概率论与数理统计复习1

概率论与数理统计复习1
概率论与数理统计复习1

大学概率论与数理统计的复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 )()()()()()2(加法定理AB P B P A P B A P -+=Y ) ,,() ()(2111有限可加性两两互斥设n n i i n i i A A A A P A P ΛY ∑===) ,(0)()() ()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)() ()()()(时当A B B P A P B A P B A P ?-==-))0(,,() ()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式Λ) ,,()] (1[1)(2111相互独立时n n i i n i i A A A A P A P ΛY ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) ()/()()/()()/()7(1逆概率公式∑==n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P Y ,则= k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P Y 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P Y ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B -U 与A 的关系 是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3 张,排成3位数,则排成3位奇数的概率是( )。 7、某人下午5:00下班。他所积累的资料表明: 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段 5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P

李贤平《概率论与数理统计》标准答案

李贤平《概率论与数理统计》标准答案

————————————————————————————————作者:————————————————————————————————日期: 2

第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律 的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 2211~2n m n n e n m n π -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计习题

一 、名词解释 1、样本空间:随机试验E 的所有可能结果组成的集合,称为E 的样本空间。 2、随机事件:试验E 的样本空间S 的子集,称为E 的随机事件。 3、必然事件:在每次试验中总是发生的事件。 4、不可能事件:在每次试验中都不会发生的事件。 5、概率加法定理:P(A ∪B)=P(A)+P(B)-P(AB) 6、概率乘法定理:P(AB)=P(A)P(B │A) 7、随机事件的相互独立性:若P(AB)=P(A)P(B)则事件A,B 是相互独立的。 8、实际推断原理:概率很小的事件在一次试验中几乎是不会发生的。 9、条件概率:设A ,B 是两个事件,且P(A)>0,称P(B │A)=()()A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。 10、全概率公式: P(A)= () ) /(1 B B i A P n i i P ∑= 11、贝叶斯公式: P(Bi │A)= ()( ) ∑=?? ? ????? ?? n i j A P j P i A P i P B B B B 1 12、随机变量:设E 是随机试验,它的样本空间是S=﹛e ﹜。如果对于每一个e ∈S,有一个实数X(e)与之对应,就得到一个定义的S 上的单值实值函数X=X(e),称为随机变量。 13、分布函数:设X 是一个随机变量,χ是任意实数,函数F(χ)=P(X ≤χ)称为X 的分布函数。 14、随机变量的相互独立性:设(χ,у)是二维随机变量 ,如果对于任意实数χ,у,有F(χ,у)=F x (χ)·F y (у)或 f (χ,у)= f x (χ)·f y (у)成立。则称为X 与Y 相互独立。 15、方差:E ﹛〔X-E(χ)〕2〕 16、数学期望:E(χ)= ()dx x xf ?∞ -+∞ (或)= i p i i x ∑+∞ =1 17、简单随机样本:设X 是具有分布函数F 的随机变量,若χ1 , χ2 … , χn 是具有同一分布函数F 的相互独立的随机变量,则称χ1 , χ2 … , χn 为从总体X 得到的容量为n 的简单随机样本。 18、统计量:设χ1 , χ2 … , χn 是来自总体X 的一个样本,g(χ1 , χ2 … , χn )是χ1 , χ2 … , χn 的函数,若g 是连续函数,且g 中不含任何未知参数,则称g(χ1 , χ2 … , χn )是一统计量。 19、χ2(n)分布:设χ1 , χ2 … , χn 是来自总体N(0,1)的样本,则称统计量 χ2=n x x x 2......2212++ , 服从自由度为n 的χ2分布,记为χ2~χ2 (n). 20、无偏估计量:若估计量θ=θ(χ1 , χ2 … , χn )的数学期望E(θ)存在,且对任意θ ∈ (H)有E(θ)=θ,则称θ是θ的无偏估计量。 二、填空: 1、随机事件A 与B 恰有一个发生的事件A B ∪ A B 。 2、随机事件A 与B 都不发生的事件是A B 3、将一枚硬币掷两次,观察两次出现正反面的情况,则样本空间S= (正正)(正反)(反正)(反反) 。 4、设随机事件A 与B 互不相容,且P(A)=0.5,P(B)=31,则 P(A ∪ B)=65P (AB)=0。 5、随机事件A 与B 相互独立,且P(A)= 3 1 ,P(B)=51,则P (A ∪ B )= 15 7。 6、盒子中有4个新乒乓球,2个旧乒乓球,甲从中任取一个用后放回(此球下次算旧球),乙再从中取一个,那么乙取到新 球的概率是95 。 4 8、若X 的分布函数是F(x)=P(X ≤ x) , x ∈ (-∝,+∝) 则当x 1 ≤ x 2 时,P (x 1

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

概率论与数理统计期末试卷及答案(最新11)

湖北汽车工业学院 概率论与数理统计考试试卷 一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为 则)35(+X E 等于 )(A 8. )(B 2. )(C 5-. )(D 1-. 【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则 )(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >. 【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是 )(A 3213211X X X ++= μ. )(B 2223212X X X ++=μ. )(C 3333213X X X ++=μ. )(D 4 443214X X X ++=μ. 【D 】5. 设)(~n t X ,则~2 X )(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F . 【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于 )(A 2αu . )(B )1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,6 1=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是 5 1 . 3. 设离散型随机变量X 的分布列为{}k a k X P ?? ? ??==31, ,3,2,1=k ,则=a 2. 4. 已知2)(-=X E ,5)(2 =X E ,那么=-)32015(X D 9.

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

11概率论与数理统计试卷及答案

福州大学概率论与数理统计试卷A (20130702) 附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t 一、 单项选择(共18分,每小题3分) 1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( ) (A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且3 1 )0()0(= ≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )3 1 4. 设128,,,X X X K 和1210,,,Y Y Y L 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( ) (A )222152S S (B ) 212254S S (C )222125S S (D )2 22 145S S 5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.25 6.设总体),(~2 σμN X ,n X X X ,,,21Λ为X 的一组样本, X 为样本均值,2 s 为样本 方差,则下列统计量中服从)(2n χ分布的是( ). (A) 1--n s X μ (B) 2 2)1(σs n - (C) n s X μ - (D) ∑=-n i i X 1 22)(1μσ 学院 专业 级 班 姓 名 学 号

概率论与数理统计含答案.

《概率论与数理统计》复习大纲与复习题 09-10第二学期 一、复习方法与要求 学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成. 学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目. 如开学给出的学习建议中所讲: 作为本科的一门课程,在教材中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.考试也有所侧重,期末考试各章内容要求与所占分值如下: 第一章随机事件的关系与运算,概率的基本概念与关系,约占30分. 第二章一维随机变量的分布,约占25分. 第三章二维随机变量的分布,仅要求掌握二维离散型随机变量的联合分布律、边缘分布律、随机变量独立的判别与函数分布的确定. 约占10分. 第四章随机变量的数字特征. 约占15分. 第五、六、七、八章约占20分.内容为: 第五章:契比雪夫不等式与中心极限定理. 分布);正态总体样第六章:总体、样本、统计量等术语;常用统计量的定义式与常用分布(t分布、2 本函数服从分布定理. 第七章:矩估计,点估计的评选标准,一个正态总体期望与方差的区间估计. 第八章:一个正态总体期望与方差的假设检验. 二、期终考试方式与题型 本学期期末考试类型为集中开卷考试,即允许带教材与参考资料. 题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题占70分,每小题2分;选择题占30分,每小题3分. 三、应熟练掌握的主要内容 1. 理解概率这一指标的涵义. 2. 理解统计推断依据的原理,即实际推断原理,会用其作出判断. 3. 理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.掌握事件的运算律.

概率论与数理统计 知识点总复习

随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 (4)一些常见排列 ① 特殊排列 相邻 彼此隔开 顺序一定和不可分辨 ② 重复排列和非重复排列(有序) ③ 对立事件 ④ 顺序问题 2、随机试验、随机事件及其运算 (1)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (2)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):B A ? 如果同时有 B A ?,A B ?,则称事件A 与事件B 等价,或称A 等于B :A=B 。 A 、 B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为 A-AB 或者B A ,它表示A 发生而B 不发生的事件。 A 、 B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发生,称事 件A 与事件B 互不相容或者互斥。基本事件是互不相容的。 Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。它表示A 不发生的事 件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A ∪(B ∪C)=(A ∪B)∪C 分配率:(AB)∪C=(A ∪C)∩(B ∪C) (A ∪B)∩C=(AC)∪(BC) 德摩根率: ∞ =∞==1 1 i i i i A A B A B A =,B A B A = 3、概率的定义和性质 (1)概率的公理化定义 设Ω为样本空间, A 为事件,对每一个事件A 都有一个实数 P(A),若满足下 列三个条件:

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计浙大四版习题答案第六章1

第六章 样本及抽样分布 1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。 解: 8293 .0)7 8( )7 12( } 6 3.68.16 3.6526 3.62.1{}8.538.50{),36 3.6, 52(~2 =-Φ-Φ=< -< - =<15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}. 解:(1)??? ???? ?? ?????>-=?????????? ?? ?? > -=>-255412 25415412 }112 {|X P X P X P =2628.0)]2 5(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]2 1215( [1}15{15 5 1 =-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]2 1210( 1[1}10{15 55 1 =Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32 )的一个样本,求}.44.1{10 1 2>∑=i i X P

概率论与数理统计1_8课后习题答案

第一章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个 能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把 它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等, 或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不 相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时, 样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB (4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”: ;C B A Y Y

概率论与数理统计复习题答案

概率论与数理统计复习题 一.填空题 1.设, , A B C 为三个事件,用, , A B C 的运算关系式表示下列事件: , , A B C 都发生_____________;, , A B C 中不多于一个发生______________. 解:ABC ; AB BC AC ABC ABC ABC ABC ??=??? 2.一副扑克牌共52张,无大小王,从中随机地抽取2张牌,这2张牌花色不相同的概率为 解:2114131325213 17C C C p C ==或者124132 5213117 C C p C =-= 3.同时掷甲、已两枚骰子,则甲的点数大于乙的点数的概率为 解:155 {(,)|,1,,6},{},()3612 S i j i j A i j P A ===>= =L 4.设随机事件A 与B 相互独立,()0.5,()0.6P A P B ==,则()P A B -= ,()P A B ?= 。 解:()()()()0.2P A B P AB P A P B -===, ()()()()()0.8P A B P A P B P A P B ?=+-= 5.已知6 1 )(,31)|(,41)(=== B P A B P A P ,则()P A B ?=______________. 解:111()()(|)4312P AB P A P B A ==?=,1 ()()()()3 P A B P A P B P AB ?=+-= 6.已知()0.6,()0.3P A P AB ==,且,A B 独立,则()P A B ?= . 解:()()()0.3()0.5()0.5P AB P A P B P B P B ==?=?= ()()()()()()()()0.8P A B P A P B P AB P A P B P A P B ?=+-=+-= 7.已知 P(A)=,P(B)=,且A,B 互不相容,则()_____,()_____P AB P AB ==. 解:()()()0.3,()()()0.3P AB P B P AB P AB P A P AB =-==-= 或()()1()()0.3P AB P A B P A P B =?=--= 8.在三次独立的实验中,事件B 至少出现一次的概率为19/27,若每次实验中B 出现的 概率均为p, 则p=_______________ 解:设X 表示3次试验中事件B 出现的次数,则(3,)X B p :, 3191{1}1{0}1(1),273 P X P X p p ≥=-==--= ∴= 9.设(),0X P λλ>:,则X 的分布律为

概率论与数理统计第一章

一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A .B .C .D 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( ) (A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠

华师概率论与数理统计答案6

作业 1.第25题 设标准正态分布N(0,1)的分布函数为,则()(A)(B)-(C)1-(D)1+ A.; B.; C.; D.. 标准答案:C 您的答案: 题目分数:1.0 此题得分:0.0 2.第26题 设P(B)>0,则在事件B已发生的条件下,事件A的条件概率定义为P(A│B)=( ) (A)(B)(C)P(A)P(B) (D)P(AB)P(B) A.; B.; C.; D.. 标准答案:B 您的答案: 题目分数:1.0 此题得分:0.0 3.第27题

设来自总体N(0,1)的简单随机样本,记,则=() (A)n (B)n-1 (C) (D) A.见题 B.见题 C.见题 D.见题 标准答案:C 您的答案: 题目分数:1.0 此题得分:0.0 4.第29题 设样本X1,X2,...X n,来自正态总体X~N(),其中未知,样本均值为,则下列随机变量不是统计量的为() (A)(B)X1 (C)Min(X1,,...X n) (D) A.; B.; C.; D.. 标准答案:D 您的答案: 题目分数:1.0 此题得分:0.0 5.第30题

假设样本X1,X2,...X n来自总体X,则样本均值与样本方差S2=2独立的一个充分条件是总体X服从()。 A.二项分布 B.几何分布 C.正态分布 D.指数分布 标准答案:A 您的答案: 题目分数:1.0 此题得分:0.0 6.第31题 设A,B是两个随机事件,且,,,则必有() (A)(B) (C)(D) ? A.见题 B.见题 C.见题 D.见题 标准答案:C 您的答案: 题目分数:0.5 此题得分:0.0 7.第32题 设随机变量X~U(0,1),则它的方差为D(X)=() A.1/2

相关文档
最新文档