【备考2020】北京市大兴区中考数学一模试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京市大兴区中考数学一模试卷
一.选择题(共10小题,满分30分,每小题3分)
1.下列运算正确的是()
A.a3+a3=2a6B.a6÷a﹣3=a3
C.a3•a2=a6D.(﹣2a2)3=﹣8a6
2.方程组的解为()
A.B.C.D.
3.不等式组的解集在数轴上表示为()
A.B.
C.D.
4.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()
(1)若通话时间少于120分,则A方案比B方案便宜20元;
(2)若通话时间超过200分,则B方案比A方案便宜12元;
(3)若通讯费用为60元,则B方案比A方案的通话时间多;
(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.
A.1个B.2个C.3个D.4个
5.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()
A.B.C.D.
6.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC 为半径的交OA于点E,则图中阴影部分的面积是()
A.12π+18 B.12π+36 C.6 D.6
7.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()
A.B.C.D.
8.为积极响应我市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()
A.D等所在扇形的圆心角为15°
B.样本容量是200
C.样本中C等所占百分比是10%
D.估计全校学生成绩为A等大约有900人
9.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()
A.B.C.D.
10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()
A.2+ B.2+2 C.12 D.18
二.填空题(共6小题,满分18分,每小题3分)
11.当x=时,分式的值为零.
12.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=.
13.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添
加其他字母及辅助线),你添加的条件是 .
14.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在上,则阴影部分的面积为 .
15.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组有解,且使关于x 的一元一次方程+1=的解为负数的概率为 .
16.如图,在直角坐标系中,矩形OABC 的顶点C 在x 轴的负半轴上,点A 在y 轴正半轴上,矩形OABC 的面积为.把矩形OABC 沿DE 翻折,使点B 与点O 重合,点C 落在第三象限的
G 点处,作EH ⊥x 轴于H ,过E 点的反比例函数y =图象恰好过DE 的中点F .则k = ,
线段EH 的长为: .
三.解答题(共7小题)
17.先化简,再求值:1﹣,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0. 18.△ABC 在平面直角坐标系中的位置如图所示.
(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;
(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
19.某服装店用4400元购进A ,B 两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型价格 A 型 B 型 进价(元/件) 60 100 标价(元/件)
100
160
(1)请利用二元一次方程组求这两种服装各购进的件数;
(2)如果A 种服装按标价的9折出售,B 种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元? 20.(1)问题发现
如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE . 填空:①∠AEB 的度数为 ;②线段AD ,BE 之间的数量关系为 . (2)拓展探究
如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的
数量关系,并说明理由.
21.如图,在平面直角坐标系中,直线y=kx﹣4k+4与抛物线y=x2﹣x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;
(2)点P在抛物线上,当k=﹣时,解决下列问题:
①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;
②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.
22.一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下两个统计图:
(1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为度;
(2)请补充完整下面的成绩统计分析表:
平均分方差众数中位数优秀率
甲组7 1.8 7 7 20%
乙组10%
(3)甲组学生说他们的优秀率高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.23.如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴相交于点A,与y轴相交于点B,抛物线y=ax2﹣4ax+4经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.
(1)求抛物线的表达式;
(2)求证:△BOD∽△AOB;
(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.