数学猜想系列故事-四色猜想
小学数学数学故事彻底解决“四色问题”

彻底解决“四色问题”地图“四色问题”(又称“四色猜想”)最早由英国大学生法兰西斯?古特里(Francis Guthrie)于1852年在绘制地图时发现,他却找不出科学肯定的证明就去请教他在伦敦大学读书的哥哥费特里克?古特里(Frederick Guthrie)。
兄弟俩搞了好些日子还是证明不了,就由哥哥去向伦敦大学的老师、当时非常著名的数学家奥古斯都?德?摩根(Augustus de morgan)请教,摩根教授当时也证明不了,就至函他在三一学院的好友――著名数学家威廉?哈密尔顿(William Rowan Hamilton),希望他能帮助证明。
可哈密尔顿对这个问题研究了十三年,到死也没能给出证明。
自从1879年至今全世界不断有人提出证明了“四色问题”,可是都叫人难以信服,不断又被别人否定,至今这个“四色问题”仍与“哥德巴赫猜想”及“费马最后定律”一起被全世界公认为数学史上最著名的三大难题。
本人2004年夏天刚接触到“拓扑学”,试着用“拓扑学”的方法去分析“四色问题”,只化半小时左右时间就证明了“四色问题”。
我写的《关于“四色问题”的证明》(以下简称《证明》,可在电脑中文搜索栏打入“四色问题”或作者姓名“焦永溢”查看)2004年底在许多数学网站上刊登出来后,看了的人很多认为非常正确;但也有一部分不明白的人认为证明了“相互间有连线的点不多于四个”并不是证明了“四色问题”,他们认为四点相互间有连线只是平面图上的局部现象,不能代表整个平面图,还提出比如中间一个点周围五个点的图形并没有四个点之间相互有连线却也要四种颜色。
可我在这里要再强调一下:《证明》中三个定理概括讲就是“三点必闭,四点必围,五点必断”,并没有说一定要四点相互间有连线才需四色,证明“四色问题”关键在于“五色必断”。
《证明》中分析了第五点E落在封闭图形ABC以内及以外的情况,也提到了第五点若落在连线上必定会隔断这条连线,只是没有把隔断的情况用图画出来,其实一画出来也是与另两种情况一样:三点包围一点,另一点又被小的封闭图形所包围。
数学猜想

数学猜想四色猜想(三大数学难题之三)世界近代三大数学难题之一。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。
不久,泰勒的证明也被人们否定了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
小学数学数学故事数学猜想系列四色猜想

小学数学数学故事数学猜想系列四色猜想世界近代三大数学难题之一。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。
不久,泰勒的证明也被人们否定了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
四色猜想四色猜想四色定理

四色猜想-四色猜想四色定理地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie 的英国大学生提出来的。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
”这里所指的相邻区域是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史不过情况也不是过分悲观。
数学家希奇早在1936年就认为讨论的情况是有限的不过非常之大大到可能有10000种。
对于巨大而有限的数,最好由谁去对付?今天的人都明白:计算机。
从1950年起希奇就与其学生丢莱研究怎样用计算机去验证各种类型的图形。
这时计算机才刚刚发明。
两人的思想可谓十分超前。
1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。
到1976年他们认为问题已经压缩到可以用计算机证明的地步了。
于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时,作了100亿个判断最终证明了四色定理。
在当地的信封上盖“Four colorssutfice”四色,足够了的邮戳就是他们想到的一种传播这一惊人消息的别致的方法。
人类破天荒运用计算机证明著名数学猜想应该说是十分轰动的。
赞赏者有之,怀疑者也不少,因为真正确性一时不能肯定。
后来也的确有人指出其错误。
1989年,黑肯与阿佩尔发表文章宣称错误已被修改。
1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。
无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。
问题影响一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。
二、四色猜想与证明

四色猜想:“任何一张地图只用四种颜色就能使具有共同边界的国家填上不同的颜色。
”
数学语言表示:“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
”这里所指的相邻区域是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
1852年,毕业于伦敦大学的格斯里发现每幅地图都可以只用四种颜色着色。
和其弟弟研究没成功。
1852年,格斯里的弟弟请教其老师著名数学家德·摩尔根但未能证明,摩尔根后向著名数学家哈密顿爵士请教,仍未证明。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题后,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
电子计算机问世后,演算速度迅速提高,加快了对四色猜想证明的进程。
在1976年,美国伊利若斯大学的两台不同的电子计算机,用1200个小时,作100亿个判断,结果没有一张地图是需要五色的,最终证明了四色定理,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时,当地的邮局在当天发出的所有邮件上都加盖了四色足够的特制邮戳,庆祝这一难题获得解决。
但证明并未止步,计算机证明无法给出令人信服的思考过程。
在长期的论证过程中,其他发现,人们证明,三种颜色是不够用的,五种颜色肯定够用,人们还证明,二维平面内无法构造五个或五个以上两两相邻区域。
四色猜想

四色猜想1852年,刚从伦敦大学毕业的哥斯尼在给他的兄弟弗雷赘克的一封信中提出了这样的猜想:在一幅正规地图中。
凡是有共同边界结的国家,都可以最多只用四种颜色着色,就能把这些国家区别开来。
弗雷赘克读了这封信后,就企图用数学品质方法来加证明。
但是,他花了许多时间,仍是毫无头绪,他只好去请教他的教师摩尔根。
但摩尔根也无法证明这个问题。
同时也无法推翻,就把它交给了英国著名的数学家哈密顿。
从此,这个问题在一些人中间传来似去,直到1865年哈密顿逝世为止,这个问题还没有得到解决。
于是这个问题便以"四色猜想"的名字留在了近代数学史上。
1878年,著名的英国数学家凯来把"四色猜想"通报给伦敦的数学学会会员,征求解答。
数学界顿时活跃起来,很多人挥戈上阵,企图试一试自己的能力。
1879年,肯普首先宣布证明了四色定理,接着在1880年,泰特也宣布证明四色定理的问题已经解决,从此就很少有人过问它了。
然而还有一个数学家赫伍德,并没有放弃对四色问题的研究,他从表少年时代一直到成为白发苍苍的老者,花费了毕生的精力致力于四色研究,前后整整60年。
终于在1890年,也就是肯普宣布证明了四色定理的11年之后,赫伍德发表文章,指出了肯普证明中的错误,不过,赫伍德却成功地运用肯普的方法证明了五色定理,即一张地图一公平能用和种颜色正确地染色。
五色定理被证明了。
但四色定理却又回到未被证明的四色猜想的地位了,这不仅由于赫伍德推翻了肯普的证明,而且离开泰特发表论文66年后的1946年,加拿大数学家托特又举出反例,否定了泰特的证明。
肯普的证明,虽然在11年后被推翻了,但是,人们认为他的证明思路有很多可取的地方。
因此,数学家,有不少人一直在沿着他的思路,推进着四色问题的证明工作,并且有了新的进展。
然而,这些成就所提供的检验办法太复杂了,人们难以实现。
就拿1970年有些人的方案来说,用当时的计算机来算也需要连续不断地工作10万小时(即11年以上),才能得出结论,这显然是不可能的。
数学经典问题-四色问题

数学经典问题·四色猜想世界近代三大数学难题之一――四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。
不久,泰勒的证明也被人们否定了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
趣味数学素材:四色猜想

四色猜想河北谢丽红1852年秋,刚从伦敦大学毕业的青年数学家古色利(Guthrie,F.)望着一张挂在墙上的英国地图发呆,他边数着英国的行政区边查找它的位置,同时还注意该区域的地图着色,看着看着他突然发现:该地图仅用四种不同颜色便可将图中任何两相邻区域区分开.古色利无法解释这一现象,于是他写信给仍在大学读书的弟弟,让他向该校有名的数学家棣·莫根(De Morgan,A.)请教.棣·莫根首先注意到:区分地图上的不同区域少于四种颜色不行.比如右图所示四个区域仅用三种颜色无法将它们彼此区分(请你画画看).遗憾的是:棣·莫根本人也未能解决此问题.1878年,英国数学家凯莱(Cayley,A.)在伦敦数学年会上正式提出该问题———平面或球面上的地图仅需四种颜色可将任何相邻的两区域区分开———且征求解答,人称“四色猜想”.次年,英国律师肯普(Kempe,A.B.)发表了宣称证明四色猜想的文章,不幸的是:十一年后希伍德(Heawood,P.J.)发现文章有一个严重错误.尽管如此,肯普创立的解决此问题的方法却给了人们极大的启示.尔后,希伍德在肯普方法基础上开始了猜想的研究,整整60年过去,但他仍未能攻下这个貌似简单的四色猜想.所幸的是:他在其研究中的副产品颇丰,比如他证明了:环面(如充气自行车内胎)上的地图仅需七种颜色便可将其上面任何两相邻区域区分开,且少于七种不行.这之后又陆续有许多数学家从事此猜想的研究,但进展缓慢,结果只是局部的,即对区域数是有限的某些数的情形给出了完整的证明.到1976年初,人们仅对区域数是96的地图着色的四色猜想给出证明.但这对区域数是一般自然数的情形讲远远不够.20世纪70年代初德国数学家希斯(Heesch,H.)提出了解决四色定理(寻找所谓不可约图)的“放电算法”,为此人们将注意力转移到电子计算机上,希望借助它来完成一般地图着色的四色猜想证明.1976年6月,美国伊里诺斯州大学的黑肯(Haken,W.)和阿佩尔(Appel,K.I.),经过四年的艰苦工作,终于在计算机的帮助下完成了四色猜想的证明(共花费1200个小时的机上时间,进行60亿个逻辑判断).因而猜想变成了定理.为此伊里诺斯州地方邮局还发行了首日封,纪念这个困扰人们一个世纪之久的问题的解决,邮戳上刻着“FOUR COLORS SUFFICE”(四种颜色就够了).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学猜想系列故事-四色猜想
数学猜想系列故事----四色猜想
数学猜想系列故事----四色猜想
世界近代三大数学难题之一。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢,他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878,1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的
1
证明是错误的。
不久,泰勒的证明也被人们否定了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
于是,人们开始认识到,这个貌似容易的题目,
其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。
四色猜想的计算机证明,轰动了世界。
它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。
不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
2。