三星和多星模型问题
专题天体运动的三大难点破解剖析宇宙中的双星三星模型讲义
![专题天体运动的三大难点破解剖析宇宙中的双星三星模型讲义](https://img.taocdn.com/s3/m/d4496c74aaea998fcc220eee.png)
二、重难点提示:重点:1.根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点。
难点:双星、三星模型的向心力来源。
一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示,双星系统模型有以下特点:(1)各自需要的向心力由彼此间的万有引力相互提供即221LmGm=m1ω21r1,221LmGm=m2ω22r2;(2)两颗星的周期及角速度都相同即T 1=T 2,ω1=ω2;(3)两颗星的半径与它们之间的距离关系为r 1+r 2=L ;(4)两颗星到圆心的距离r 1、r 2与星体质量成反比即1221r r m m =; (5)双星的运动周期T =2π)(213m m G L +;(6)双星的总质量公式m 1+m 2=GT L 2324π。
二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行。
特点:1. 周期相同; 2. 三星质量相同; 3. 三星间距相等;4. 两颗星做圆周运动的向心力相等。
原理:A 、C 对B 的引力充当向心力,即:,可得:GmR T 543π=,同理可得线速度:R GmR 25。
第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。
特点:1. 运行周期相同; 2. 半径相同; 3. 质量相同; 4. 所需向心力相等。
原理:B 、C 对A 的引力的合力充当向心力,即:r Tm R Gm F 2222430cos 2π==︒合,其中R r 33=,可得:运行周期GmRRT 32π=。
例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L 。
已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。
444核心素养培养双星三星模型——模型建构能力的培养
![444核心素养培养双星三星模型——模型建构能力的培养](https://img.taocdn.com/s3/m/edb4c780fd0a79563c1e72b7.png)
①各自所需的向心力由彼此间的万有引力提供,即
GmL12m2=m1ω21r1,GmL12m2=m2ω22r2
r1
②两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
(3)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21。
双星问题提示: 两星间的万有引力分别给两星 提供做圆周运动的向心力,且 两星的角速度相等.
8
@《创新设计》
转到解析
目录
备选训练
2. 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋 转的超大质量双黑洞系统,如图所示。这也是天文学家首次在正常星系中发现超大质量 双黑洞。这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有 十分重要的意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中双黑洞 的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动。根据所学 知识,下列选项正确的是( )
n3 A. k2T
n3 B. k T
n2 C. k T
n D. kT
区分开星体间距与 轨道半径的不同
审题 1、此双星满足什么物理规 设疑 律?
2、双星质量改变后,原表达式要进行 哪些修改?
对 m 恒星:GMLm2 =m2Tπ2·r 对 M 恒星:GMLm2 =M2Tπ2(L-r)
2
@《创新设计》
L r2
目录
课堂互动
2.三星模型
(1)三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为 R 的圆形轨道上运行(如 图 7 甲所示)。其中一个环绕星由其余两颗星的引力提供向心力:GRm22+(G2Rm)2 2=ma
双星模型三星模型四星模型
![双星模型三星模型四星模型](https://img.taocdn.com/s3/m/4599e7ae941ea76e58fa04b3.png)
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s ,运行周期T=4.7π×104s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11 N ·m 2/kg 2,m s =2.0×1030kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
双星模型三星模型四星模型
![双星模型三星模型四星模型](https://img.taocdn.com/s3/m/5b38804a0912a216147929d4.png)
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G 1221221r w m rm m = ④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg )解析:设A 、B的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
专题 天体运动的“四个热点”问题
![专题 天体运动的“四个热点”问题](https://img.taocdn.com/s3/m/2736aa65b9f3f90f76c61be3.png)
专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
(完整版)双星三星四星问题
![(完整版)双星三星四星问题](https://img.taocdn.com/s3/m/8ea32060192e45361066f5c2.png)
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
专题 天体运动的“”四个热点“”问题
![专题 天体运动的“”四个热点“”问题](https://img.taocdn.com/s3/m/082aedf6b0717fd5370cdc29.png)
专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
双星三星四星问题说课讲解
![双星三星四星问题说课讲解](https://img.taocdn.com/s3/m/27a9adb72af90242a995e547.png)
双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星模型、三星模型、四星模型
![双星模型、三星模型、四星模型](https://img.taocdn.com/s3/m/1fbaa614c281e53a5802fff0.png)
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗? (G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
“双星”及“三星”问题
![“双星”及“三星”问题](https://img.taocdn.com/s3/m/72b01406c850ad02de804158.png)
“双星”及“三星”问题宇宙中,因天体间的相互作用而呈现出诸如双星、三星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。
而三星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。
多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。
一、“双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
3.要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
4.“双星”问题的分析思路质量m1,m2;球心间距离L;轨道半径 r1 ,r2;周期T1,T2 ;角速度ω1,ω2 线速度V1 V2;周期相同:(参考同轴转动问题) T1=T2角速度相同:(参考同轴转动问题)ω1 =ω2向心力相同:Fn1=Fn2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r1:r2=m2:m1m1ω2r1=m2ω2r2m1r1=m2r2 r1:r2=m2:m1线速度之比与质量比相反:(由半径之比推导) V1:V2=m2:m1V1=ωr1 V2=ωr2双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为,经过一段时间演化后,两星总质量变为原来的倍,两星之间的距离变为原来的倍,则此时圆周运动的周期为()A. B.C. D.设两颗恒星的质量分别为和,两颗恒星的运行半径分别为和,两恒星之间的距离,两恒星运动时都是由它们之间的万有引力提供向心力,即,,联立得两恒星的质量和,故,当质量和变为原来的k倍,距离变为原来倍时,两恒星做圆周运动的周期,B项正确.二、“三星”问题有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。
万有引力与双星和多星问题
![万有引力与双星和多星问题](https://img.taocdn.com/s3/m/16541decff00bed5b8f31d80.png)
万有引力与双星和多星问题转动方向、周期、角转动方向、周期、角速度、一、双星问题1、双星问题的模型构建对于做匀速圆周运动的双星问题,双星的角速度(周期)以及向心力大小相等,基本方程式为G M 1M 2L 2=M 1r 1ω2=M 2r 2ω2,式中L 表示双星间的距离,r 1,r 2分别表示两颗星的轨道半径, L =r 1+r 2.2、做匀速圆周运动的双星问题中需要注意的几个关键点(1)双星绕它们连线上的某点做匀速圆周运动,两星轨道半径之和与两星距离相等; (2)双星做匀速圆周运动的角速度必相等,因此周期也必然相等;(3)双星做匀速圆周运动的向心力由双星间相互作用的万有引力提供,大小相等;(4)列式时须注意,万有引力定律表达式中的r 表示双星间的距离,而不是轨道半径(双星系统中两颗星的轨道半径一般不同).抓住以上四个“相等”,即向心力、角速度、周期相等,轨道半径之和与两星距离相等,即可顺利求解此类问题.宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。
在这种情况下,它们将各自围绕它们连线上的某一固定点做同周期的匀速圆周运动。
这种结构叫做双星。
(1)由于双星和该固定点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。
(2)由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由F=mr ω2可得mr 1∝,得L m m m r L m m m r 21122121,+=+=,即固定点离质量大的星较近。
注意:万有引力定律表达式中的r 表示双星间的距离,按题意应该是L ,而向心力表达式中的r 表示它们各自做圆周运动的半径,在本题中为r 1、r 2,千万不可混淆。
当我们只研究地球和太阳系统或地球和月亮系统时(其他星体对它们的万有引力相比而言都可以忽略不计),其实也是一个双星系统,只是中心星球的质量远大于环绕星球的质量,因此固定点几乎就在中心星球的球心。
宇宙多星系统模型资料讲解
![宇宙多星系统模型资料讲解](https://img.taocdn.com/s3/m/54c1aaec5acfa1c7ab00cc26.png)
[解析] 设两颗星的质量分别为m1、m2,做圆周运动
的半径分别为r1、r2,根据万有引力提供向心力可得: Grm1+1mr222=m1r14Tπ22,Grm1+1mr222=m2r24Tπ22,联立解得:m1+ m2=4π2Gr1T+2 r23,即T2=4Gπ2mr11++mr223,因此,当两星总质量
(5)双星的运动周期 T=2π
L3 Gm1+m2
(6)双星的总质量公式 m1+m2=4Tπ22GL3
[典例 1] 冥王星与其附近的星体卡戎可视为双星系统,它们的质量
比约为 7∶1,同时绕它们连线上某点 O 做匀速圆周运动.由此可知
卡戎绕 O 点运动的 ( )
CD
A.角速度大小约为冥王星的 7 倍
B.向心力大小约为冥王星的 1/7 C.轨道半径约为冥王星的 7 倍
T22 2
解得T2=2
4(4④ 2) 2a3
7Gm
故 T1 = (4 。 2)(3 3)
T2
4
(1)各自需要的向心力由彼此间的万有引力相互提供,即
GmL12m2=m1ω1 2r1,GmL12m2=m2ω2 2r2
(2)两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
(3)两颗星的半径与它们之间的距离关系为:r1+r2=L
(4)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21
做周期相同的匀速圆周运动。研究发现,双星系统演化过
程中,两星的总质量、距离和周期均可能发生变化。若某
双星系统中两星做圆周运动的周期为 T,经过一段时间演
化后,两星总质量变为原来的 k 倍,两星之间的距离变为
原来的 n 倍,则此时圆周运动的周期为
()
n3
双星模型三星模型四星模型
![双星模型三星模型四星模型](https://img.taocdn.com/s3/m/471ca592a8956bec0875e3b3.png)
双星模型三星模型四星模型The manuscript was revised on the evening of 2021双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G ) 【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有 G1211221r w m rm m =③G 1221221r w m r m m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知 Tπωω221==⑥联立③⑤⑥式解得【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示). (2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=×105 m/s ,运行周期T=π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=×10-11 N·m 2/kg 2,m s =×1030 kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(讲义)
![专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(讲义)](https://img.taocdn.com/s3/m/65893ccddd36a32d72758126.png)
重点:1. 根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点。
难点:双星、三星模型的向心力来源。
一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如下图,双星系统模型有以下特点:〔1〕各自需要的向心力由彼此间的万有引力互相提供即221L m Gm =m 1ω21r 1,221L m Gm =m 2ω22r 2; 〔2〕两颗星的周期及角速度都一样即T 1=T 2,ω1=ω2;〔3〕两颗星的半径与它们之间的间隔 关系为r 1+r 2=L ;〔4〕两颗星到圆心的间隔 r 1、r 2与星体质量成反比即1221r r m m =; 〔5〕双星的运动周期T =2π)(213m m G L +;〔6〕双星的总质量公式m 1+m 2=GT L 2324π。
二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星〔静止不动〕在同一半径为R 的圆轨道上运行。
特点:1. 周期一样; 2. 三星质量一样; 3. 三星间距相等;4. 两颗星做圆周运动的向心力相等。
原理:A 、C 对B 的引力充当向心力,即:,可得:GmR T 543π=,同理可得线速度:R Gm R 25。
第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。
特点:1. 运行周期一样; 2. 半径一样; 3. 质量一样; 4. 所需向心力相等。
原理:B 、C 对A 的引力的合力充当向心力,即:r Tm R Gm F 2222430cos 2π==︒合,其中R r 33=,可得:运行周期GmRR T 32π=。
例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间间隔 为L 。
A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
〔1〕求两星球做圆周运动的周期。
〔2〕在地月系统中,假设忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。
高考物理总复习 专题 天体运动的三大难点破解3 剖析宇宙中的双星、三星模型同步练习
![高考物理总复习 专题 天体运动的三大难点破解3 剖析宇宙中的双星、三星模型同步练习](https://img.taocdn.com/s3/m/a37eacb783d049649b6658a4.png)
剖析宇宙中的双星、三星模型(答题时间:30分钟)1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()A. m1:m2做圆周运动的角速度之比为2:3B. m1:m2做圆周运动的线速度之比为3:2C. m1做圆周运动的半径为D. m2做圆周运动的半径为L2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()A. 1:6400B. 1:80C. 80:1D. 6400:13. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是.....()A. 两颗星有相同的角速度B. 两颗星的旋转半径与质量成反比C. 两颗星的加速度与质量成反比D. 两颗星的线速度与质量成正比4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()A. 双星做圆周运动的角速度不断减小B. 双星做圆周运动的角速度不断增大C. 质量较大的星体做圆周运动的轨道半径渐小D. 质量较大的星体做圆周运动的轨道半径增大5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
完整版双星模型、三星模型、四星模型
![完整版双星模型、三星模型、四星模型](https://img.taocdn.com/s3/m/4678462d6137ee06eef91867.png)
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用依照万有引力的规律,他们的运动规律也同样依照开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力供应向心力为出发点的。
双星系统的引力作用依照牛顿第三定律: F F ,作用力的方向在双星间的连线上,角速度相等,1 2。
【例题 1】天文学家将相距较近、仅在相互的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很宽泛。
利用双星系统中两颗恒星的运动特色可计算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r ,试计算这个双星系统的总质量。
(引力常量为G)【剖析】:设两颗恒星的质量分别为m1、 m2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω 1、ω 2。
依照题意有1 2 ①r1 r2 r ②依照万有引力定律和牛顿定律,有G m1m2 m1w12 r1 ③r 2G m1m2 m1 w22 r1 ④r 2联立以上各式解得m2 r⑤r1m2m1依照解速度与周期的关系知1 2 2⑥T联立③⑤⑥式解得m1 m24 2 3r T 2 G【例题 2】奇异的黑洞是近代引力理论所预知的一种特别天体,探望黑洞的方案之一是观察双星系统的运动规律.天文学家观察河外星系大麦哲伦云时,发现了 LMCX3 双星系统,它由可见星A 和不可以见的暗星 B 组成,两星视为质点,不考虑其他天体的影响.A 、 B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2 所示 .引力常量为 G,由观测可以获取可见星 A 的速率 v 和运行周期 T.(1) 可见星 A 所受暗星 B 的引力 F a 可等效为位于 O 点处质量为 m ′的星体 (视为质点 )对它的引力,设 A 和 B 的质量分别为 m 1、 m 2,试求 m ′(用 m 1、 m 2 表示 ).(2) 求暗星 B 的质量 m 2 与可见星 A 的速率 v 、运行周期 T 和质量 m 1 之间的关系式;(3) 恒星演化到末期, 若是其质量大于太阳质量 m 的 2 倍,它将有可能成为黑洞 .若可见星 As的速率 v=2.7 ×105 m/s ,运行周期 T=4.7 π×410s ,质量 m 1=6m s ,试经过估计来判断暗星 B 有 可能是黑洞吗? (×10-11 N ·m 2/kg 2, m s =2.0 ×1030 kg )剖析:设 A 、 B 的圆轨道半径分别为,由题意知, A 、 B 做匀速圆周运动的角速度同样,设其为。
《双星、三星问题探究》教学设计
![《双星、三星问题探究》教学设计](https://img.taocdn.com/s3/m/a31e0ed1bcd126fff6050b81.png)
双星、三星问题探究史亚东教学分析:天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
三维目标:知识与技能1、了解双星、三星模型.2、理解双星、三星模型的特点及其运动规律。
3、会用万有引力定律及相关公式解决简单问题。
过程与方法1、 通过双星、三星动画模型的演示,让学生对双星、三星模型有直观的认识。
2、 通过对双星三星问题的处理,加强学生运用万有引力定律处理天体运动问题的思路和方法。
情感态度与价值观通过双星、三星问题的学习活动,体会科学方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用。
教学重点:1、 双星、三星模型的基本特点。
2、 双星、三星模型的分析与求解。
教学难点:双星、三星模型的分析与求解.教学方法:引导、讨论、归纳教学过程:复习导入:请同学们回顾处理天体问题的两天思路。
第一条:忽略天体自转的前提下,在天体表面附近的物体受到的重力近似等于万有引力. 第二条:环绕天体或者卫星绕中心天体公转的向心力来源于中心天体对环绕天体的万有引力.宇宙中有这样质量相当的两个恒星,地位相同,两颗恒星相互绕着两者连线上某固定点旋转的现象,叫双星。
推进新课:展示双星模型让学生观察,并思考以下问题: (1)两恒星的角速度、周期有什么关系?(2)两恒星圆周运动的向心力由谁提供?二者有什么关系?(3)两恒星间的距离和二者的轨道半径是否相同?尝试找出对应的轨道半径与两者间距离的关系? 讨论回答:(1)两星具有相同的旋转周期T , 相同的角速度w ;(2)靠它们间的相互吸引力作为向心力,所以它们做圆周运动的向心力相等; (3)两星轨道半径之和等于两星间的距离;r 1+r 2=L 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三星和多星模型问题1.三星模型:(1)如图1所示,三颗质量相等的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动.这三颗行星始终位于同一直线上,中心行星受力平衡,运转的行星由其余两颗行星的引力提供向心力:Gm2r2+Gm2(2r)2=ma向.两行星运行的方向相同,周期、角速度、线速度的大小相等.(2)如图2所示,三颗质量相等的行星位于一正三角形的顶点处,都绕三角形的中心做圆周运动.每颗行星运行所需向心力都由其余两颗行星对其万有引力的合力来提供,即Gm2 L2×2×cos30°=ma向,其中L=2r cos30°. 三颗行星运行的方向相同,周期、角速度、线速度的大小相等.2.四星模型:①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).①另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).3.(1)记忆口诀:N星系统周期同,受力源自其他星;几何关系找半径,第二定律列方程.(2)思维导图【题型1】在宇宙中,单独存在的恒星占少数,更多的是双星、三星甚至多星系统。
如图所示为一个简化的直线三星系统模型:三个星球的质量均为m ,a 、b 两个星球绕处于二者中心的星球c 做半径为r 的匀速圆周运动。
已知引力常量为G ,忽略其他星体对他们的引力作用,则下列说法正确的是( )2GmC .星球b 做匀速圆周运动的周期为Gmr 543 D .若因某种原因中心星球c 的质量缓慢减小,则星球a 、b 的线速度均将缓慢增大 【题型2】宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星体位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G ,下列说法正确的是( )A.每颗星做圆周运动的角速度为GmL 3B.每颗星做圆周运动的加速度大小与三星的质量无关C.若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D.若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍【题型3】进行科学研究有时需要大胆的想象,假设宇宙中存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统(忽略其他星体对它们的引力作用),这四颗星恰好位于正方形的四个顶点上,并沿外接于正方形的圆形轨道运行,若此正方形边长变为原来的一半,要使此系统依然稳定存在,星体的角速度应变为原来的( ) A.1倍 B.2倍 C.12倍 D.22倍【题型4】(多选)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M ,并设两种系统的运动周期相同,则 ( )A .直线三星系统中甲星和丙星的线速度相同B .直线三星系统的运动周期T =4πRR5GMC .三角形三星系统中星体间的距离L =3125RD .三角形三星系统的线速度大小为125GMR 针对训练1.(多选)如图所示,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R 的圆轨道上运行,若三颗星质量均为M ,万有引力常量为G ,则( )A .甲星所受合外力为5GM 24R 2B .乙星所受合外力为5GM 24R 2C .甲星和丙星的线速度相同D .甲星和丙星的角速度相同2.(多选)如图所示,天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是( )A.三颗星的质量可能不相等B.某颗星的质量为4π2l 33GT 2C.它们的线速度大小均为23πl TD.它们两两之间的万有引力大小为16π4l 49GT 43.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。
设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为L 的正方形的四个顶点上,其中L 远大于R 。
已知万有引力常量为G 。
忽略星体自转效应,关于四星系统,下列说法正确的是( ) A.四颗星圆周运动的轨道半径均为L2B.四颗星圆周运动的线速度均为Gm L (2+24) C.四颗星圆周运动的周期均为2π 2L 3(4+2)GmD.四颗星表面的重力加速度均为G mR234.宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为 R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。
设每个星体的质量均为m 。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?54.由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .三星和多星模型问题参考答案【题型1】【答案】C【解析】对星球a 有22224r m G r m G ma +=解得245r Gma =,故A 错误;对星球a 有222224r m G r m G r v m +=,解得r Gm v 45=,故B 错误;对星球b 有22222244rm G r m G r T m +=π,解得Gmr T 543π=,故C 正确;若因某种原因中心星球c 的质量缓慢减小,则星球a ,b做离心运动,线速度均将缓慢减小,故D 错误。
【题型2】【答案】 C【解析】 任意两星间的万有引力F =G m 2L 2,对任一星受力分析,如图所示,由图中几何关系知r =33L ,F 合=2F cos 30°=3F ,由牛顿第二定律可得F 合=mω2r ,联立可得ω=3GmL 3,a n =ω2r =3Gm L 2,选项A 、B 错误;由周期公式可得T =2πω=2πL 33Gm,L 和m 都变为原来的2倍,则周期T ′=2T ,选项C 正确;由速度公式可得v =ωr =GmL,L 和m 都变为原来的2倍,则线速度v ′=v ,大小不变,选项D 错误.【题型3】【答案】 D【解析】 设正方形边长为L ,每颗星的轨道半径为r =22L ,对其中一颗星受力分析,如图所示,由合力提供向心力:2×Gm 2L 2cos 45°+Gm 22L 2=mω2r 得:ω=(2+22)Gm L L,所以当边长变为原来的一半,星体的角速度变为原来的22倍,故D 项正确.【题型4】【答案】BC【解析】直线三星系统中甲星和丙星的线速度大小相同,方向相反,选项A 错误;三星系统中,对直线三星系统有G M 2R 2+G M 2(2R )2=M 4π2T 2R ,解得T =4πRR5GM,选项B 正确;对三角形三星系统根据万有引力和牛顿第二定律可得2G M 2L 2cos 30°=M 4π2T 2·L2cos 30°,联立解得L =3125R ,选项C 正确;三角形三星系统的线速度大小为v =2πrT =2πL2cos 30°T ,代入解得v =36·3125·5GMR,选项D 错误. 针对训练1.【答案】AD【解析】甲星所受合外力为乙、丙对甲星的万有引力的合力,F 甲=GM 2R 2+GM 2(2R )2=5GM 24R 2,选项A 正确;由对称性可知,甲、丙对乙星的万有引力等大反向,乙星所受合力为零,选项B 错误;由于甲、丙位于同一轨道上,甲、丙的角速度相同,由v =ωR 可知,甲、丙两星的线速度大小相同,但方向相反,故选项C 错误,D 正确. 2.【答案】BD【解析】轨道半径等于等边三角形外接圆的半径,r =l2cos 30°=33l .根据题意可知其中任意两颗星对第三颗星的合力指向圆心,所以这两颗星对第三颗星的万有引力等大,由于这两颗星到第三颗星的距离相同,故这两颗星的质量相同,所以三颗星的质量一定相同,设为m ,则2G m 2l 2cos 30°=m ·4π2T 2·33l ,解得m =4π2l 33GT 2,它们两两之间的万有引力F =G m 2l 2=G⎝⎛⎭⎫4π2l 33GT 22l 2=16π4l 49GT 4,A 错误,B 、D 正确;线速度大小为v =2πr T =2πT ·3l 3=23πl 3T ,C 错误. 3.【答案】CD【解析】如图所示,四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径均为r =22L 。
取任一顶点上的星体为研究对象,它受到相邻的两个星体与对角线上的星体的万有引力的合力为F 合=2G m 2L 2+G m 2(2L )2。
由F 合=F 向=m v 2r =m 4π2T 2·r ,可解得:v =Gm L (1+24),T =2π2L 3(4+2)Gm。
故A 、B 项错误,C 项正确。
对于星体表面质量为m 0的物体,受到的重力等于万有引力,则有m 0g =G mm 0R 2,故g =G mR 2,D 项正确。
4.【答案】(1)v =54GmR T =4πR 5R Gm(2)3125R 【解析】(1)第一种形式下,由万有引力定律和牛顿第二定律得()222222m m v G G m R R R += 解得星体运动的线速度 v =54GmR星体运动的周期T =2R vπ=4πR 5RGm 。
(2)设第二种形式下星体做圆周运动的半径为r ,则相邻两星体之间的距离s=3r ,相邻两星体之间的万有引力F=G()23mmr=223Gm r由星体做圆周运动可得3F=m 22T π⎛⎫⎪⎝⎭r 解得34315r R =相邻两星体之间的距离s=3r =3125R . 5.【答案】(1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm【解析】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a2方向如图所示,由余弦定理得合力为: F B =F 2AB +F 2CB-2F AB ·F CB ·cos 120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点,则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm.。