电工学(第七版上册)

合集下载

电工学(电工技术)第七版 上册 第一 章 电子教案

电工学(电工技术)第七版 上册 第一 章 电子教案

(2) U、I 值本身的正负则说明实际方向与参考方向
之间的关系。
通常取 U、I 参考方向相同。
例: 应用欧姆定律对下图电路列出式子,并求电阻R。
+
+
U
I
6V 2A
R

(a)
U 6V
I R
–2A

(b)
解: 对图(a)有, U = IR 所以: R U 6 3Ω I2
对图(b)有, U = – IR 所以: R U 6 3Ω I 2
=
223V
E1

R01
U

–E1
R01
即 E2= UIR01 = 220 50.6 = 217V
(2) 功率的平衡关系 E1 = E2 + IR01 + IR02
等号两边同时乘以 I, 则得 E1 I = E2 I + I2R01 + I2R02
代入数据有 223 5 = 217 5+52 0.6 + 5 + 52 0.6
I3
R2 I2
E1
1 3 R3 2
E2
b
支路:电路中的每一个分支。 一条支路流过一个电流,称为支路电流。
结点:三条或三条以上支路的联接点。 回路:由支路组成的闭合路径。 网孔:内部不含支路的回路。
例1:
I1 R1
d
G
a I2
IG R2
R3 I3
R4 b I4
I
+–
E
支路:ab、bc、ca、…
(共6条)
电源或信号源的电压或电流称
为激励,它推动电路工作;由激励 所产生的电压和电流称为响应。

电工学(第七版)上册秦曾煌

电工学(第七版)上册秦曾煌

Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
Ia a
Rab
Ib
Rbc Rca
Ic b
C
电阻Y形联结
电阻形联结
等效变换的条件:
对应端流入或流出的电流(Ia、Ib、Ic)一一相等, 对应端间的电压(Uab、Ubc、Uca)也一一相等。
经等效变换后,不影响其它部分的电压和电流。
章目录 上一页 下一页 返回 退出
5
Rb
b +

12V
12V
解:将联成形abc的电阻变换为Y形联结的等效电阻
Ra
Rab
Rab Rca Rbc
Rca
48 Ω 448

44
84
Rb 4 4 8 Ω 1 Ω Rc 4 4 8 Ω 2 Ω
章目录 上一页 下一页 返回 退出
例2:计算下图电路中的电流 I1 。
I1 a
Ra Rb
Rb Rc Rc Ra Rb
Ra
Rab Rca Rab Rbc Rca
Rb
Rbc Rab Rab Rbc Rca
Rc
Rca Rbc Rab Rbc
Rca
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
章目录 上一页 下一页 返回 退出
理想电流源(恒流源)
I
U
+
IS
U
RL
_
O
IS
I
特点: (1) 内阻R0 = ;
外特性曲线
(2) 输出电流是一定值,恒等于电流 IS ;

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

电路
电动势 E 电流 I 电流密度 J l 电阻 R S I + E R _
I E R E l S
l
S

F NI l Rm S
4. 磁路分析的特点 (1)在处理电路时不涉及电场问题,但在处理磁路时离 不开磁场的概念; (2)在处理电路时一般可以不考虑漏电流,但在处理磁 路时一般都要考虑漏磁通; (3)磁路欧姆定律和电路欧姆定律只是在形式上相似。 由于 不是常数,其随励磁电流而变,磁路欧姆定律 不能直接用来计算,只能用于定性分析; (4)在电路中,当 E=0时,I=0;但在磁路中,由于有 剩磁,当 F=0 时, 不为零;
7
例:环形线圈如图,其中媒质是均 匀的,磁导率为,试计算线圈内 部各点的磁感应强度。 解:半径为x处各点的磁场强度为 NI Hx lx NI I 故相应点磁感应强度为 Bx Hx
lx
N匝
x
Hx S
由上例可见,磁场内某点的磁场强度 H 只与电流 大小、线圈匝数、以及该点的几何位置有关,与磁 场媒质的磁性() 无关;而磁感应强度 B 与磁场媒 质的磁性有关。
磁路的欧姆定律是分析磁路的基本定律 1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率 为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
N匝 xBiblioteka H dl I设磁路的平均长度为 l,则有 B NI Hl l l S

S I
Hx
即有: Φ NI F
在例1(1),(2)两种情况下,如线圈中通有同样大 小的电流0.39A,要得到相同的磁通 ,铸铁材料 铁心的截面积和硅钢片材料铁心的截面积,哪一 个比较小? 【分析】 如线圈中通有同样大小的电流0.39A, 则铁心中的磁场强度是相等的,都是260 A/m。 查磁化曲线可得, B铸铁 = 0.05T、 B硅钢 =0.9T, B硅钢是B铸铁的18倍。 因 =BS,如要得到相同的磁通 ,则铸铁铁 心的截面积必须是硅钢片铁心的截面积的18倍。 结论:如果线圈中通有同样大小的励磁电流,要 得到相等的磁通,采用磁导率高的铁心材料,可 使铁心的用铁量大为降低。

电工学第七版上册课后答案

电工学第七版上册课后答案

电工学第七版上册课后答案第一章电工基础知识1.1 电流、电压和功率•问题:1.什么是电流?它的单位是什么?2.什么是电压?它的单位是什么?3.什么是功率?它的单位是什么?•答案:1.电流是电荷在单位时间内通过导体的量度,单位是安培(A)。

2.电压是电荷单位正负极之间的电势差,单位是伏特(V)。

3.功率是单位时间内完成的功,单位是瓦特(W)。

1.2 电阻、电导和欧姆定律•问题:1.什么是电阻?它的单位是什么?2.什么是电导?它的单位是什么?3.什么是欧姆定律?如何表达?•答案:1.电阻是导体中电流流过时所产生的阻碍作用,单位是欧姆(Ω)。

2.电导是导体中电流流过时的导电能力,单位是西门子(S)。

3.欧姆定律表明,电流与电压成正比,与电阻成反比,可以表示为V = I * R,其中V为电压,I为电流,R为电阻。

第二章直流电路2.1 串联电路和并联电路•问题:1.什么是串联电路?如何计算总电阻?2.什么是并联电路?如何计算总电阻?•答案:1.串联电路是多个电阻连接在同一电流通路中的电路,总电阻等于各个电阻之和。

2.并联电路是多个电阻并排连接在电流通路中的电路,总电阻的倒数等于各个电阻倒数之和的倒数。

2.2 电动势和内电阻•问题:1.什么是电动势?它与电压有何区别?2.什么是内电阻?•答案:1.电动势是电源释放、传递和供应电能的能力,它为电流流动所需要的电压提供能量。

与电压的区别在于,电动势是电源的特性,电压是电路中的电势差。

2.内电阻是电源内部存在的电阻,在电流流过时会引起电压降落,也会耗散电能。

第三章交流电路3.1 交流电的基本概念•问题:1.什么是交流电?它与直流电有何不同?2.什么是周期?•答案:1.交流电是电流方向和电压大小都随时间变化的电流,与直流电不同的是,交流电的电流方向会周期性地改变。

2.周期指交流电中一个完整的正弦波所经历的时间,通常用单位时间内的变化次数来表示,单位是赫兹(Hz)。

3.2 交流电路的分析方法•问题:1.什么是有效值?如何计算?2.什么是相位?如何表示?•答案:1.有效值是交流电中正弦波的最大值的1/√2,它表示了交流电的平均功率。

电工学(第七版上册)秦曾煌主编讲解

电工学(第七版上册)秦曾煌主编讲解
第7章 磁路与铁心线圈电路
7.1 磁场的基本物理量 7.2 磁性材料的磁性能 7.3 磁路及其基本定律 7.4 交流铁心线圈电路 7.5 变压器 7.6 电磁铁
第7章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路;
N
300
结论:如果要得到相等的磁感应强度,采用磁导率
高的铁心材料,可以降低线圈电流,减少用铜量。
在例1(1),(2)两种情况下,如线圈中通有同样大
小的电流0.39A,要得到相同的磁通 ,铸铁材料
铁心的截面积和硅钢片材料铁心的截面积,哪一 个比较小? 【分析】 如线圈中通有同样大小的电流0.39A, 则铁心中的磁场强度是相等的,都是260 A/m。
磁性物质不同,其磁滞回线
• O •Hc H •
和磁化曲线也不同。
磁滞回线
按磁性物质的磁性能,磁性材料分为三种类型: (1)软磁材料
具有较小的矫顽磁力,磁滞回线较窄。一般用来 制造电机、电器及变压器等的铁心。常用的有铸铁、 硅钢、坡莫合金即铁氧体等。 (2)永磁材料
具有较大的矫顽磁力,磁滞回线较宽。一般用来 制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 (3)矩磁材料
具有较小的矫顽磁力和较大的剩磁,磁滞回线接 近矩形,稳定性良好。在计算机和控制系统中用作记 忆元件、开关元件和逻辑元件。常用的有镁锰铁氧体 等。
7.3 磁路及其基本定律
7.3.1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料 做成一定形状的铁心。铁心的磁导率比周围空气或 其它物质的磁导率高的多,磁通的绝大部分经过铁 心形成闭合通路,磁通的闭合路径称为磁路。

电工学(第七版上册)电工技术(课件)

电工学(第七版上册)电工技术(课件)
供配电系统包括变压器、开关设备、导线等设备, 这些设备的作用是保障电能的安全传输和分配。
3
供配电系统的电压等级
供配电系统的电压等级分为高压、中压和低压, 不同电压等级适用于不同的输配电需求。
安全用电的基本知识
触电及其危害
触电是指人体成为导电路径的一部分,从而形成电流通过人体, 造成伤害甚至死亡。
安全用电的措施
高斯定理
在静电场中,穿过任意闭合曲 面的电场强度通量等于该闭合 曲面内所包围的电荷的代数和 除以真空中的介电常数。
电流与磁场
电流
电荷的定向移动形成电流,电流的大小等于单位 时间内通过导体横截面的电荷量,电流的单位是 安培。
磁力线
为了形象地描述磁场中各点的磁感应强度方向和 大小,在磁场中画出一些曲线,曲线上每一点的 切线方向都与该点的磁感应强度方向一致,这些 曲线称为磁力线。
节能型家用电器
购买节能型家用电器,如节能空调、节能冰 箱等,以降低能耗。
合理安排用电时间
错峰用电,尽量在电力低谷时段使用大功率 电器,以降低电费支出。
THANK YOU
感谢聆听
掌握电路的基本概念、 基本理论和基本分析方 法。
02
电工学基础知识
电荷与电场
01
02
03
04
电荷
电荷是物质的基本粒子,具有 正负两种电荷。电荷的单位是 库仑。
电场
电荷周围存在电场,电场对放 入其中的电荷产生力的作用。 电场强度是描述电场强弱和方 向的物理量。
电场线
为了形象地描述电场中各点的 电场强度方向和大小,在电场 中画出一些曲线,曲线上每一 点的切线方向都与该点的电场 强度方向一致,这些曲线称为 电场线。
有功功率表示实际消耗的能量,无功功率表示储能元件之间交换 的能量。

电工学电工技术第七版上册第一章电子教案PPT课件

电工学电工技术第七版上册第一章电子教案PPT课件

当参考方向与实际方向相反时,值为负。
1.3.2 电压的参考方向
电压实际方向:由高电位端指向低电位端(客观存在) 电压的参考方向: 任意假定
如果A、B的实际电位为: VA 6V VB 2V
A
A
U
U
B
U=4V
B
U= -4V
注意:
1. i、u、e 的参考方向可任意假定。但一经选定,分 析过程中不应改变。
电路分析是在已知电路结构和参数的条件下,
讨论激励与响应的关系。
1.3.1 电流1.3 电压和电流的参考方向
一、电流定义
带电粒子或电荷在电场力作用下的定向运动
形成电流。单位时间内流过导体截面的电荷量定义
为电流强度。
二、电流的单位
i dq dt
A(安培)、mA(毫安)、μA(微安)
三、电流的实际方向
第1章 电路的基本概念与基本定律
1.1 电路的作用与组成部分 1.2 电路模型 1.3 电压和电流的参考方向 1.4 欧姆定律 1.5 电源有载工作、开路与短路 1.6 基尔霍夫定律 1.7 电路中电位的概念及计算
第1章 电路的基本概念与基本定律
本章要求: 1.理解电压与电流参考方向的意义; 2. 理解电路的基本定律并能正确应用; 3. 了解电路的有载工作、开路与短路状态,理解
电压与电流参 考方向相反
电流的参考方向 与实际方向相反
线性电阻的概念:
遵循欧姆定律的电阻称为线性电阻,它表示该段 电路电压与电流的比值为常数。
即:R U 常数 I
电路端电压与电流的关系称为伏安特性。
线性电阻的伏安特性
I/A
是一条过原点的直线。
o
U/V
线性电阻的伏安特性

电工学(第七版)上册秦曾煌第一章ppt课件

电工学(第七版)上册秦曾煌第一章ppt课件
(3) 根据计算结果确定实际方向: 若计算结果为正值,则实际方向与假设方向一致; 若计算结果为负值,则实际方向与假设方向相反。
.
章目录 上一页 下一页 返回 退出
例: 电路如图所示。
I = 0.28A I = – 0.28A
电动势为E =3V
+
方向由负极指向正极; E
3V
电压U的参考方向与实际方
向相同, U = 2.8V, 方向由
电动势 E
单位
A、 kA、 mA、 μA V、 kV、 mV、 μV
电 压 U V、 kV、 mV、 μV
实际正方向 正电荷移动的方向
电源驱动正电荷的 方向
(低 电 位 - 高 电 位 ) 电位降落的方向
(高 电 位 - 低 电 位 )
.
章目录 上一页 下一页 返回 退出
物理量正方向的表示方法
I
a

U
R

泡 R0
导线
手电筒电路
干电池 导线 灯泡 手电筒的电路模型
电源或信号源的电压或电流称为激励,它推动电
路工作;由激励所产生的电压和电流称为响应。
电路分析是在已知电路结构和参数的条件下,讨
论激励与响应的关系。
.
章目录 上一页 下一页 返回 退出
1.3 电压和电流的参考方向
电流
电路中的物理量 电压
电功率和额定值的意义; 4. 会计算电路中各点的电位。
.
章目录 上一页 下一页 返回 退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备
或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机

电工学(第七版上册)秦曾煌主编汇总

电工学(第七版上册)秦曾煌主编汇总

4.旋转磁场的转速
旋转磁场的转速取决于磁场的极对数 p=1时
n0 60 f1 (转/分) 0 o 工频: f1 50 Hz
Im I m
i i A
i B iC
t
A
n0 3000 (转/分)
A Y C
N
Z Y B
A
S
C N
Z
Y B C
N
Z B
S
S
X
X
X
p=2时
C
X
Y
A
30

N
n (1 s )n0 异步电动机运行中: s (1 ~ 9)%
n0 n s 转差率s n 100% 0 转子转速亦可由转差率求得
例1:一台三相异步电动机,其额定转速 n=975 r/min,电源频率 f1=50 Hz。试求电动机的 极对数和额定负载下的转差率。 解: 根据异步电动机转子转速与旋转磁场同步转 速的关系可知:n0=1000 r/min , 即 p=3 额定转差率为
第8章 交流电动机
本章要求:
1. 了解三相交流异步电动机的基本构造和转动 原理。 2. 理解三相交流异步电动机的机械特性,掌握 起动和反转的基本方法, 了解调速和制动的 方法。 3. 理解三相交流异步电动机铭牌数据的意义。
第8章 交流电动机
电动机的分类: 同步电动机 交流电动机 电动机 直流电动机 异步电动机 三相电动机 单相电动机
8.2 三相异步电动机的转动原理
8. 2. 1 旋转磁场
1.旋转磁场的产生 定子三相绕组通入三 相交流电(星形联接)
iA
i A I m sint iB I m sint 120 iC I m sint 120

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

u
波形图
O
ωt
瞬时值表达式 u Umsin( t )
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示(相互间一一对应)
设正弦量: y
u
Байду номын сангаас
Umsin(
t ψ)
u
u0ω
O
x
u1
U
O
m
ψ
ω t1
ωt
若:有向线段长度 = Um
有向线段与横轴夹角 =
初相位
(2)便于运算,同一频率的正弦量的和、差仍为 同一频率的正弦量,正弦量的求导和积分仍为同 一频率的正弦量;
(3)正弦量变化平滑,在正常情况下不会引起过 电压而破坏电器设备,有利于电器设备的运行;
4.1 正弦电压与电流
设正弦交流电流:
i
Im
i Im sin t
O
2
t
T
初相角:决定正弦量起始位置
ui u
i
O
ωt
ψ1 ψ2 90 电流超前电压90 (正交)
ui u i
O
ωt
90°
ψ1 ψ2 180
电压与电流反相
ui u i
O
ωt
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
4.2 正弦量的相量表示法
1.正弦量的表示方法
4.1.2 幅值与有效值
幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

定子
匝数相同
发电机结构
三相绕组 空间排列互差120
转子 : 直流励磁的电磁铁
三相电动势瞬时表示式
eA Em sin t
eB Em sin( t 120 )
eC Em sin( t 120 )
相量表示
EA E EB E
0 E 120 E( 1 j
2
3) 2
EC E
120 E( 1 j 2
负载的相电压不对称。
2. 照明负载三相不对称,必须采用三相四线制供电
方式,且中性线上不允许接刀闸和熔断器。
5.3 负载三角形联结的三相电路
1. 联结形式
A
IA
+–
UAB
– UCA IB
B
+
UBC C–
+
IC
ICA
ZCA
IAB
ZBC ZAB
IBC
相电流: 流过每相负载的电流 IAB、IBC、ICA
线电流: 流过端线的电流 IA、IB、IC
三相负载的联接
三相负载也有 Y和 两种接法,至于采用哪种方 法 ,要根据负载的额定电压和电源电压确定。
三相负载连接原则 (1) 电源提供的电压=负载的额定电压; (2) 单相负载尽量均衡地分配到三相电源上。
电源 保险丝 A B C N
三相四线制 380/220伏
额定相电压为 额定线电压为 220伏的单相负载 380伏的三相负载
负载对称时,中性线无电流,
可省掉中性线。
UL 3UP
例1:一星形联结的三相电路,电源电压对称。设电
源线电压 uAB 380 2 sin(314 t 30)V 。 负载为
电灯组,若RA=RB= RC = 5 ,求线电流及中性线电

2024版电工学(第七版上册)秦曾煌主编PPT课件

2024版电工学(第七版上册)秦曾煌主编PPT课件
根据磁化曲线的不同特点, 铁磁性物质可分为软磁材 料、硬磁材料和矩磁材料 等。
26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。

电工学第七版上册电工技术通用课件

电工学第七版上册电工技术通用课件
P4 U4I4 5 (1) 5W(发出5W) P5 U5I5 (10) (3) 30W(发出30W)
5
Pk P1 P5 118 16 5 30 0
k 1
对一完整的电路,功率之和恒等于零,或者称
发出的功率=消耗的功率
1.4 电 路 元 件
电路元件是电路中最基本的组成单元。电路元件通 过其端子与外部相连接;元件的特性则通过与端子有 关的物理量描述。每一种元件反映某种确定的电磁性 质。集总参数元件假定:在任何时刻,流入二端元件 的一个端子的电流一定等于另一端子流出的电流,两 个端子之间的电压为单值量。由集总元件构成的电路 称为集总电路,或具有集总参数的电路。用集总元件 及其组合模拟实际的部件和器件以及用集总电路作为 实际的电路模型是有条件的,本书的第18章将加以讨 论。本书的其余各章只考虑集总电路。电路元件按与 外部连接的端子数目可分为二端、三端、四端元件等。 还可以分为无源元件和有源元件,线性元件和非线性 元件,时不变元件与时变元件等等。
1.3 电功率和能量 一:电功率
单位时间做功大小称作功率,或者说做功的速率称为 功率。在电路问题中涉及的电功率即是电场力做功的速率, 以符号p(t)表示。功率的数学定义式可写为 :
p(t) dw(t) dt
式中dw为dt时间内电场力所做的功。功率的单位为瓦(W)。 1瓦功率就是每秒做功 1 焦耳,即1W = 1J/s 。
任何时刻,电容极板上电荷q与电压u成正比
q Cu or C q u
C
+q -q


u
q
Ou
C:称为电容器的电容 单位:F (法) (Farad,法拉) 常用F,pF等表示。
1F=106 F=109nF=1012pF
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故得:
Hx
NI 2π x
NI lx
式中:N 线圈匝数;
N匝 x
Lx=2x是半径为x的圆周长;
Hx 半径x处的磁场强度; NI 为线圈匝数与电流的乘积。 I
Hx S
线圈匝数与电流的乘积NI ,称为磁通势,用字母 F 表示,则有
F = NI 磁通由磁通势产生,磁通势的单位是安[培]。
7.1.4 磁导率
说明: 如果不是均匀磁场,则取B的平均值。 磁感应强度B在数值上可以看成为与磁场方向垂直
的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。
B
H
磁场强度H的单位 :安培/米(A/m)
不受外磁场的影响而互相抵消,不具有磁化特性。
非磁性材料的磁导率都是常数,有:
0 r1 当磁场媒质是非磁性材料时,有: B( )
B=0H
即 B与 H 成正比,呈线性关系。
由于
Φ
B ,
H NI
O
H( I )
S
l
所以磁通 与产生此磁通的电流 I 成正比,呈
线性关系。
2. 磁性物质 磁性物质内部形成许多小区域,其分子间存在的
N匝 x
解:半径为x处各点的磁场强度为
NI Hx
lx 故相应点磁感应强度为
Bx Hx NI
I
lx
Hx S
由上例可见,磁场内某点的磁场强度 H 只与电流 大小、线圈匝数、以及该点的几何位置有关,与磁
场媒质的磁性() 无关;而磁感应强度 B 与磁场媒
质的磁性有关。
7.1.5 物质的磁性
1. 非磁性物质 非磁性物质分子电流的磁场方向杂乱无章,几乎
2. 了解变压器的基本结构、工作原理、运行特性和 绕组的同极性端,理解变压器额定值的意义;
3. 掌握变压器电压、电流和阻抗变换作用; 4.了解三相电压的变换方法; 5. 了解电磁铁的基本工作原理及其应用知识。
7.1 磁场的基本物理量
7.1.1 磁感应强度
磁感应强度B : 表示磁场内某点磁场强弱和方向的物理量。
磁感应强度B的方向: 与电流的方向之间符合右手螺旋定则。
磁感应强度B的大小:
B F lI
磁感应强度B的单位: 特斯拉(T),1T = 1Wb/m2
均匀磁场: 各点磁感应强度大小相等,方向相同的 磁场,也称匀强磁场。
7.1.2 磁通
磁通 :穿过垂直于B方向的面积S中的磁力线总数。
在均匀磁场中 = B S 或 B= /S
一种特殊的作用力使每一区域内的分子磁场排列整
齐,显示磁性,称这些小区域为磁畴。
在没有外磁场作用的普通磁性物质中,各个磁畴排 列杂乱无章,磁场互相抵消,整体对外不显磁性。





在外磁场作用下,磁畴方向发生变化,使之与外
磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
7.2 磁性材料的磁性能
B
a •
BJ
磁感应强度直线;
B0
B BJ曲线和B0直线的纵坐标相 加即磁场的 B-H 磁化曲线。
O
磁化曲线 H
B-H 磁化曲线的特征:
B
Oa段:B 与H几乎成正比地增加;
b •B
ab段: B 的增加缓慢下来;
a •
BJ
b点以后:B增加很少,达到饱和。
有磁性物质存在时,B 与 H不成 O
正比,因此,磁性物质的磁导率
第7章 磁路与铁心线圈电路
7.1 磁场的基本物理量 7.2 磁性材料的磁性能 7.3 磁路及其基本定律 7.4 交流铁心线圈电路 7.5 变压器 7.6 电磁铁
第7章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路;
a 0.2
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a 铸铁 b 铸钢 c 硅钢片
10 103 H/(A/m)
c b
a H/(A/m) 1.0103
7.2.3 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于
外磁场变化的性质。
磁性材料在交变磁场中反复磁化,其B-H关系曲线
磁导率 :表示磁场媒质磁性的物理量,衡量物质
的导磁能力。
磁导率 的单位:亨/米(H/m)
真空的磁导率为常数,用 0表示,有:
0 4π107H/m
相对磁导率 r: 任一种物质的磁导率 和真空的磁导率0的比值。
r
0
H 0H
B B0
例:环形线圈如图,其中媒质是均
匀的,磁导率为,计算线圈内
部各点的磁感应强度。
在均匀磁场中 Hl = IN 或 H IN l
安培环路定律将电流与磁场强度联系起来。
例: 环形线圈如图,其中媒质是均匀的, 试计算 线 圈内部各点的磁场强度。
解: 取磁通作为闭合回线,以 其 方向作为回线的围绕方向,则有:
Hdl I
H dlH xlxH x2x
I NI
H x2πxNI
I
N匝
x
Hx S
7.2.2 磁饱和性
磁性物质由于磁化所产生的磁化磁场不会随着
外磁场的增强而无限的增强。当外磁场增大到一定
程度时,磁性物质的全部磁畴的磁场方向都转向与
外部磁场方向一致,磁化磁场的磁感应强度将趋向
某一定值。如图。
B
BJ 磁场内磁性物质在磁化磁场 作用下的磁感应强度曲线;
B0 磁场内不存在磁性物质时的
b •
B0
磁化曲线 H
不是常数,随H而变。
B,
有磁性物质存在时,与 I 也不成
B
正比。
磁性物质的磁化曲线在磁路计
算上极为重要,其为非线性曲线,
实际中通过实验得出。
O B和与H的关系 H
几种常见磁性物质的磁化曲线
B/T 1 2 3 4 5 6 7 8 9
1.8 1.6 1.4 1.2 c
b 1.0 0.8 0.6 0.4
安培环路定律(全电流定律)
Hdl I
5.2
I1 H
式中: H d l 是磁场强度矢量沿任意闭合
I2
线(常取磁通作为闭合回线)的线积分;
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定: 任意选定一个闭合回线的围绕方向,凡是电流方
向与闭合回线围绕方向之间符合右螺旋定则的电流
作为正、反之为负。
磁性材料主要指铁、镍、钴及其合金等。
7.2.1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 。
磁性材料能被强烈的磁化,具有很高的导磁性 能。
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
相关文档
最新文档