干气密封结构与原理..

合集下载

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理摘要介绍了干气密封的特点、结构及工作原理,分析了影响干气密封性能的主要参数。

关键词干气密封;结构及工作原理;主要参数中图分类号TH 文献标识码 A 文章编号1673-9671-(2012)051-0214-011 干气密封概述早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。

该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。

最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。

由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。

随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。

2 干气密封与机械密封性能比较机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。

其缺点是泄漏率高,故障频发。

干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势:1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。

2)采用干气密封技术,能源消耗较小。

3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。

4)采用干气密封技术,泄漏量较少,应用效果良好。

3 干气密封工作原理一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。

静环位于弹簧座内,用副密封O形圈密封。

弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合,如图1所示。

这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。

干气密封结构及基本知识

干气密封结构及基本知识
干气密封结构与基本知识
压缩机密封
• 由于压缩机转子与定子之间存在间隙, 因而不可避免的存在泄漏,为了阻止这 种泄漏发生,必须设计一种密封结构。
• 压缩机密封分为轴端密封、级间密封、 油密封等等。
密封型式
轴端密封几种型式
特点
应用场合
迷宫密封 或梳齿密 封或拉别 令
结构简单、泄漏大
浮环密封
机械接触 式密封
一个密封面,安全性较差, 多用于非有害介质
两个断面并列布置,两个静 环在外侧,安全性较单端面 有所提高,用于压力18以下
的提升风机 富气压缩机
双端面串联密封
两个断面串联布置,内侧密 封损坏,外侧密封还可继续 维持密封,不致发生大量外 泄漏,多用于危险场合
、、柴油加、循环氢压 缩机,新氢增压机
单端面干气密封
结构复杂,泄露量小,需要 一套复杂的密封油系统,有 时会污染润滑油系统,因而 运行费用高,维修复杂
需要密封油系统,工作寿命 较短其不稳定。
干气密封 泄漏少、寿命长、能耗低、 操作简单可靠
用于级间密封或油密封。 用于轴端密封的内侧部分, 或空气介质类压缩机的轴端 密封,如催化主风机 用于易燃爆介质类压缩机
排凝阀必须保持打开。
干气密封使用三忌
• 密封面忌杂质颗粒,颗粒将直接造成磨损 失效。
• 密封面忌液,液体进入密封面将造成动、 静环接触磨损,而加速密封失效。
• 忌反转,发生反转时密封面无法打开,动 静环瞬间磨损失效。
静环
动环
双端面干气密封
隔离气N2 排放口
主密封气N2
缓冲气N2
轴承
工艺介 质
带中间迷宫串联干气密封
Clean Buffer Gas 主密封气

干气密封基本原理及应用

干气密封基本原理及应用

Pressure [barG]
单向槽与双向槽的比较
单向槽:螺旋槽、V型槽 优点:动压效应强,气膜刚度大,抗外界扰动能力 强。
双向槽:枞树、U型槽、T型槽 优点:可以长时间反转; 缺点:较单向槽动压效应弱,气膜刚度小。 推荐:优先采用单向槽,特殊情况双向槽。
工作原理
FC 闭合力
S
P
弹簧力+流体压力
极低的工艺气泄漏
能承受速度和压力的快速变化
由于非接触的特点,理论上密封 寿命可以认为没有限制
干气密封主要特征
减少新机器的成本 集装式设计易安装,保护关键密封组
件 超过1亿5仟万小时运转经验 已安装1万2千套集装式干气密封
干气密封主要特性
取消了密封油系统 减少了维修费用 节能 防止了油系统的污染
10 6.625 in 密封直径
8 6 4 2
单向螺旋槽 改进型双向螺旋槽
最初的双向螺旋槽 雷列台阶
0
0 2000 4000 6000 8000 10000 12000 14000 16000
Speed (rpm)
单向螺旋槽 与 改进型双向螺旋槽( 5.687” ) -泄漏量与压力关系曲线
Leakage [std.l/min]
CSTEDY / CTRANS -功能
输入
压力,温度,转速,气 体组份,材料,槽形, 密封几何形状
输出
密封面间隙,泄漏量, 摩擦,功率,温升,气 膜稳定性
动态密封性能分析
密封直径 162mm 转速 16,110 rpm
压力 0 bar 温度 150 ℃
泄漏量 = 1.5 l/min
5 Microns/ div
New BD vs. UD : Seal Size 5.687"

干气密封基础

干气密封基础

一、基本概念干气密封即“干运转气体密封”(Dry Running gas seals)是将开槽密封技术用于气体密封的一种新型轴端密封,属于非接触密封。

其作用原理:当端面外侧开设有流体动压的动环旋转时,流体动压槽把外径侧(称之为上游侧)的高压隔离气体泵入密封端面之间,由外径至槽径处气膜压力逐渐增加,而自槽径至内径处气膜压力逐渐下降,因端面膜压增加使所形成的开启力大于作用在密封环上的闭合力,在摩擦副之间形成很薄的一层气膜从而使密封工作在非接触状态下。

所形成的气膜完全阻塞了相对低压的密封介质泄漏通道,实现了密封介质的零泄漏或零逸出。

二、干气密封工作原理分析干气密封的一般设计形式是集装式,干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。

端面材料可采用碳化硅、氮化硅、硬质合金或石墨。

干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。

气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。

气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。

动环密封面分为两个功能区(外区域和内区域)。

气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。

为了获得必要的泵效应,动压槽必须被开在高压侧。

密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。

干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。

密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。

干气密封工作原理

干气密封工作原理

干气密封工作原理一、引言干气密封是一种广泛应用于各种机械设备中的密封方式,它通过利用气体的特性来实现密封效果,具有结构简单、维护方便等优点。

本文将详细介绍干气密封的工作原理及其应用。

二、工作原理干气密封的工作原理基于气体的压力平衡原理和密封面的相对运动。

一般情况下,干气密封由静密封和动密封两部分组成。

1. 静密封部分静密封部分主要由密封面和密封环组成。

密封面通常采用硬质合金、陶瓷等材料制成,具有良好的耐磨性和耐腐蚀性。

密封环则负责与密封面接触,并通过压缩使其与密封面形成密封。

2. 动密封部分动密封部分主要由活塞、活塞环和密封环组成。

活塞和活塞环的运动可产生压力差,从而形成气体的流动。

密封环则负责承受气体的压力,并通过其自身的弹性使气体无法泄漏。

三、工作过程干气密封的工作过程可以分为压缩、密封和润滑三个阶段。

1. 压缩阶段当活塞运动时,活塞环与密封环之间形成一定的压力差,使气体被压缩。

同时,密封环的弹性使其与密封面紧密接触,形成初步的密封效果。

2. 密封阶段在密封阶段,由于活塞环的运动,压缩气体逐渐流向密封面,与密封面接触。

此时,密封面与密封环之间的压力差逐渐增大,从而形成更好的密封效果。

3. 润滑阶段在润滑阶段,密封面和密封环之间的润滑剂起到重要的作用。

润滑剂可减少密封面和密封环之间的摩擦,提高密封的效果。

四、应用领域干气密封广泛应用于各种机械设备中,特别是涉及高速旋转的轴承和密封件。

其主要应用领域包括但不限于以下几个方面:1. 压缩机在压缩机中,干气密封可有效防止压缩气体泄漏,提高压缩机的工作效率。

同时,干气密封还可减少摩擦磨损,延长设备的使用寿命。

2. 泵站在泵站中,干气密封可防止液体泄漏,保证泵站的正常运行。

与传统的液体密封相比,干气密封不会受到液体蒸发和结晶的影响,具有更好的稳定性和可靠性。

3. 机床在机床中,干气密封可防止切削液进入主轴轴承,保护轴承免受污染。

同时,干气密封还可减少主轴轴承的磨损,提高机床的加工精度和效率。

干气密封的原理

干气密封的原理

干气密封的原理干气密封是一种常用于旋转机械设备中的密封方式,其原理是利用气体的压力来实现密封作用。

在旋转机械设备中,由于转子的高速旋转和运动部件的摩擦,会产生大量的热量和摩擦力,如果不加以有效的密封,就会导致气体泄漏和能量损失,甚至会影响设备的正常运行。

因此,干气密封的应用就显得尤为重要。

干气密封的原理可以简单地概括为以下几点:1. 气体压力作用,干气密封的核心原理是利用气体的压力来实现密封作用。

在密封装置中,通过控制气体的流动和压力,使气体形成一定的压力差,从而阻止外界空气或液体的渗入,实现密封效果。

2. 动静环结构,干气密封通常由动环和静环两部分组成。

动环是安装在旋转轴上的密封件,静环则是安装在机壳内的密封件。

当旋转轴旋转时,动环和静环之间形成一定的间隙,通过控制气体的流动和压力来实现密封作用。

3. 摩擦降低,干气密封的原理还包括通过减少摩擦力来实现密封。

在密封装置中,通过控制气体的流动和压力,形成一层气膜,从而减少旋转部件和固定部件之间的摩擦力,减少能量损失。

4. 温度控制,干气密封的原理还包括通过控制气体的温度来实现密封。

在高速旋转的机械设备中,由于摩擦产生的热量会导致气体温度升高,影响密封效果。

因此,通过控制气体的温度,可以有效地实现密封作用。

总的来说,干气密封的原理是通过控制气体的流动、压力、温度等参数,利用气体的压力和摩擦降低来实现密封作用。

在实际应用中,干气密封不仅可以有效地阻止气体泄漏和能量损失,还可以减少设备的维护成本,提高设备的运行效率,具有广泛的应用前景。

以上就是干气密封的原理,希望能对大家有所帮助。

干气密封结构与原理

干气密封结构与原理
优化方向
优化密封面设计、选择合适的弹性 元件和摩擦材料,以提高开启力。
泄漏率
01
02
03
泄漏率
干气密封在工作过程中, 气体通过密封面的流量, 通常以气体流量或泄漏量 的形式表示。
影响因素
泄漏率受密封面粗糙度、 间隙大小、气体压力和温 度等因素影响。
优化方向
减小密封面粗糙度、减小 间隙大小、提高气体压力 和温度等措施,以降低泄 漏率。

低能耗
干气密封的运行能耗较低,能 够降低企业的生产成本。
长寿命
干气密封的使用寿命较长,减 少了维修和更换的频率,降低 了维护成本。
高可靠性
干气密封的可靠性较高,能够 保证设备的长期稳定运行,减
少意外停机事故的发生。
缺点
高成本
安装要求高
干气密封的结构复杂,制造成本较高,导 致其整体价格较高。
干气密封的安装精度要求较高,需要专业 人员进行安装和调试,以确保其正常工作 。
03
干气密封的工作原理
工作原理概述
干气密封是一种非接触式机械密封,通过在密封端面之间形成一层稳定的气膜来实 现密封。
与传统的接触式机械密封相比,干气密封具有较低的摩擦阻力、磨损小、寿命长等 优点。
干气密封适用于高速、高温、高压等苛刻的工况条件,广泛应用于石油、化工、制 药等领域。
静环与动环的相互作用
旋转环
旋转环是干气密封中的另一个关键组件,它与静止环形成一 对相互作用的密封面。旋转环通常由经过特殊处理的硬质材 料制成,如碳化钨或碳化硅。
旋转环的表面经过精密研磨和抛光,使其能够在高速旋转时 保持与静止环的紧密接触,从而实现非接触式密封。
弹簧
弹簧是干气密封中的一个重要组成部 分,它为静止环提供必要的预紧力, 确保静止环与旋转环之间的紧密接触 。

离心压缩机干气密封结构原理

离心压缩机干气密封结构原理

离心压缩机干气密封结构原理
离心压缩机是一种重要的工业设备,广泛应用于石油、化工、冶金等行业。

为了保证离心压缩机的高效运行,干气密封结构起着至关重要的作用。

干气密封结构可以防止气体泄漏,提高设备的安全性和可靠性。

干气密封结构的原理主要基于以下几个方面:
1. 压力差效应:干气密封结构利用压力差效应来防止气体泄漏。

在离心压缩机运行过程中,气体从高压区域流向低压区域,干气密封结构通过合理设计,使气体在流动过程中产生压力差,从而防止气体渗漏到外部环境。

2. 环境控制:干气密封结构通过控制环境条件来防止气体泄漏。

离心压缩机通常运行在高温、高压的环境中,干气密封结构采用特殊的材料和密封装置,能够承受高温高压环境的侵蚀和磨损,并保持稳定的密封性能。

3. 摩擦密封:干气密封结构利用摩擦力来防止气体泄漏。

离心压缩机的转子和定子之间存在一定的摩擦力,干气密封结构通过合理设计密封面的形状和材料,使摩擦力产生足够的密封效果,防止气体泄漏。

4. 润滑和冷却:干气密封结构通过润滑和冷却来防止气体泄漏。


心压缩机的转子和定子之间存在一定的间隙,干气密封结构通过注入润滑剂和冷却剂,形成一层润滑膜和冷却膜,以减少摩擦和热量的产生,提高密封性能。

干气密封结构的设计需要考虑多个因素,如压力、温度、转速等。

不同工况下,需要采用不同的密封结构和材料。

目前,常用的干气密封结构包括磁力密封、机械密封和迷宫密封等。

离心压缩机干气密封结构的原理是通过压力差效应、环境控制、摩擦密封和润滑冷却等方式来防止气体泄漏。

合理设计和选择适当的干气密封结构,可以提高离心压缩机的安全性和可靠性,确保设备正常运行。

干气密封

干气密封

带中间进气串级干气密封
适用于既不允许工艺气泄漏到大气中,又不允许主密封气进入机内的工况 用于酸性、腐蚀性或易燃、易爆、危险性大的介质气体,可以做到完全无外漏。 需要引一路氮气作为第二级密封和中间迷宫间的使用气体。
碳环隔离密封
迷宫隔离密封
6、干气密封控制系统
7、密封极限工况
1、密封反转 没有损伤的短时间反转可接受,但应避免,需停车解体检查 可使用双向密封设计 2、密封反压(串级密封火炬气倒灌) 不允许,必须保证密封端面的正压差 3、低速盘车 不影响密封性能,建议按旋向盘车 4、密封液体污染 少量液体污染可以接受,但应避免 5、密封颗粒污染 避免固体颗粒、脏物进入密封面(过滤器后管路需处理洁净)
动环
静环和弹簧及弹簧座
• 螺旋槽干气密封工作原理如下图所示,动静端面上 开有螺旋槽,整个端分为槽区、台区和坝区。槽区 主要提供必需的流体动压力,坝区主要阻挡气体向 内侧流动以实现气体被压缩形成动压效应,增大气 膜刚度,还可在密封停车时起密封作用。干气密封 工作原理为:当动环按图逆时针旋转时,由于粘性 作用气体以速度V进入螺旋槽;速度V可以分解为垂 直于螺旋槽速度和与螺旋槽相切速度,其中与螺旋 槽相切速度主要提供流体动压力,而气流以速度V 运动到坝区后被压缩体积减小压力升高使密封面打 开,从而实现非接触运转。干气密封正常工作时, 端面间气膜一方面提供开启力来平衡闭合力,另一 方面可以起到润滑冷却作用,从而省去复杂的油封 系统,图示为泵如示干气密封。
4、双向旋转干气密封
5、结构布置
• 螺旋槽干气密封结构布置主要取决于密封 工况条件(包括被密封气体组分、压力、 温度、轴的转速等)、安全性以及环保要 求等。典型结构布置有单端面、双端面和 串级结构。
单端面干气密封

压缩机干气密封原理

压缩机干气密封原理

压缩机干气密封原理压缩机干气密封原理是指在压缩机工作过程中,通过适当的措施使压缩机的气缸与气缸盖之间形成密封,以防止气体泄漏和外界杂质进入气缸,保证压缩机正常工作。

干气密封的原理和方法有多种,下面将介绍几种常见的原理。

1.机械密封原理:机械密封是通过设置在活塞杆或曲柄轴上的密封装置,如密封圈、密封环等,来实现干气密封的。

它通过材料的弹性和变形性,将活塞杆或曲轴轴颈与气缸之间形成密封层,防止气体泄漏。

机械密封原理的优点是密封效果好、使用寿命长,但缺点是密封装置需要经常更换和维修,成本较高。

2.润滑油密封原理:润滑油密封是通过在气缸壁上涂覆一层润滑油,并在活塞上设置油环来实现的。

润滑油在活塞上形成一层保护薄膜,起到密封气体的作用。

润滑油密封的优点是结构简单、维护方便,但缺点是密封效果较差,容易出现气体泄漏的情况。

3.渗碳密封原理:渗碳密封是指在气缸和气缸盖的接触面上进行处理,使其表面产生渗碳层,从而提高密封效果。

渗碳层的特点是硬度高、耐磨损性好,能够有效地防止气体泄漏。

渗碳密封的优点是密封效果好、使用寿命长,但缺点是工艺复杂、成本较高。

4.气体密封原理:气体密封是通过在气缸和气缸盖之间设置特殊的密封结构,如O型密封圈、V型密封圈等,来实现干气密封的。

这种密封原理的优点是密封效果好、维护方便,但缺点是密封结构复杂,需要定期更换维修。

综上所述,压缩机干气密封原理主要包括机械密封原理、润滑油密封原理、渗碳密封原理和气体密封原理。

不同的压缩机根据其工作原理和工作条件的不同,选择适合的干气密封原理,以保证其正常运行和高效性能。

干气密封结构与原理

干气密封结构与原理

干气密封结构与原理今天咱们来唠唠干气密封这个超有趣的东西。

咱先说说干气密封的结构哈。

干气密封啊,就像是一个超级精密的小世界。

它有动环和静环这两个重要的小伙伴呢。

动环就像是个活泼好动的小机灵鬼,它是随着轴一起旋转的。

而静环呢,就比较沉稳啦,它是固定在那里不动的。

这一动一静之间啊,就有着很多奇妙的事情发生。

动环和静环的表面那可是经过超级精细的加工的,光滑得就像小婴儿的脸蛋儿似的。

而且啊,在它们之间还有一些小小的间隙,这个间隙可不能太大也不能太小,就像是 Goldilocks(金发姑娘)找到的那个“刚刚好”的状态。

再来说说干气密封的密封坝,这就像是一道小堤坝一样。

它在密封结构里起着非常重要的作用呢。

它能够控制气体的流动方向,让气体乖乖地按照我们想要的方式在密封结构里跑来跑去。

还有啊,密封槽也是个很有意思的部分。

这些密封槽的形状和大小都是经过精心设计的,就像是给气体设计了一个个小跑道,气体就在这些小跑道里穿梭。

那干气密封的原理是啥呢?这可就更有趣啦。

干气密封主要是靠气体的压力来实现密封的哦。

想象一下,气体就像是一群小小的士兵,它们被输送到密封结构里。

当动环旋转的时候,它会带动气体在动环和静环之间的间隙里形成一种特殊的气膜。

这个气膜啊,就像是一层软软的保护罩一样。

它一方面能够阻止密封介质泄漏出来,另一方面呢,又能让动环和静环不会直接接触,就像两个小伙伴之间隔了一层柔软的气垫,这样就不会互相磨损啦。

而且哦,这个气膜的压力是很有讲究的。

如果气膜的压力太小了,那就像是士兵的力量不够,可能就挡不住密封介质的泄漏啦。

但是如果气膜的压力太大呢,又可能会把动环和静环给撑开,这样整个密封结构就会出问题啦。

所以啊,就需要精确地控制气体的压力,让这个气膜保持在一个完美的状态。

在实际的工作过程中,干气密封就像是一个忠诚的小卫士。

不管设备里面的压力怎么变化,它都在那里坚守岗位。

比如说在一些大型的压缩机里,干气密封就发挥着巨大的作用。

干气密封

干气密封
干气密封
一、干气密封原理 二、常见的干气密封类型 三、干气密封PID图 四、干气密封逻辑图 五、干气密封操作
2019/4/29
一、干气密封原理
一般来讲,典型的干气密封包含了静环、动环组件(旋转环)、 副密封O形圈、静密封、弹簧和弹簧座(腔体)等。静环位于 不锈钢弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状 态下使静环与固定在轴上的旋转环——动环组件配合,如图1 所示。
2019/4/29
7、干气密封系统的停车 1)、无论是事故停车,还是正常停车,在停机过 程中,要保证自增压系统的正常运行,即保证一 级密封气的正常供应,防止机体内的气体进入干 气密封内部。 2)、先停润滑油泵,至少1 个小时后再停隔离氮 气。
8、干气密封系统参数调整 1)、压缩机按照操作规程盘车,启动、升速、升压直至规定运行工况, 在各种工况下观察并记录有关现象,各个仪表显示的数值。因系统升 压干气密封各参数随之变化要及时调节。 2)、如果仪表显示值与设计值偏差10﹪之内,则不必要调整相关的压 力调节阀,如果偏差较大,可以仔细调整压力调节阀,边观察压力表, 边调整调节阀,直到满足要求。 3)、机组正常运行时,压缩机进出口压差大于 530KPa 时, 将增压泵 的操作投用在自动控制的状态。当遇到停机时,内外操一定要注意增 压泵是否正常自启动,否则,则需要手动启动,外操需到现场确认其 运行是否正常,内操需要注意增压泵是否满足增压要求。 4)、停机以后,为防止润滑油窜入干气密封系统,要保证机体压力 在.5~1.0MPag左右,停用润滑油系统后,机体才能完全泄压。
2019/4/29
2019/4/29
双端面密封结构
•双端面密封是一种有效地防止介质气体逃逸 到周围环境中的密封结构。它包括供给缓冲气 体, 如氮气,在两道密封之间通过接口加一个比 介质压力高的缓冲气体( 一般缓冲气体的压力 比介质压力高0. 2M Pa)。

干气密封工作原理..

干气密封工作原理..

1 干气密封工作原理典型的干气密封结构如图1 所示,由旋转环、静环、弹簧、密封圈、弹簧座和轴套组成。

图 2 为干气密封旋转环示意图,旋转环密封面经过研磨、抛光处理,并在其上面加工出有特殊作用的流体动压槽。

干气密封旋转环旋转时,密封气体被吸入动压槽内,由外径朝向中心,径向分量朝着密封堰流动。

由于密封堰的节流作用,进入密封面的气体被压缩,气体压力升高。

在该压力作用下,密封面被推开,流动的气体在两个密封面间形成一层很薄的气膜,此气膜厚度一般在3μm左右。

气体动力学研究表明,当干气密封两端面间的间隙在2~3μm时,通过间隙的气体流动层最为稳定。

这也就是为什么干气密封气膜厚度设计值选定在2~3μm的主要原因。

当气体静压力、弹簧力形成的闭合力与气膜反力相等时,该气膜厚度十分稳定。

正常条件下,作用在密封面上的闭合力(弹簧力和介质力)等于开启力(气膜反力),密封工作在设计工作间隙。

当受到外部干扰,气膜厚度减小,则气膜反力增加,开启力大于闭合力,迫使密封工作间隙增大,恢复到正常值。

相反,若密封气膜厚度增大,则气膜反力减小,闭合力大于开启力,密封面合拢恢复到正常值。

因此,只要在设计范围内,当外部干扰消失以后,气膜厚度就可以恢复到设计值。

衡量密封稳定性的主要指标就是密封产生气膜刚度的大小,气膜刚度是气膜作用力的变化与气膜厚度的变化之比,气膜刚度越大,表明密封的抗干扰能力越强,密封运行越稳定。

干气密封的设计就是以获得最大的气膜刚度为目标。

干气密封是采用机械密封和气体密封的结合,是一种非接触端部密封,它是在机械密封的动环或静环(一般在动环上)的密封面上开有密封槽(本密封为T形槽),当动静环高速旋转时,在两端面间形成一层气膜,在气体泵送效应产生的推力作用下把动静环推开,使两密封端面不接触,但在压缩机刚开机阶段,由于转速较低,动静密封面形成的动压力也较低,动静环是接触摩擦的,所以采用干气密封的压缩机,低速运行时间不宜过长[1]。

干气密封结构、原理和密封气供给流

干气密封结构、原理和密封气供给流

干气密封结构、原理和密封气供给流程及要求1、干气密封结构和工作原理涩北首站压缩机采用的二级串联干气密封,具体结构如图1。

图1干气密封剖面图参照图1干气密封剖面图,对干气密封的结构和气体流向说明如下。

图1中,1——动环,2——静环,3——推环,4——弹簧所在空间(弹簧未画出),A ——密封气进气口,B——一级密封气排气口,C——未使用,D——隔离气排气口(二级密封泄露的少量密封气亦从此通道排除),E——隔离气进气口。

干气密封主要由动环1、静环2、弹簧组件(3和弹簧)等元件构成,静环、动环端面均为环形平面,但在动环端面具有一组“T”型槽,槽的深度大约5微米。

压缩机不运转时,在弹簧力的作用下,动环与静环之间的端面紧贴而无间隙。

但是,压缩机运转时,密封工作,密封气通过A孔进入动环上的“T”型流道,由于气体具有粘性以及两平行平面间具有沟槽,根据雷诺方程在两平行平面之间产生流体动压力,当流体动压力与作用在密封上的气体静压力以及弹簧力平衡时,就在两端面之间形成并维持一层极薄的气膜,气膜厚度大约5微米。

通常,从A孔进入的密封气压力高于压缩机平衡管的压力,该气体一部分进入压缩机内阻挡机内脏的介质气;另一部分从动静环之间的气膜泄漏到下游的腔室内,从而形成对压缩机内工艺气的密封。

由于气膜厚度非常小,泄漏出的气体量也非常小。

该密封包括两级相同的密封,两者为串联布置。

第一级密封即主密封,密封气体是经过过滤的天然气,第二级密封的密封气体是从一级密封中泄漏出来的天然气。

在主密封正常工作时,二级密封作为主密封的安全备用密封,加强密封的安全性,当主密封出现故障而不能正常工作时,二级密封就替代主密封,保证干气密封正常发挥密封功能和压缩机安全停机检修。

在靠近压缩机内侧(图1中的右侧),迷宫密封位于干气密封的前端,作为前置密封。

通过对密封气压力的调节使得从A孔进入的密封气压力高于迷宫密封内侧工艺气体的压力(此压力实际为压缩机平衡管压力),从而保证压缩机内脏的天然气不会向干气密封侧流动,保证干气密封始终在干燥、干净的气氛中运行。

干气密封原理及使用课件

干气密封原理及使用课件
★ 省去了庞大的密封油系统,降低了成本; ★ 操作简单,可靠性高; ★ 运行费用和维修费用较低,占地面积小; ★ 结构复杂,技术难度大,要求制造和安 装精度高,气源清洁度高。
5/9/2020
6
三、干气密封技术基本结构原理
一般来讲,典型的干气密封结构包含有静环、动 环组件(旋转环)、副密封O形圈、静密封、弹簧和 弹簧座(腔体)等零部件。静环位于不锈钢弹簧座 内,用副密封O形圈密封。弹簧在密封无负荷状态下 使静环与固定在转子上的动环组件配合,如下图所 示
1. 密封油站费用高; 2. 操作麻烦; 3. 运行费用高; 4. 可靠性差。
5/9/2020
3
干气密封是20世纪60年代末期在气体动压轴承
的基础上通过对机械密封进行根本性改进发展起来 的一种新非接触式密封,实际上主要就是通过在机 械密封动环上增开了动压槽以及随之相应设置了辅 助系统而实现密封端面的非接触运行。英国的约翰 克兰公司于上世纪70年代末期率先将干气密封应用
到海洋平台的气体输送设备上并获得成功。干气密 封最初是为解决高速离心式压缩机轴端密封问题而 出现的,由于密封非接触式运行,因此密封摩擦副 材料基本不受PV值的限制,特别适合做为高速高压
设备的轴端密封。目前诸多大型离心式压缩机轴封 均采用了干气密封技术。我部门的大型机组也选用 了此技术。
5/9/2020
气体压力和弹簧力产生的闭合压力与气体膜的开启压 力相等时,便建立了稳定的平衡间隙。
5/9/2020
13Biblioteka 5/9/202014
在正常情况下,密封的闭合力等于开启力。当受到外 来干扰(如工艺或操作波动),气膜厚度变小,则气 体的粘性剪力增大,螺旋槽产生的流体动压效应增强, 促使气膜压力增大,开启力随之增大,为保持力平衡 密封恢复到原来的间隙;反之,密封受到干扰气膜厚 度增大,则螺旋槽产生的动压效应减弱,气膜压力减 小,开启力变小,密封恢复到原来的间隙。因此,只 要在设计范围内,当外来干扰消除后,密封总能恢复 到设计的工作间隙,即干气密封具有自我调节的功能 而保证运行稳定可靠。

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析

离心压缩机干气密封原理与典型故障分析一、干气密封基本结构及工作原理1. 干气密封基本结构干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封。

如图1-1所示,包含有静环、动环组件(动环)、副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。

干气密封的结构设计特点为在密封端面上开设动压浅槽,其转动形成的气膜厚和流槽槽深均属微米级,并采用润滑槽、径向密封坝和周向密封堰组成密封和承载部分。

可以说是开面密封和开槽轴承的结合。

干气密封动压槽有单旋向和双旋向,一般单旋向为螺旋槽,双旋向常见有T型槽、枞树槽和U型槽。

如图所示,单旋向螺旋槽干气密封不能反转,反转则产生负气膜反力,导致密封端面压紧,致密封损坏失效。

而双旋向枞树槽则无旋向要求,正反转都可以。

单向槽相对于双向槽,具有较大的流体动压能,产生更大的气膜反力和气膜刚度,产生更好的稳定性。

2. 干气密封工作原理如图,对于螺旋槽干气密封,其工作原理是靠流体静压力、弹簧力与流体动压力之间的平衡。

当密封气体注入密封装置时,使动、静环受到流体静压力的作用。

而流体的动压力只是在转动时才产生。

如图1-2所示,当动环随轴转动时,螺旋槽里的气体被剪切从外缘流向中心,产生动压力,而密封堰对气体的流出有抑制作用,使得气体流动受阻,气体压力升高,这一升高的压力将挠性安装的静环与配对动环分开,当气体压力与弹簧力恢复平衡后,维持一最小间隙,形成气膜,膜厚一般为3-5μm,使旋转环和静止环脱离接触,从而端面几乎无磨损,同时密封工艺气体。

3. 干气密封的类型干气密封基本结构类型有单端面密封、串联式密封、带中间迷宫串联式密封和双端面密封。

(1)单端面密封适用于没有危害、允使微量的工艺气泄漏到大气的工况。

如N2压缩机、CO2压缩机、空气压缩机等。

(2)串联式密封适用于允许少量工艺气泄漏到大气的工况。

一般采用两级串联布置方式,一级为主密封,二级为备用密封。

正常工况下,全部或大部分负荷由主密封承担,而二级备用密封不承受或承受小部分的负荷和压力降。

干气密封的结构和工作原理

干气密封的结构和工作原理

干气密封的结构和工作原理干气密封的结构和工作原理其实蛮有意思的,听起来高大上,其实就像一件很简单的衣服,里面却藏着不少巧妙的设计。

先说说它的结构吧,干气密封基本上是由几个主要部分构成的,像是密封环、固定环和气体供应系统。

你想啊,这就像是一个团队,每个人都有各自的角色,缺了哪个都不行。

密封环呢,负责紧紧地包住核心部分,确保没有气体溜出去,简直就像个守卫,把“敌人”挡在外面。

固定环呢,起着支撑的作用,保持整个结构的稳定,就像是个强壮的小伙伴,给大家撑腰。

气体供应系统则负责提供必要的气体,保持压力平衡,确保密封状态好得不能再好了。

工作原理说起来更有趣了,干气密封利用了气体的压力和流动来实现密封。

想象一下,就像你在游泳池里,水流动时形成的那种涟漪。

而这些气体的流动就像在场上跳舞,轻盈而又充满节奏。

气体在密封环和固定环之间形成了一层保护膜,保持着低摩擦,减少了磨损。

可以说,这一切都像是一场华丽的表演,每个环节都紧密配合,不容有失。

因为干气密封的设计,摩擦系数可以降到最低,就像是给它穿上了滑滑的衣服,让它在工作时毫无压力。

你或许会问,这种密封有什么好处?哦,简直是太多了。

干气密封的耐用性很高,使用寿命长,这样一来就减少了维修和更换的麻烦。

简直就像买了一件高质量的衣服,不用担心洗几次就变形了。

干气密封在极端环境下也能发挥出色,像高温、高压的地方,它都能稳定工作,绝对是个可靠的伙伴。

再加上它的设计还减少了泄漏的可能性,对环境也更友好,真的是一举多得。

此外,干气密封的维护也比较简单,定期检查就能保持它的良好状态。

说白了,就像你给自己的爱车做保养,定期加油、换油,保持它的最佳状态。

这种密封装置也能减少能耗,提高设备的效率,长久以来就像是给企业省了一笔可观的开支,真是聪明之举。

任何事物都有两面性,干气密封也不例外。

虽然它的优点多多,但在安装和调试上,还是需要一些专业的知识。

就像一个新手厨师在尝试做一道复杂的菜,得小心翼翼,不能随便来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCL804干气密封
PCL804干气密封
PCL804干气密封
PCL804干气密封
PCL804干气密封
பைடு நூலகம்
干气密封基本结构
典型的干气密封结构
静环 动环组件(旋转环) 副密封O形圈 静密封
弹簧
弹簧座(腔体)
干气密封基本结构
干气密封基本结构
干气密封原理
该密封坝的内侧还 随着转子转动,气体 有一系列的反向螺旋槽, 反向螺旋槽的 被向内泵送到螺旋槽的根 这些反向螺旋槽起着反 内侧还有一段密封 部,根部以外的一段无槽 向泵送、改善配合表面 坝,对气体流动产 区称为密封坝。密封坝对 压力分布的作用,从而 生阻力作用,增加 气体流动产生阻力作用, 加大开启静环与动环组 气体膜压力。 增加气体膜压力。 件间气隙的能力。
干气密封原理
受力分析
配合表面间的压力使静环表面与 动环组件脱离,保持一个很小的间隙, 一般为3微米左右。当由气体压力和弹 簧力产生的闭合压力与气体膜的开启 压力相等时,便建立了稳定的平衡间 隙。
干气密封原理
闭合力Fc,是气体压力和弹簧力的总和。开启 力Fo是由端面间的压力分布对端面面积积分而形成 的。在平衡条件下Fc=Fo,运行间隙大约为3微米。
干气密封结构形式
单端面干气密封:
适用于少量工艺气泄漏到大气中无危害的工况
干气密封结构形式
串联式干气密封:
适用于允许少量工艺气泄漏到大气的工况
干气密封结构形式
带中间进气的串联式干气密封:
适用于既不允许工艺气泄漏到大气中,又不允许阻封气进入机内的工况。
干气密封结构形式
双端面干气密封:
适用于不允许工艺气泄漏到大气中,但允许阻封气进入机内的工况。
干气密封原理与结构
干气密封原理与结构
干气密封定义 干气密封简史
干气密封基本结构
干气密封原理
几种干气密封形式
PCL804干气密封
干气密封定义
干气密封
即“干运转气体密封”--Dry Running gas
seals
是将开槽密封技术用于 气体密封的一种新型轴端密 封,属于非接触密封。
干气密封简史
干气密封是20世纪60年代末期在气体动压轴承的基 础上通过对机械密封进行根本性改进发展起来的一种新 非接触式密封。 实际上主要就是通过在机械密封动环上增开了动压 槽以及随之相应设置了辅助系统而实现密封端面的非接 触运行。 英国的约翰克兰公司于70年代末期率先将干气密封 应用到海洋平台的气体输送设备上并获得成功。 干气密封最初是为解决高速离心式压缩机轴端密封 问题而出现的,由于密封非接触式运行,因此密封摩擦 副材料基本不受PV值的限制,特别适合做为高速高压设 备的轴端密封。
干气密封原理
如果由于某种干扰使密封间隙减小,则端面间 的压力就会升高,这时,开启力Fo大于闭合力Fc, 端面间隙自动加大,直至平衡为止。
干气密封原理
如果扰动使密封间隙增大,端面间的压力就会 降低,闭合力Fc大于开启力Fo,端面间隙自动减小, 密封会很快达到新的平衡状态。
干气密封原理
这种机制将在静环和动环组件 之间产生一层稳定性相当高的气体 薄膜,使得在一般的动力运行条件 下端面能保持分离、不接触、不易 磨损,延长了使用寿命。
相关文档
最新文档