世界数学难题——四色猜想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界数学难题——四色猜想
平面内至多可以有四个点构成每两个点两两连通且连线不相交。
可用符号表示:K(n),n=、<4。
四色原理简介
这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。1852年英国的格思里推测:四种颜色是充分必要的。1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。
四色定理的诞生过程
世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1 865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了5 0国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,在J. Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。
证明方法:继承分裂法来解决着色问题
先说明一下,本文分析的地图为球面地图,一个国家所占区域称为一个”色块”,把地图边界的所有色块称为色块{A}。从一个色块的内部撕开球面地图,构建边界为一个色块的平面地图并着色,本文不妨设定平面地图最外色块着红色。如图001。
图001
现在来分析一种现象,如图003,中间有色块p1p2 p3,它在另一色块中间并与其相邻色块之间有且仅有2个公共顶点,如图004所示,现在以p1为例说明其在地图中的特点:只要是包围p1的色块着同一色,那么p1色块是否存在于地图中,对整个
地图用几种颜色着色没有影响,在本文中称这种类型的色块为”过渡色块”。
(图003)
(图004)
为了方便说明,现在假定有一地图,仍以着色地图001为例,
在地图中的部分非红色块中加入红色“过渡色块”C1 C2 C3 …Cn,如图005 图0 06所示, 对图006这种类型,两个过渡色块有1个公共顶点,用一条线L连通“过渡色块”与原地图中的部分红色块,现在以线L将如图005所示的地图裂开成图007与图0 08所示的子地图,
(图005)
(图006)
(图007)
(图009)
现在来分析裂开后的子地图:
1,地图边界的色块{A1}仍着红色,
2,因子地图也为平面图,所形成的两子地图着色互不干涉。
3,如图009, 把Q1 Q2 Q3 Q4 Q5….Qn色块裂开所形成的新色块叫子q1q2 q 3 q4 q5….qn,裂开后,如果子q1 q2 q3q4 q5….qn色块着色分别继承Q1 Q2 Q3 Q4 Q5….Qn的着色,那么,子地图中的其它色块着色与其裂开前在父地图中的着色情况是完全一致的,在这里把这种分裂法叫继承分裂法。
(图009)
(图011)
现在假设四色猜想不正确,存在一地图SP ,SP中有一个色块IN必须用到第五色才能着色。
现在构造一条L线,不通过IN色块情况下,用上述继承分裂方法,将已着色的地图S P 分裂成sp1,sp2,由上述分裂方法知,IN必定存在sp1或sp2中,不妨取IN在sp1,再分裂sp1,依此类推进行分裂,最后得到地图spn,如图011,地图spn的特点是边界为着同一色的色块{An},除了IN色块外都与其相邻或相接,由假设得知,IN必须要用第五色才能着色,然spn地图中与色块{An}相邻或相接的色块着色与色块{An}着色不同,所以IN色块用与色块{An}相同的色着色就可以了,不必用到第五色,所以假设不成立。
假设地图SP中存在多个色块必须用第五色着色的情况,由五色定理得知,SP中不可能存在必须用第五色着的色块相邻的情况,可以按上述证明方法证明假设不成立,假如IN色块在没分裂前就与边界色块相邻,也可以按上述证明方法证明假设不成立。
综上所述,四色猜想成立!
四色定理的重要
四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。
缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证