电工学(第七版上册)秦曾煌主编
电工学(第七版上册)秦曾煌主编
电工学(第七版上册)秦曾煌主编
1 0 B A S E - T w a ll p la t e
开关
灯泡
电 池
导线 实际电路
开关 S
电
RS
池
US
导线
电路模型灯泡 R源自1.2 电流和电压的参考方向
i(t)limΔqdq Δt0 Δt dt
电工学(第七版上册)秦曾煌主编
电流强度定义说明图
电工学(第七版上册)秦曾煌主编
单位:A(安培) kA、mA、A
1kA=103A 1mA=10-3A 1 A=10-6A
电工学(第七版上册)秦曾煌主编
电流的参考方向与实际方向的关系:
规定:正电荷的运动方向为电流的实际方向
i 参考方向
i
A
实际方向 B A
i>0
参考方向 实际方向 B
i <0
1. 用箭头表示: 箭头的指向为电流的参考方向。
2.用双下标表示: 如iAB,电流的参考方向由A点指向B点。
i
A
B
电工学(第七版上册)秦曾煌主编
2 .电压
两点之间的电位之差即是两点间的电压。从电场力做功概 念定义,电压就是将单位正电荷从电路中一点移至电路中另 一点电场力做功的大小,如图 所示。用数学式表示,即为
电工学(第七版上册)秦曾煌主编
电流的参考方向设成从a流向b, 电压的参考方向设成a 为高电位端,b为低电位端,这样所设的电流电压参考方向 称为参考方向关联。设在dt时间内在电场力作用下由a点移 动到b点的正电荷量为dq, a点至b点电压u意味着单位正电荷 从a移动到b点电场力所做的功,那么移动dq正电荷电场力 做的功为dw=udq。电场力做功说明电能损耗,损耗的这部 分电能被ab这段电路所吸收。
电工学秦曾煌第七版上册课后答案
电工学秦曾煌第七版上册课后答案【篇一:电工学第七版课后答案_秦曾煌第二章习题解答_2】2-3 试用叠加原理重解题2-2.2-4再用戴维宁定理求题2-2中i3。
【篇二:电工学(电子技术)课后答案秦曾煌】大作用的外部条件,发射结必须正向偏置,集电结反向偏置。
晶体管放大作用的实质是利用晶体管工作在放大区的电流分配关系实现能量转换。
2.晶体管的电流分配关系晶体管工作在放大区时,其各极电流关系如下:ic??ibie?ib?ic?(1??)ibicibicib3.晶体管的特性曲线和三个工作区域(1)晶体管的输入特性曲线:晶体管的输入特性曲线反映了当uce等于某个电压时,ib和ube之间的关系。
晶体管的输入特性也存在一个死区电压。
当发射结处于的正向偏压大于死区电压时,晶体管才会出现ib,且ib随ube线性变化。
(2)晶体管的输出特性曲线:ic随uce变化的关系曲线。
晶体管的输出特性曲线反映当ib为某个值时,在不同的ib下,输出特性曲线是一组曲线。
ib=0以下区域为截止区,当uce比较小的区域为饱和区。
输出特性曲线近于水平部分为放大区。
(3)晶体管的三个区域:晶体管的发射结正偏,集电结反偏,晶体管工作在放大区。
此时,ic=?ib,ic与ib成线性正比关系,对应于曲线簇平行等距的部分。
晶体管处于截止工作状态,对应输出特性曲线的截止区。
此时,ib=0,ic=iceo。
晶体管发射结和集电结都处于正向偏置,即uce很小时,晶体管工作在饱和区。
此时,ic虽然很大,但ic??ib。
即晶体管处于失控状态,集电极电流ic不受输入基极电流ib的控制。
14.3 典型例题例14.1 二极管电路如例14.1图所示,试判断二极管是导通还是截止,并确定各电路的输出电压值。
设二极管导通电压ud=0.7v。
25610v(a)(b)d1(c)(d)例14.1图1图(a)电路中的二极管所加正偏压为2v,大于u=0.7v,二极管处于导通状态,解:○d则输出电压u0=ua—ud=2v—0.7v=1.3v。
电工学(第七版)上册秦曾煌
Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
Ia a
Rab
Ib
Rbc Rca
Ic b
C
电阻Y形联结
电阻形联结
等效变换的条件:
对应端流入或流出的电流(Ia、Ib、Ic)一一相等, 对应端间的电压(Uab、Ubc、Uca)也一一相等。
经等效变换后,不影响其它部分的电压和电流。
章目录 上一页 下一页 返回 退出
5
Rb
b +
–
12V
12V
解:将联成形abc的电阻变换为Y形联结的等效电阻
Ra
Rab
Rab Rca Rbc
Rca
48 Ω 448
2Ω
44
84
Rb 4 4 8 Ω 1 Ω Rc 4 4 8 Ω 2 Ω
章目录 上一页 下一页 返回 退出
例2:计算下图电路中的电流 I1 。
I1 a
Ra Rb
Rb Rc Rc Ra Rb
Ra
Rab Rca Rab Rbc Rca
Rb
Rbc Rab Rab Rbc Rca
Rc
Rca Rbc Rab Rbc
Rca
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
章目录 上一页 下一页 返回 退出
理想电流源(恒流源)
I
U
+
IS
U
RL
_
O
IS
I
特点: (1) 内阻R0 = ;
外特性曲线
(2) 输出电流是一定值,恒等于电流 IS ;
电工学第七版 秦曾煌主编+高等教育出版社第2章电路分析方法
理想电压源(恒压源) 理想电压源(恒压源) I + E _ + U _ E RL O
电工技术
U
I
外特性曲线 内阻R 0; 特点: 特点: (1) 内阻R0 = 0; (2) 输出电压是一定值,恒等于电动势, 输出电压是一定值,恒等于电动势, 压是一定值 对直流电压, (对直流电压,有 U ≡ E。) 与恒压源并联的电路电压恒定; 与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 恒压源中的电流由外电路决定。 V,接上R 恒压源对外输出电流。 例1: E = 10 V,接上RL 后,恒压源对外输出电流。 设 电压恒定, 电压恒定,电 V, 当 RL= 1 Ω 时, U = 10 V,I = 10A V, 当 RL = 10 Ω 时, U = 10 V,I = 1A 流随负载变化
1Ω
0.4Ω 0.4Ω 2Ω 2 1Ω
0.4Ω 0.4Ω
1Ω
由图: 由图: R12=2.68Ω Ω
总目录 章目录 返回 上一页 下一页
例2:计算下图电路中的电流 I1 。 a a I1 I1
4Ω 8Ω 4Ω
电工技术
Ra
d
5Ω
4Ω 4Ω
c
d
5Ω
Rc
c
Rb b
+
b + –
12V
–
12V
解:将联成∆形abc的电阻变换为Y形联结的等效电阻 将联成∆ abc的电阻变换为 的电阻变换为Y RabRca 4×8 Ra = = =2 Rab + Rbc + Rca 4 + 4 + 8 4×4 8×4 Rb = =1 Rc = =2 4+ 4+ 8 4+ 4+ 8
电工学(第七版)上册秦曾煌第四章_图文
相位差
定义:
XL
感抗:
()
则:
O
f
XL与 f 的关系
直流:f = 0, XL =0,电感L视为短路
交流:f
XL
超前
电感L具有通直阻交的作用
相量式:
电感电路相量形式的欧姆定律
相量图
2. 功率关系 (1) 瞬时功率
(2) 平均功率
L是非耗 能元件
(3)无功功率Q 用以衡量电感电路中能量交换的规模。
阻抗模:
阻抗角:
由电路参数决定。
电路参数与电路性质的关系:
当 XL >XC 时, > 0 ,u 超前 i 呈感性 当 XL < XC 时 , < 0 , u 滞后 i 呈容性 当 XL = XC 时 , = 0 , u. i 同相 呈电阻性
2) 相量图
参考相量
XL > XC
XL < XC
用相量表示后,即可用直流电路的分析方法。
4.1 正弦电压与电流
I, U
o
t
直流电流和电压
正弦电流和电压
正弦交流电的优越性: 便于传输;易于变换 便于运算; 有利于电器设备的运行;
.....
_
正半周
_
负半周
4.1 正弦电压与电流
设正弦交流电流:
i
Im
O
T
初相角:决定正弦量起始位置 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小 幅值、角频率、初相角成为正弦量的三要素。
2.4 电阻、电感与电容元件串联的交流电路
1. 电流、电压的关系 (1) 相量式
设
(参考相量)
则
如用相量表示电压与 电流关系,可把电路模型 改画为相量模型。 总电压与总电流
电工学(第七版)-秦曾煌-全套完整-20门电路和组合逻辑电路
(1) 由逻辑状态表写出逻辑式 取 Y = 1 ( 或Y = 0 ) 列逻辑式
Байду номын сангаас取Y= 1
A BC Y
0 00 0 0 01 1
0 10 1
一种组合中,输入变量 之间是“与”关系,
0 11 0 1 00 1
1 01 0 对应于Y = 1,若输入变量为 1 1 0 0
1 ,则取输入变量本身(如 A); 1 1 1 1
廊的A、B、C三地各有控制开关,都能独立进行控制。
任意闭合一个开关, 灯亮;任意闭合两个开关, 灯灭;
三个开关同时闭合,灯亮。设A、B、C代表三个开关
(输入变量);Y 代表灯(输出变量) 。
章目录 上一页 下一页 返回 退出
设:开关闭合其状态为 1 ,断开为 0
灯亮状态为 1 ,灯灭为 0
1. 列逻辑状态表
章目录 上一页 下一页 返回 退出
第20章 门电路和组合逻辑电路
本章要求:
1. 掌握基本门电路的逻辑功能、逻辑符号、真值 表和逻辑表达式。了解 TTL门电路、CMOS门电 路的特点;
2. 会用逻辑代数的基本运算法则化简逻辑函数; 3. 会分析和设计简单的组合逻辑电路; 4. 理解加法器、编码器、译码器等常用组合逻辑
证明: A AB A AB AB A+AB = A
A B( A A) A B
(5)AB ( AB ) A
对偶式
(6)( A B)( A B ) A
章目录 上一页 下一页 返回 退出
20. 5. 2 逻辑函数的表示方法
逻辑状态表 表示方法 逻辑式
逻辑图 卡诺图 下面举例说明这四种表示方法。 例:有一T形走廊,在相会处有一路灯, 在进入走
电工学秦曾煌第七版第一章课件
例:有一额定值为5W 500Ω的绕线电阻,其额定电流 是多少?在使用时电压不得超过多大的数值?
P18:例1.5.3 (1-34)
1.5.2 电源开路
I
开关断开
特征: I=0
E
-
U0
R
Ro
-
U = U0 = E
P= 0
1. 开路处的电流等于零 2. 开路处的电压 等于电源电动势
I
++
E
-
U0
R0
-
P19:例1.5.4
(1-37)
练习: 1:试问可否将110V100W和110V40W的两只白 炽灯串联在220V的电源上使用?
2:试问将40Ω10W和200Ω20W的两只电阻串联 使用,其两端最高允许电压应多大?
3:据日常观察,电灯在深夜要比黄昏时亮一些, 为什么?
(1-39)
§1.6 基尔霍夫定律
用来描述电路中各部分电压或电流间的关系, 包括电流(KCL)和电压(KVL)两个定律。
支路:电路中每一个分支
名
每条支路流过一个电流,称为支路电流
词 结点:三个或三个以上支路的联结点
回路:电路中任一闭合路径
(1-40)
支路、结点、回路
R1
R3
+
uS1
R2
_
支路数 结点数 回路数
负载大小的概念:
负载增加指负载取用的电流和功率增加*
0
I
(1-23)
功率与功率平衡 功率的概念
aI
U
R
b
P UI
如果U I方向不一 致结果如何?
(1-24)
功率与功率平衡
电工学(第七版上册)秦曾煌主编汇总
4.旋转磁场的转速
旋转磁场的转速取决于磁场的极对数 p=1时
n0 60 f1 (转/分) 0 o 工频: f1 50 Hz
Im I m
i i A
i B iC
t
A
n0 3000 (转/分)
A Y C
N
Z Y B
A
S
C N
Z
Y B C
N
Z B
S
S
X
X
X
p=2时
C
X
Y
A
30
N
n (1 s )n0 异步电动机运行中: s (1 ~ 9)%
n0 n s 转差率s n 100% 0 转子转速亦可由转差率求得
例1:一台三相异步电动机,其额定转速 n=975 r/min,电源频率 f1=50 Hz。试求电动机的 极对数和额定负载下的转差率。 解: 根据异步电动机转子转速与旋转磁场同步转 速的关系可知:n0=1000 r/min , 即 p=3 额定转差率为
第8章 交流电动机
本章要求:
1. 了解三相交流异步电动机的基本构造和转动 原理。 2. 理解三相交流异步电动机的机械特性,掌握 起动和反转的基本方法, 了解调速和制动的 方法。 3. 理解三相交流异步电动机铭牌数据的意义。
第8章 交流电动机
电动机的分类: 同步电动机 交流电动机 电动机 直流电动机 异步电动机 三相电动机 单相电动机
8.2 三相异步电动机的转动原理
8. 2. 1 旋转磁场
1.旋转磁场的产生 定子三相绕组通入三 相交流电(星形联接)
iA
i A I m sint iB I m sint 120 iC I m sint 120
电工学(第七版上)电工技术课后答案(秦曾煌)编(最全)
目录第1章电路的基本概念与定律3第1.5节电源有载工作、开路与短路. . . . . . . . . . . . . . . . . . . 3第1.5.1题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3第1.5.2题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3第1.5.3题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5第1.5.4题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5第1.5.6题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6第1.5.8题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6第1.5.11题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7第1.5.12题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8第1.6节基尔霍夫定律. . . . . . . . . . . . . . . . . . . . . . . . . . . 9第1.6.2题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9第1.7节电路中电位的概念及计算. . . . . . . . . . . . . . . . . . . . . 10第1.7.4题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101List of Figures1 习题1.5.1图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 习题1.5.2图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 习题1.5.8图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 习题1.5.11图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 习题1.5.12图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 习题1.6.2图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 习题1.7.4图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 电路的基本概念与定律1.5 电源有载工作、开路与短路1.5.1在图1中,五个元件代表电源和负载。
2024版电工学(第七版上册)秦曾煌主编PPT课件
26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路
电动势 E 电流 I 电流密度 J l 电阻 R S I + E R _
I E R E l S
l
S
F NI l Rm S
4. 磁路分析的特点 (1)在处理电路时不涉及电场问题,但在处理磁路时离 不开磁场的概念; (2)在处理电路时一般可以不考虑漏电流,但在处理磁 路时一般都要考虑漏磁通; (3)磁路欧姆定律和电路欧姆定律只是在形式上相似。 由于 不是常数,其随励磁电流而变,磁路欧姆定律 不能直接用来计算,只能用于定性分析; (4)在电路中,当 E=0时,I=0;但在磁路中,由于有 剩磁,当 F=0 时, 不为零;
7
例:环形线圈如图,其中媒质是均 匀的,磁导率为,试计算线圈内 部各点的磁感应强度。 解:半径为x处各点的磁场强度为 NI Hx lx NI I 故相应点磁感应强度为 Bx Hx
lx
N匝
x
Hx S
由上例可见,磁场内某点的磁场强度 H 只与电流 大小、线圈匝数、以及该点的几何位置有关,与磁 场媒质的磁性() 无关;而磁感应强度 B 与磁场媒 质的磁性有关。
磁路的欧姆定律是分析磁路的基本定律 1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率 为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
N匝 xBiblioteka H dl I设磁路的平均长度为 l,则有 B NI Hl l l S
S I
Hx
即有: Φ NI F
在例1(1),(2)两种情况下,如线圈中通有同样大 小的电流0.39A,要得到相同的磁通 ,铸铁材料 铁心的截面积和硅钢片材料铁心的截面积,哪一 个比较小? 【分析】 如线圈中通有同样大小的电流0.39A, 则铁心中的磁场强度是相等的,都是260 A/m。 查磁化曲线可得, B铸铁 = 0.05T、 B硅钢 =0.9T, B硅钢是B铸铁的18倍。 因 =BS,如要得到相同的磁通 ,则铸铁铁 心的截面积必须是硅钢片铁心的截面积的18倍。 结论:如果线圈中通有同样大小的励磁电流,要 得到相等的磁通,采用磁导率高的铁心材料,可 使铁心的用铁量大为降低。
例2: 有一环形铁心线圈,其内径为10cm,外径为 15cm,铁心材料为铸钢。磁路中含有一空气隙, 其长度等于 0.2cm。 设线圈中通有 1A 的电流, 如要得到 0.9T 的磁感应强度,试求线圈匝数。 解: 空气隙的磁场强度 B0 0.9 5 H0 7 . 2 10 A/m 7 0 4 10 铸钢铁心的磁场强度, 查铸钢的磁化曲线, B=0.9 T 时,磁场强度 H1=500 A/m
7.3 磁路及其基本定律
7.3.1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料 做成一定形状的铁心。铁心的磁导率比周围空气或 其它物质的磁导率高的多,磁通的绝大部分经过铁 心形成闭合通路,磁通的闭合路径称为磁路。
If
N S N S
+ –
直流电机的磁路
交流接触器的磁路
7.3.2 磁路的欧姆定律
第7章 磁路与铁心线圈电路
7.1 磁场的基本物理量
7.2 磁性材料的磁性能 7.3 磁路及其基本定律 7.4 交流铁心线圈电路 7.5 变压器 7.6 电磁铁
第7章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路; 2. 了解变压器的基本结构、工作原理、运行特性和 绕组的同极性端,理解变压器额定值的意义; 3. 掌握变压器电压、电流和阻抗变换作用; 4.了解三相电压的变换方法; 5. 了解电磁铁的基本工作原理及其应用知识。
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质 磁导率 之比。 B
H
磁场强度H的单位 :安培/米(A/m)
安培环路定律(全电流定律)
H dl I
5.2
I1
H
式中: H d l 是磁场强度矢量沿任意闭合
线(常取磁通作为闭合回线)的线积分; I 是穿过闭合回线所围面积的电流的代数和。 安培环路定律电流正负的规定: 任意选定一个闭合回线的围绕方向,凡是电流方 向与闭合回线围绕方向之间符合右螺旋定则的电流 作为正、反之为负。
I2
IN 在均匀磁场中 Hl = IN 或 H l 安培环路定律将电流与磁场强度联系起来。
例: 环形线圈如图,其中媒质是均匀的, 试计算 线 圈内部各点的磁场强度。
解: 取磁通作为闭合回线,以 其 方向作为回线的围绕方向,则有:
H dl I
N匝
H dl H l
I NI
7.1 磁场的基本物理量
7.1.1 磁感应强度
磁感应强度B : 表示磁场内某点磁场强弱和方向的物理量。 磁感应强度B的方向: 与电流的方向之间符合右手螺旋定则。 磁感应强度B的大小:
F B lI
磁感应强度B的单位: 特斯拉(T),1T = 1Wb/m2 均匀磁场: 各点磁感应强度大小相等,方向相同的 磁场,也称匀强磁场。
总磁通势为 NI H 0 H 1 l 1 1440 195 1635 A
l S
Rm
式中:F=NI 为磁通势,由其产生磁通; Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度; S 为磁路的截面积。
2. 磁路的欧姆定律 若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
此即磁路的欧姆定律。
F Rm
3. 磁路与电路的比较 磁路
磁通势F 磁通 磁感应强度B 磁阻 R m I N
B和与H的关系
H
几种常见磁性物质的磁化曲线
B/T
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 1 2 3 4 5 6 7 8 9 10 103 H/(A/m)
c b
c b
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a H/(A/m) 1.0103
O
a 铸铁
b 铸钢
c 硅钢片
7.2.3 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于 外磁场变化的性质。 磁性材料在交变磁场中反复磁化,其B-H关系曲线 是一条回形闭合曲线,称为磁滞回线。 B 剩磁感应强度Br (剩磁) : Br • 当线圈中电流减小到零(H=0) 时,铁心中的磁感应强度。 • O •H 矫顽磁力Hc: H c 使 B = 0 所需的 H 值。 磁性物质不同,其磁滞回线 和磁化曲线也不同。
2. 磁性物质 磁性物质内部形成许多小区域,其分子间存在的 一种特殊的作用力使每一区域内的分子磁场排列整 齐,显示磁性,称这些小区域为磁畴。 在没有外磁场作用的普通磁性物质中,各个磁畴排 列杂乱无章,磁场互相抵消,整体对外不显磁性。
磁 畴 外 磁 场
在外磁场作用下,磁畴方向发生变化,使之与外 磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
1. 非磁性物质 非磁性物质分子电流的磁场方向杂乱无章,几乎 不受外磁场的影响而互相抵消,不具有磁化特性。 非磁性材料的磁导率都是常数,有: 0 r1
7.1.5 物质的磁性
当磁场媒质是非磁性材料时,有: B ( ) B=0H
即 B与 H 成正比,呈线性关系。 O Φ NI H( I ) 由于 B , H S l 所以磁通 与产生此磁通的电流 I 成正比,呈 线性关系。
7.3.3 磁路的分析计算
主要任务: 预先选定磁性材料中的磁通 (或磁感应 强度),按照所定的磁通、磁路各段的尺寸和材料, 求产生预定的磁通所需要的磁通势F=NI , 确定线 圈匝数和励磁电流。 基本公式: 设磁路由不同材料或不同长度和截面积的 n 段组 成,则基本公式为:
NI H 1 l 1 H 2 l 2 H n l n
•
磁滞回线
按磁性物质的磁性能,磁性材料分为三种类型: (1)软磁材料 具有较小的矫顽磁力,磁滞回线较窄。一般用来 制造电机、电器及变压器等的铁心。常用的有铸铁、 硅钢、坡莫合金即铁氧体等。 (2)永磁材料 具有较大的矫顽磁力,磁滞回线较宽。一般用来 制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 (3)矩磁材料 具有较小的矫顽磁力和较大的剩磁,磁滞回线接 近矩形,稳定性良好。在计算机和控制系统中用作记 忆元件、开关元件和逻辑元件。常用的有镁锰铁氧体 等。
7.2 磁性材料的磁性能
磁性材料主要指铁、镍、钴及其合金等。
7.2.1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 。 磁性材料能被强烈的磁化,具有很高的导磁性 能。 磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
磁路的平均总长度为 l 10 15 39.2 cm 铁心的平均长度 l 1 l 39.2 - 0.2 39 cm
2
对各段有
H 0 7.2 105 0.2 102 1440 A H 1 l 1 500 39 102 195 A
B0 磁场内不存在磁性物质时的 磁感应强度直线; B BJ曲线和B0直线的纵坐标相 加即磁场的 B-H 磁化曲线。
B
a • b • B BJ B0
O
磁化曲线
H
B-H 磁化曲线的特征: B b B • Oa段:B 与H几乎成正比地增加; a BJ • ab段: B 的增加缓慢下来; b点以后:B增加很少,达到饱和。 B0 有磁性物质存在时,B 与 H不成 O 磁化曲线 H 正比,因此,磁性物质的磁导率 B, 不是常数,随H而变。 有磁性物质存在时,与 I 也不成 B 正比。 磁性物质的磁化曲线在磁路计 算上极为重要,其为非线性曲线, O 实际中通过实验得出。