数学逻辑证明,而是借助计算机分析所有可能的情形后完成的。

这也就是说,四色定理的证明迄今为止仍非单独的人力所能及,我们仍然没有找到理论上的逻辑证明,但借助计算机强大的计算能力,的确又可以解决这个难题。

四色猜想四色猜想最早并不是由职业数学家提出的,而是由从事地图制作的 费兰西斯.古色利(Francis Gurthire)发现的。

在为不同的地图着色过程中,细心的古色列发现,对于相邻(具有公共边界)的地区,若它们着不同颜色,那么只要四种颜色就可以完成这张地图。

好奇心强烈的古色列对这个猜想的正确性非常感兴趣,但苦于自己不具备专业的数学知识,于是他将这个问题告诉了自己在伦敦大学学数学的弟弟 费雷德里克·古色利(Frederick Guthrie),但弟弟也无能为力,后来他又寻求老师,著名数学家 德·摩根(deMorgan,1806~1871,提出了集合论中著名的德·摩根定律) 的帮助。

但令兄弟二人震惊的是,即使是德·摩根这样出色的数学家也对这个问题无能为力。

德·摩根但德·摩根算得上是四色猜想的第一位先驱,实际上他证明了至少需要四种颜色,并且因此留下了关于四色猜想最早的正式文字记录。

同样,德·摩根向许多当时著名的数学家咨询过这个问题,但都一无所获,直到英国著名数学家 凯莱(ArthurCayley,1821~1895,矩阵论创始人) 在1878年向伦敦数学会提交这个问题后,四色猜想才开始广为人知,并吸引了众多数学家来研究这个问题。

凯莱在凯莱正式向数学界提出四色猜想后不到一年时间内,毕业于剑桥大学数学系的律师 肯普(Kempe)给出了一个看似正确的证明,但直到十一年后, 希伍德(Heawood) 才发现了肯普证明中的错误,由此证明四色猜想的努力再次破产。

p5r塞瓦定理 四色定理 十色定理

p5r塞瓦定理 四色定理 十色定理

p5r塞瓦定理四色定理十色定理
答案:
塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则 (BD/DC)×(CE/EA)×(AF/FB)=1。

塞瓦定理载于1678年发表的《直线论》,是意大利数学家塞瓦的重大发现。

塞瓦(Giovanni Ceva,1648~1734)意大利水利工程师,数学家。

四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。

四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。

用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。

”这里所指的相邻区域是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点就不叫相邻的。

因为用相同的。

十色定理又叫Heawood定理。

人类在企图证明四色定理过程中,发现了在曲面上作图构造10个区域两两相连的平面,反而更加容易。

四色猜想 四色定理

四色猜想 四色定理

四色猜想四色定理地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来的。

四色问题的内容是任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

用数学语言表示即将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。

这里所指的相邻区域是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点就不叫相邻的。

因为用相同的颜色给它们着色不会引起混淆。

四色问题的内容是任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史不过情况也不是过分悲观。

数学家希奇早在1936年就认为讨论的情况是有限的不过非常之大大到可能有10000种。

对于巨大而有限的数,最好由谁去对付?今天的人都明白:计算机。

从1950年起希奇就与其学生丢莱研究怎样用计算机去验证各种类型的图形。

这时计算机才刚刚发明。

两人的思想可谓十分超前。

1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。

到1976年他们认为问题已经压缩到可以用计算机证明的地步了。

于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时,作了100亿个判断最终证明了四色定理。

在当地的信封上盖Four colorssutfice四色,足够了的邮戳就是他们想到的一种传播这一惊人消息的别致的方法。

人类破天荒运用计算机证明著名数学猜想应该说是十分轰动的。

赞赏者有之,怀疑者也不少,因为真正确性一时不能肯定。

后来也的确有人指出其错误。

1989年,黑肯与阿佩尔发表文章宣称错误已被修改。

1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。

无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。

问题影响一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。

四色原理

四色原理

四色猜想的证明四色猜想是数学的难题之一,但关键的困难是这个证明的思路很难找到,如果找到到正确的思路,就可以证明,而且证明过程可以很简单,可以被很多人理解,本文的关键点是对国家和国家的接触关系变成点和线的关系,然后再证明点和线之间的相互关系。

四色猜想首先是在简单平面上成立,这个简单平面是指一个单一的封闭曲线可以把屏幕分成两个互相独立的部分,向轮胎一类的曲面以及更复杂的曲面四色是不够的,这个证明已经被前人证明。

对于国家来讲,也需要说明,国家也是简单的国家,即一个国家是一个可以单独连通的一块曲面,一个国家分成几个独立的几部分在这里不考虑。

对于国中国的现象和环形的国家也暂时不考虑。

在这两点的前提下,再对地图作简化,将国家和国家之间的相临关系变成点和线的关系。

这是关键所在。

可以用点来代替国家,用点之间的连线表示国家的相临关系,对点涂色来代表对国家的着色,每一个线的两个端点颜色不能相同。

这样就可以研究点和线之间的关系,用这个关系来代替对国家的着色。

例如下图,A、B、C、D代表四个国家。

图1将上图变成下面点和线的关系,图2这个点和线的关系完全和上图相对应,四种颜色就可以用四种数字表示,点A代表A这个国家,点A有四种选择,点B有三种选择,点C有两种选择,点D也有两种选择。

用四种颜色对上面的图着色,可以有4×3×2×2=48种着色方式。

如果上图D和A相接壤,那么不是将B和外界隔离,就是将C和外界隔离,如下图。

图3这时D和A、B、C都相接,D就只有一个选择,这时有4×3×2=24 种着色方式。

这个图中的每一个点都和其他三个点相接,虽然有24种着色方式,但总是需要四种颜色。

以下的文中用点来代表国家,用线来表示相临关系,这样和对国家的着色是一致的,可以使关系简化。

对于N个点来讲,最少的相临方式有N-1种,就是N个国家只是但独相接。

这种情况很简单,这是只需要两种颜色即可,那么最复杂的连接方式有多少呢?公式13N-6最复杂的连接方式有3N-6种连接方式,这时整个图形的最外面的一圈有3个点,这可以被很简单的证明,例如图3,A、B、C三个点,相互之间可以有3条连线,在增加一个点D最多增加3条连线这个图3的外围只有A、C、D三个点,点B被封闭在由A、C、D 这三个点之简的连线中,不可能和外面的点相连。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界数学难题——四色猜想平面内至多可以有四个点构成每两个点两两连通且连线不相交。

可用符号表示:K(n),n=、<4。

四色原理简介这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。

着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。

1852年英国的格思里推测:四种颜色是充分必要的。

1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。

直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。

20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。

四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。

四色定理的诞生过程世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。

四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。

”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。

哈密尔顿接到摩尔根的信后,对四色问题进行论证。

但直到1 865年哈密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。

如为正规地图,否则为非正规地图(右图)。

一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。

肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。

这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。

第一个概念是“构形”。

他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。

肯普提出的另一个概念是“可约”性。

“可约”这个词的使用是来自肯普的论证。

他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。

自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。

但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。

11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。

不久,泰勒的证明也被人们否定了。

后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。

于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。

1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。

1950年,有人从22国推进到35国。

1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了5 0国。

看来这种推进仍然十分缓慢。

电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。

1976年,在J. Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。

四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理。

它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。

证明方法:继承分裂法来解决着色问题先说明一下,本文分析的地图为球面地图,一个国家所占区域称为一个”色块”,把地图边界的所有色块称为色块{A}。

从一个色块的内部撕开球面地图,构建边界为一个色块的平面地图并着色,本文不妨设定平面地图最外色块着红色。

如图001。

图001现在来分析一种现象,如图003,中间有色块p1p2 p3,它在另一色块中间并与其相邻色块之间有且仅有2个公共顶点,如图004所示,现在以p1为例说明其在地图中的特点:只要是包围p1的色块着同一色,那么p1色块是否存在于地图中,对整个地图用几种颜色着色没有影响,在本文中称这种类型的色块为”过渡色块”。

(图003)(图004)为了方便说明,现在假定有一地图,仍以着色地图001为例,在地图中的部分非红色块中加入红色“过渡色块”C1 C2 C3 …Cn,如图005 图0 06所示, 对图006这种类型,两个过渡色块有1个公共顶点,用一条线L连通“过渡色块”与原地图中的部分红色块,现在以线L将如图005所示的地图裂开成图007与图0 08所示的子地图,(图005)(图006)(图007)(图009)现在来分析裂开后的子地图:1,地图边界的色块{A1}仍着红色,2,因子地图也为平面图,所形成的两子地图着色互不干涉。

3,如图009, 把Q1 Q2 Q3 Q4 Q5….Qn色块裂开所形成的新色块叫子q1q2 q 3 q4 q5….qn,裂开后,如果子q1 q2 q3q4 q5….qn色块着色分别继承Q1 Q2 Q3 Q4 Q5….Qn的着色,那么,子地图中的其它色块着色与其裂开前在父地图中的着色情况是完全一致的,在这里把这种分裂法叫继承分裂法。

(图009)(图011)现在假设四色猜想不正确,存在一地图SP ,SP中有一个色块IN必须用到第五色才能着色。

现在构造一条L线,不通过IN色块情况下,用上述继承分裂方法,将已着色的地图S P 分裂成sp1,sp2,由上述分裂方法知,IN必定存在sp1或sp2中,不妨取IN在sp1,再分裂sp1,依此类推进行分裂,最后得到地图spn,如图011,地图spn的特点是边界为着同一色的色块{An},除了IN色块外都与其相邻或相接,由假设得知,IN必须要用第五色才能着色,然spn地图中与色块{An}相邻或相接的色块着色与色块{An}着色不同,所以IN色块用与色块{An}相同的色着色就可以了,不必用到第五色,所以假设不成立。

假设地图SP中存在多个色块必须用第五色着色的情况,由五色定理得知,SP中不可能存在必须用第五色着的色块相邻的情况,可以按上述证明方法证明假设不成立,假如IN色块在没分裂前就与边界色块相邻,也可以按上述证明方法证明假设不成立。

综上所述,四色猜想成立!四色定理的重要四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。

最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。

缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”四色定理成立区划意义重大摘要:地图着色只用四色即可区划相邻地区的问题,是近代三大数学难题之一。

求证四色问题,需要数学,地理学,区划学等各方面的知识。

我在创新区划学说,并取得重大发明之后,创新性思维和系统性论证四色定理成立。

同时为我区划创新的科学性及其技术应用,奠定了科学基础。

我用地图区划,几何求证,图论推倒,图形拼合,地理分析综合论证四色定理成立,互相可以联想,参证,并发现许多奥妙和定理。

由自然数集奇偶性,必然导致二色偶区环图,三色奇区环图,三色三区环图具有环闭性,四色区环图无必然性,五色区环图无必然性,因而四色定理成立。

进而猜想三维空间五色定理成立。

本论文实际上是综合多学科进行数学难题论证的结果。

使得四色定理的证明过程由浅入深,由简入繁,由一至无穷,由直观入抽象。

因此具有很大的实用价值和应用范围。

教育工作者可以启迪大中小学生提高对数和形的深刻认识。

科技工作者可以正确应用定理进行工程设计和规划制定。

尤其是区划学科得到广泛应用。

使地图,地理,行政,组织,军队,交通,旅游,自然,经济,城建,工程,各项分类分级区划都按最优原则合理安排,从而大大提高全国人民的工作效率。

关键词:图,奇,偶,区划,相邻,相隔,唯一性,环闭性,二色偶环,三色奇环。

定理综合:由自然数集奇偶性质,推论定理如下:定理一:一点偶线形成二色2k区环图。

定理二:一点奇线形成三色2k+1区环图。

定理三:一点或面外三色三区环图,因相邻不隔具有环闭性。

定理四:四区环图必有二图相隔可用同色无环闭性。

定理五:四色区环图无必然性,不都成相邻不隔关系。

定理六:二交点三线“工”形相邻四区环图只用三色区划。

定理七:偶点图相邻各色区划。

定理九:四色四区奇面三环图,因相邻不隔具有唯一性。

定理十:二维四方图的一维环闭合形成三色环,必使另一维环相隔。

定理十一:中环二边内环和外环相隔可以使用相同三色。

定理十二:内中外三环之间任一区图不会相邻四色区图。

定理十三:任一图同时相邻四图,必有二图相隔可用同色。

定理十四:任二图同时相邻在三色环中必会形成二图相隔可用同色。

定理十五:五色区划图无必然性。

不都成相邻不隔关系。

定理十六:四色定理成立具有必然性,这是系统归纳的结果。

结论解密:图内多点可作一组平行线,形成左右区划二色邻隔环,又使某一图相邻左右二图相邻相隔,并且在圆环面上因奇数形成三色区划。

相关文档
最新文档