数学试卷参考答案

合集下载

初一数学试卷(含答案)

初一数学试卷(含答案)

初一数学试卷一、选择题1.-3的相反数是 ( )A.3B.-3 C.D.2.下列结论正确的是 ( )A.有理数包括正数和负数 B.无限不循环小数叫做无理数是最小的整数 D.数轴上原点两侧的数互为相反数 ,,,,, )A.1个B.2个C.3个D.4个4.下列代数式中a , -2ab 2312ab c ,单项式共有( )A.6个 B.5 个 C.4 个 D.3个5、下列各对数中,数值相等的是 ( )A. B. C. D.,6.用代数式表示“m 的3倍与n 的的平方差”,正确的是 ( )A.(3m-n)2 B.3(m-n)2 C.(3m)2-n 2 D.(m-3n)27.给出下列判断:①单项式5×103x 2的系数是5;②x ﹣2xy +y 是二次三项式;③多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是 ( ) A.1个B.2个C.3个D.4个8.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |+|c ﹣b |﹣|b +a |=( ) A.﹣2b B.0C.2c D.2c ﹣2b9.数轴上点M 表示有理数-3,将点M 向右平移2个单位长度到达点N,点E 到点N 的距离为4,则点E 表示的有理数为 ( )A.3 B .-5或3 C.-9或-1 D.-110.已知,则值为多少 ( )A.1或﹣3B.1或﹣1C.﹣1或3D.3或﹣3二、填空题11.如果向西走30米记作―30米,那么向东走50米记为____________米.12.地球上的陆地面积约为14.9亿千米2,用科学记数法表示为 千米213.某一天的最高气温是11℃,最低气温是-10℃,那么这一天的最高气温比最低气温高 ℃.14.单项式的系数是m,次数是n,则m+n=15.若单项式与是同类项,则m n=16.若x2+x的值为3,则代数式2x2+2x+5的值为 .17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x,那么x的值为 .三、解答题:18.把下列各数分别填入相应的集合内:0,-2.5,0.1212212221, 3,-2,,,-0.1212212221…, (每两个1之间依次增加1个2).(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)无理数集合:{ …}.19. 计算:, (2),(3) (4)、﹣14﹣(1﹣)×[4﹣(﹣4)2].20.化简(1)3b+5a+4a﹣5b; (2)(a2-2ab+b2)﹣(a2+2ab+b2).(3)先化简再求值3(2b2-a3b)-2(3b2-a2b-a3b)-4a2b,其中a=-,b=4.21.已知:A=2a2+3ab-2a-1,B=-a2+ab+1(1)当a=-1,b=2时,求4A-(3A-2B)的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.22.海澜集团制作了一批西服,成本为每套200元,原定每套以280元的价格销售,这样每天可销售200套。

数学试卷完美版(带答案)

数学试卷完美版(带答案)

数学试卷本卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷一、选择题(每题5分,共60分)1、设0a b <<,则下列不等式中正确的是 ( )A. 2a b a b ab +<<<B . 2a b a ab b +<<<C .2a b a ab b +<<<D . 2a b ab a b +<<<2、已知等比数列{}n a 的公比2=q ,前n 项和为n S ,则42S a = ( )A. 2B. 4C.152D. 1723、已知向量→a ,→b 满足,2b ,1a ,0b a ===∙→→→→则 =→→b -a 2 ( )A. 0B. 22C. 4D. 84、有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ( )A.π12B.π24C.π36D.π48 5、已知函数()42322+++=kx kx x x f 的定义域是R ,则k 的取值范围是 ( )A. ()4,0B. [)4,0C. (]4,0D. []4,0 6、=-+oooo oo7sin 15sin 8cos 7sin 15cos 8sin ( )A.32-B.32+C. 32±D.23-5565567、设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,362=-+k k S S ,则k = ( )A . 8B . 7C . 6D . 5 8、已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A. 7B. 5C. -5D. -79、在ABC ∆中,,30A ,100b ,80a o ===则角B 的解得个数是 ( ) A.0个 B.1个 C.2个 D.不确定的10、已知()x f y =是开口向上的二次函数,且()()x f x f -11=+恒成立.若()()2-31x f x f <+,则x 的取值范围是 ( ) A. ⎪⎭⎫⎝⎛2343, B. ⎪⎭⎫⎝⎛∞43-,∪⎪⎭⎫⎝⎛∞+,23C. ⎪⎭⎫ ⎝⎛43-23-, D. ⎪⎭⎫ ⎝⎛∞23--,∪⎪⎭⎫⎝⎛∞+,43- 11、已知⎥⎦⎤⎝⎛∈20πθ,,则函数()θθθsin 2sin +=f 的最小值为 ( )A .22 B. 3 C. 32 D. 212、定义在R 上的偶函数()x f 满足()()x f x f =+2,且在[]2,-3-上是减函数.若B A 、是锐角三角形的两内角,则有 ( ) A. ()()B cos A sin f f > B. ()()sinB A sin f f > C. ()()B cos A sin f f < D. ()()B cos A cos f f >第Ⅱ卷二、填空题(共4个小题,每小题5分,共20分;把答案填答题纸上)13、在ABC ∆中,3B π=中,且34B C B A =⋅,则ABC ∆的面积是___________.14、设,x y 满足约束条件:⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤+.0y 0x ,1y x ,3y x 则y 2x z -=的取值范围为 .15、已知0,0x y >>,若2282y x m m xy+>+恒成立,则实数m 的取值范围是 .16、 若)y ,x (P 在圆()()63y 3x 22=-+-上运动,则xy 的最小值为__________.三、解答题(共6小题,17题10分,18—22题各12分,共70分;解答应写出文字说明,证明过程或演算步骤)17、已知a 千克的糖水中含有b 千克的糖;若再加入m 千克的糖()0,0>>>m b a ,则糖水变甜了.请你根据这个事实,写出一个不等式 ; 并证明不等式ma mb a b ++<()0,0>>>m b a 成立,请写出证明的详细过程.18、如图,正三棱柱111C B A AB C -的底面边长为3,侧棱233AA 1=,D 是CB 延长线上一点,且BD=BC(1)求证:直线1B C //平面D AB 1; (2)求二面角B AD B 1--的大小; (3)求三棱锥11AB B C -的体积.19、已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,并且有c b C a C a +=+sin 3cos 。

上海市2023年中考数学试卷及答案详解(图片版)

上海市2023年中考数学试卷及答案详解(图片版)

第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。

数学考试试卷(含答案)

数学考试试卷(含答案)

数学考试试卷(含答案)
一、选择题
1. 以下哪个是质数?
A. 4
B. 11
C. 15
D. 20
正确答案:B
2. 若a = 5,b = 3,下列哪个式子是正确的?
A. a × b = 15
B. a ÷ b = 1.5
C. a + b = 8
D. a - b = 2
正确答案:C
3. 一辆汽车行驶了150公里,油箱容量为40升,若每升油可行驶12公里,则还剩下多少升油?
A. 4
B. 8
C. 12
D. 16
正确答案:A
二、填空题
1. 已知两个数的和为18,差为4,求这两个数分别是多少?
答案:11, 7
2. 若x = 3,求解方程2x + 5 = 17的解?
答案:x = 6
3. 有一个长方形,长为12米,宽为8米,求其面积。

答案:96平方米
三、解答题
1. 求解方程3x + 7 = 22的解。

解答:首先将方程两边减去7,得到3x = 15,然后将15除以3,得到x = 5。

所以方程的解为x = 5。

2. 计算2的平方根。

解答:2的平方根为1.414。

3. 若a:b = 3:5,且b = 20,求a的值。

解答:由比例关系可知,a:b = 3:5,则a = (3/5) * b。

将b = 20代入,得到a = 12。

所以a的值为12。

以上是数学考试试卷及答案的内容。

注:答案仅供参考,请自行核对。

2024 考研数学(三)真题试卷及参考答案

2024 考研数学(三)真题试卷及参考答案

试卷及解2024考研数学(三)真题析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.设函数21()lim1nn xf x nx →∞+=+,则()f x A.在1x =,1x =-处都连续.B.在1x =处连续,在1x =-处不连续.C.在1x =,1x =-处都不连续.D.在1x =处不连续,在1x =-处连续.1.【答案】D【解析】当21 1lim11nn xx x nx →∞+<=++时,,当211lim01nn xx nx →∞+>=+时,,当21,lim01n x n →∞==+时,当01lim01n x n→∞=-=+时,,故()1,11,0,x x f x +-<<⎧=⎨⎩其他.故在1x =-时,连续;1x =时不连续.选D.2.设sin d a k aI x x π+=⎰,k 为整数,则I 的值A.只与a 有关B.只与k 有关C.与,a k 均有关D.与,a k 均无关2.【答案】B 【解析】π|sin |d a k a I x x+=⎰ππ0|sin |d sin d 2.k x x k x x k ===⎰⎰选B.3.设(,)f x y 是连续函数,则12sin 6d (,)d xx f x y y ππ=⎰⎰A.1arcsin 126d (,)d .yy f x y x π⎰⎰B.121arcsin 2d (,)d .yy f x y x π⎰⎰C.1arcsin 206d (,)d .yy f x y x π⎰⎰D.122arcsin d (,)d .yy f x y x π⎰⎰3.【答案】A【解析】11arcsin 21sin 266d (,)d d (,)d .yxx f x y y y f x y x πππ==⎰⎰⎰⎰选A.4.幂级数nnn a x∞=∑的和函数为ln(2)x +,则20nn na∞==∑A.16-B.13-C.16D.134.【答案】A【解析】()112ln 2ln 1ln 2ln 2(1)2nn n x x x n ∞-=⎛⎫⎪⎛⎫⎝⎭+=++=+- ⎪⎝⎭∑23462222ln 222346x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=+-+-+ ⎪⎝⎭224680246357320234111 2322242111 2221114182 .138361624nn naa a a a ∞==+++++⎛⎫=-+⋅--+ ⎪⋅⋅⎝⎭⎡⎤=-+++⎢⎥⎣⎦⎡⎤⎢⎥=-=-=-⨯=-⎢⎢⎥-⎣⋅⎦∑ 5.设二次型()T123,,f x x x =x Ax 在正交变换下可化成22212323y y y -+,则二次型f 的矩阵A 的行列式与迹分别为.6,2A --.6,2B -.6,2C -.6,2D 5.【答案】C【解析】()T123,,f x x x =x Ax 正交变换下化为22212323y y y -+⇒A 的特征值为1,2,3-()()()1236,tr 1232⇒=⋅-⋅=-=+-+=A A .6.设A 为3阶矩阵,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 若T 2200020a c c b c c +⎛⎫⎪= ⎪ ⎪⎝⎭,P AP 则=AA.0000.00c a b ⎛⎫⎪⎪ ⎪⎝⎭ B.0000.00b c a ⎛⎫⎪⎪ ⎪⎝⎭C.0000.00a b c ⎛⎫⎪⎪ ⎪⎝⎭D.0000.00c b a ⎛⎫⎪⎪ ⎪⎝⎭6.【答案】C【解析】()3T 212010000, 010120101a c c b c c +⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且AP B P E P 故()()()11112233T11T (1)(1)----⎡⎤==⎣⎦PA B P E B E 11131313131T3T131(1)(1)(1)(1)(1)(1)---⎡⎤==---⎣⎦E BE E E BE E 0 10120100100010001001000120101101a c c b c c -+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪= ⎪⎪⎪⎪ ⎪⎪⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 0001001000000010010002010110100 a b b c c c ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.7.设矩阵131,2112ij a b b aM +⎛⎫⎪⎪= ⎪ ⎪⎝⎭A 表示A 的行j 列元素的余子式,若1||2=-A .且2122230M M M -+-=.则3.02A a a ==-或3.02B a a ==或1.12C b b ==-或1.12D b b =-=或7.【答案】B【解析】120101322211111222112121bba bbbba a a-+===A 1211(1)122a b +⎛⎫=-⋅- ⎪⎝⎭111(21)22b a ⎛⎫=-⋅--=-⎪⎝⎭11(21)22b a ⎛⎫⇒--=⎪⎝⎭12122b ab a ⇒--+=又2122232122230M M M A A A =-+-=++13131111111101111201a b a b a b a b +++====+-=,1b a ⇒=+代入(1)中,得11(1)2022a a a a ++--+=0a ⇒=或312ab =⇒=或52.8.设随机变量X 的概率密度为()()61,01,0,x x x f x ⎧-<<=⎨⎩其他,则X 的三阶中心矩()3E X EX -=A.132-B.0C.116D.128.【答案】B 【解析】1211116(1)d 6634122EX x x x ⎛⎫=-=⋅-=⨯= ⎪⎝⎭⎰3311321021211116(1)d 6d 022 22 x t E X x x x xt t t t --=⎛⎫⎛⎫⎛⎫⎛⎫-=--+⋅-⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰令.9.随机变量,X Y 相互独立,且~(0,2),~(1,1)X N Y N -,设{}{}122,21p P X Y p P X Y =>=->,则121A.2p p >>211B.2p p >>121C.2p p <<211D.2p p <<9.【答案】B【解析】(2)2011E X Y EX EY -=-=+=,(2)44219D X Y DX DY -=+=⨯+=,所以2~(1,9)X Y N -;(2)2022E X Y EX EY -=-=+=,(2)4246D X Y DX DY -=+=+=,所以2~(2,6)X Y N -;121011113333X Y p P ΦΦ---⎧⎫⎛⎫⎛⎫=>=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭21p P ΦΦ⎛⎛=>=--= ⎝⎝,所以2112p p >>,故选B.10.设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是A.X Y + B.2X Y+C.2X D.X10.【答案】D【解析】X 与Y 的联合概率密度为2()e ,0,0(,)()()0,x y Y X x y f x y f x f y λλ-+⎧>>=⋅=⎨⎩其他设Z 的分布函数为()Z F z ,则{}{}()Z F z P Z z P X Y z=≤=-≤1当0z <时,()0Z F z =;2当0z ≥时,{}{}()20Z F z P z X Y z P X Y z =-≤-≤=≤-≤02e d e d y z y x yy x λλλλ+∞+--=⎰⎰.()()02202e e e d 2e d 2e e d 1e .y y y z y z y z y y yλλλλλλλλλλ+∞---++∞+∞----=-=-=-⎰⎰⎰所以()1Z E ,从而Z 与X 服从相同的分布,选D.二、填空题:11~16小题,每小题5分,共30分.11.当0x →时,()2221sin d 1cos xt tt t++⎰与k x 是同阶无穷小,则k =.11.【答案】3【解析】当0x →时,()22221sin ~1cos 2x xx x++,则()223201sin d ~1cos xt tt Ax t++⎰.从而3k =.12.4225d 34x x x +∞=+-⎰.12.【答案】1πln 328-【解析】()()42222255d d 3414x x x x x x +∞+∞=+--+⎰⎰222211d d 14x x x x +∞+∞=--+⎰⎰222111d d 114x x x x x +∞+∞⎛⎫=-- ⎪-++⎝⎭⎰⎰222111ln arctan 2122x x x +∞+∞⎛⎫-=- ⎪+⎝⎭111ππ1π0ln ln 32322428⎛⎫⎛⎫=---=- ⎪ ⎪⎝⎭⎝⎭.13.函数()324,2961224f x y x x y x y =--++的极值点是.13.【答案】()1,1【解析】23618120,24240,x y f x x f y ⎧'=-+=⎪⎨'=-+=⎪⎩解得(1,1) ,(2,1).1218xx A f x ''==-,0xy B f ''==,272yy C f y ''==-,代入(1,1)得24320,6AC B A -=>=-,故(1,1)是极大值点,(1,1)23f =.代入(2,1)得24320AC B -=-<,不是极值.14.某产品的价格函数是250.25,20,350.75,20Q Q p Q Q -≤⎧=⎨->⎩(p 为单价,单位:万元;Q 为产量,单位:件),总成本函数为215050.25C Q Q =++(万元),则经营该产品可获得的最大利润为(万元).14.【答案】50【解析】()()()22(250.25)15050.25,20,350.7515050.25,20.Q Q Q Q Q L PQ C Q Q Q Q Q ⎧--++≤⎪=-=⎨--++>⎪⎩整理得:220.5(20)50,20,(15)75,20.Q Q L Q Q ⎧--+≤=⎨--+>⎩所以20Q =时,50L =为最大利润.15.设A 为3阶矩阵,*A 为的A 伴随矩阵,E 为3阶单位矩阵,若(2)1,()2r r -==E A E +A ,则*A =.15.【答案】16【解析】() 132r <-=E A ,() 23r =<E +A ⇒A 有特征值2,1-.又()3222r λ-=-⇒=E A 有 2个线性无关的特征向量2λ⇒=至少有两重根.()311r λ-=⇒=-E +A 有1个线性无关特征向量1λ⇒=-至少有一重根.又A 为3阶⇒A 的特征值为22,1-,,故()*122214,||16n -=⋅⋅-=-===A A A A .16.设随机试验每次成功的概率为p ,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为413,则p =.16.【答案】23p =【解析】A :全成功,B :至少成功一次.()33()()4()()1(1)13P AB P A p P A B P B P B p ====--,331344(1)p p =--整理得(32)(3602)3p p p p -+=⇒=.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面有界区域D 位于第一象限由曲线1,33xy xy ==与直线1,3y x =3y x =围成,计算()1d d Dx y x y +-⎰⎰.17.【解】令yu xy v x==,,(1)x y ⎧=⎪⎨⎪=⎩(2)12x xuv J y y v uv∂∂∂∂==∂∂∂∂故3113331d 1d 2u v v⎛=+⋅ ⎝⎰⎰原式38ln 3=.18.设函数(,)z z x y =由方程2e ln(1)0xz y z +-+=确定,求22(0,0)22z z x y ⎛⎫∂∂+ ⎪∂∂⎝⎭.18.【解】将0y =代入得e xz =-,则22e xz x ∂=-∂,代()220,001z x x∂=⇒=-∂.将0x =代入得()21ln 1z y z+=+,得()222ln 11z yz zz y z y∂∂=++⋅∂+∂.代0,0,1x y z ===-得()0,0ln2zy ∂=∂.又22222122 211z z z y z z z z z y y z y z y y ⎡⎤⎛⎫∂∂⋅⎢⎥ ⎪+∂∂∂∂⎝⎭⎢=⋅+⋅+⋅⎢⎥∂+∂+∂∂⎢⎥⎣⎦,代0,0,1,ln2zx y z y∂===-=∂得()220,02ln2z y ∂=-∂.故原式为12ln2--.19.设0t >,平面有界区域D 由曲线-2e xy x =与直线x t =,2x t =及x 轴围成,D 的面积为()S t ,求()S t 的最大值.19.【解】()22ed txt S t x x -=⎰,()()42424e e e 4e t t t t S t t t t ---=-=-'则,42 4e e 0ln2.t t t ---=⇒=令()() 0ln20;ln20.t S t t S t <<'>><'当时,当时,故ln2t =时,()S t 取最大值,有()ln 4ln 4222ln 2ln 21113 ln2e d e ln2.221664x x x S x x x ---⎛⎫==-+=+ ⎪⎝⎭⎰20.设函数()f x 具有2阶导数,且()()()01, 1.f f f x ''''=≤证明:(1)当()0,1x ∈时,()()()()()1011;2x x f x f x f x ----≤(2)()()()1011d .212f f f x x +-≤⎰20.证明:(1)()12()(0)(0)2f f x f f x x ξ'''=++①()()22()(1)(1)1(1)2f f x f f x x ξ'''=+-+-②()1x x⋅-+⋅①②()()()()()12221()(0)(1)(1)(0)1(1)1(1)22f f f x f x f x f x x f x x x x x x ξξ''''''⇒=-++-+-+--+,21111()(0)(1)(1)(1)(1)(1)(1)(1).222 2f x f x f x x x x x x x x x x x ----+-=-+-=- (2)[]02111(1)1()(0)(1)(1)d ()d (0)(1)22x f x f x f x x f x x f f ----=-⋅-⋅⎰⎰1100(0)(1)(1)1()d d .22 12f f x x f x x x +-=-=⎰⎰ 21.设矩阵11011103,2126--⎛⎫⎪= ⎪⎪⎝⎭A 1012111,2322a a ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭B 向量023⎛⎫ ⎪= ⎪ ⎪⎝⎭,α10.1⎛⎫ ⎪= ⎪ ⎪-⎝⎭β(1)证明:方程组=Ax α的解均为方程组=Bx β的解;(2)若方程组=Ax α与方程组=Bx β不同解,求a 的值.21.证明:(1)(,)1⎛⎫⇒= ⎪-⎝⎭=0x x A A αα(,)1⎛⎫⇒= ⎪-⎝⎭=0x Bx βB β又11010110101103202042212630328310121011311110000232210121a a a a ----⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎛⎫=→⎪⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭A αB β1101011010010210102100220001100011000000000000000022000000a a ----⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪→→⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭,故()3r r ⎛⎫== ⎪⎝⎭A αB βA ,α.即(,)1⎛⎫= ⎪-⎝⎭0x A α的解是(,)1⎛⎫= ⎪-⎝⎭0B βx 的解.即=Ax α的解是=Bx β的解(2)=Ax α与方程组=Bx β不同解,即=Ax α与=Bx β不等价又=Ax α的解是=Bx β的解,故=Bx β的解不是=Ax α的解.即(,)3r r ⎛⎫≠=⎪⎝⎭A αB βB β,故1012110121,1110011312322103063a a a a ⎛⎫⎛⎫ ⎪ ⎪→--→---- ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭B β101211012101021010210113100110a a a a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭故10a -=即1a =.22.X 服从[]0,θ上的均匀分布,()0θ∈+∞,为未知参数,12,,,n X X X 为总体X 的简单随机样本,记为(){}()12max ,,,,.n c n n X X X X T cX == (1)求c 使得();c E T θ=(2)记()()2,c h c E T θ=-求c 使得()f c 最小.22.【解】(1){}()()12max ,n n n E cX cEX cE X X X θ⎡⎤===⎣⎦ 10()0X x f x θθ⎧<<⎪⎨⎪⎩其他00(),01,X x x F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ {}()120,0max ~(),01,,n n n n X x xX X X F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ ()10()0. X n n n n xx f x θθ-⎧⋅<<⎪=⎨⎪⎩其他{}1110,1max ,d 1n n n n nnx n E X X x x n θθθθθθ-+==⋅+⎰1nn θ=+,所以1n c n+=.(2)()2222()22c c c ch c E T T ET E ET θθθθ=+-=++()()()()222n n E cX E cX θθ=+-()()2222n n c EX c EX θθ=+-因为()221201d 2n n n n n nx n EX x x x n θθθθ-+=⋅=+⎰22nn θ=⋅+()11001d 11n n n n n nxn nEX x x x n n θθθθθ-+=⋅⋅=⋅=++⎰所以22222 ()21221=21n n nc n h c c c c n n n n θθθθθ⎛⎫=+-⋅+-⋅ ⎪++++⎝⎭令2()1221n n f x x x n n =+-++,22()021n n f x x n n '=-=++解得21n x n +=+,即21n c n +=+时,()h c 取最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷参考答案
一、选择题
1. C
2. A
3. B
4. A
5. C
二、填空题
1. 24.5
2. 16
3. 7
4. 10
5. 4500
三、计算题
1. 题目:已知正方形ABCD的边长为5cm,求其对角线的长度。

解答:设对角线AC的长度为x cm。

根据勾股定理,
(AD)^2 + (CD)^2 = (AC)^2
(5)^2 + (5)^2 = (x)^2
25 + 25 = x^2
50 = x^2
x = √50 ≈ 7.07
所以,对角线AC的长度约为7.07cm。

2. 题目:已知一座高山的海拔为3200米,登山队员从山脚到山顶的垂直距离为4800米,求登山队员登顶过程中所爬升的角度。

解答:设所求角度为θ。

根据正弦函数的定义,
sinθ = (对边) / (斜边)
sinθ = 3200 / 4800
sinθ = 2 / 3
所以,θ = arcsin(2/3) ≈ 41.81°
所以,登山队员在登顶过程中所爬升的角度约为41.81°。

四、证明题
证明:正方形的对角线相等。

证明过程:
设正方形ABCD的边长为a,对角线AC的长度为x,对角线BD 的长度为y。

根据勾股定理,
(AD)^2 + (CD)^2 = (AC)^2
a^2 + a^2 = x^2
2a^2 = x^2
x = √(2a^2)
同理,
(AB)^2 + (BC)^2 = (BD)^2
a^2 + a^2 = y^2
2a^2 = y^2
y = √(2a^2)
由于正方形的边长相等,即a = a,所以√(2a^2) = √(2a^2)。

因此,正方形的对角线AC和BD相等。

综上所述,正方形的对角线相等。

五、解答题
题目:一辆汽车以每小时72公里的速度行驶,行驶了3小时后,该汽车的行驶里程是多少?
解答:设该汽车的行驶里程为x 公里。

根据速度与时间的关系,
速度 = 距离 / 时间
72 = x / 3
解方程得:x = 72 * 3 = 216
所以,该汽车行驶了216公里。

六、应用题
题目:长方形A的长是长方形B的2倍,长方形A的宽是长方形B 的3倍,两个长方形的面积之和是30平方米,求长方形A的面积。

解答:设长方形B的长为x米,则长方形A的长为2x米,长方形B的宽为y米,则长方形A的宽为3y米。

根据题意,长方形A和长方形B的面积之和是30平方米,即:
面积A + 面积B = 30
长方形A的面积 = 2x * 3y = 6xy
长方形B的面积 = x * y
代入得:6xy + xy = 30
解方程得:7xy = 30
所以,长方形A的面积为6xy = 6 * (30/7) ≈ 25.71平方米。

综上所述,长方形A的面积约为25.71平方米。

这篇文章介绍了一份数学试卷的参考答案,包括选择题、填空题、计算题、证明题和解答题。

选择题和填空题直接给出了答案,计算题通过数学公式进行计算,证明题通过推导和证明过程来证明一个数学定理,解答题则给出了详细的解题思路和答案。

文章中严格按照数学题目的格式进行排版,语句通顺,整洁美观,帮助读者更好地理解和掌握数学知识。

相关文档
最新文档