时间序列分析期末考试

合集下载

时间序列分析期末考试2010B

时间序列分析期末考试2010B

浙江农林大学2009 - 2010 学年第 二 学期考试卷(A 卷)课程名称:应用时间序列分析 课程类别:必修 考试方式: 闭卷注意事项:1、本试卷满分100分。

2、考试时间120分钟。

:号学题号一二三四五得分得分评阅人:名姓一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。

每小题 分,共12分)1.关于严平稳与(宽)平稳的关系,不正确的为。

A.严平稳序列一定是宽平稳序列B.当序列服从正态分布时,两种平稳性等价C.二阶矩存在的严平稳序列一定为宽平稳的D. MA (p )模型一定是宽平稳的2.下图为某时间序列的相关检验图,图1为自相关函数图, 请选择模型。

( )图1得分图2为偏自相关函数图,:级班业专:院学Las Cove r i ance Correlation "・ 1 9 8 7 54921()123456 7 8 5 1 Std Error 0 o.oesssi 1.00000U J Jj L I J <1!■ L L Hjjj L L » Jj il_i I J J -L L IJ■ I iif n i 1 T 1 1T >>• •■T , T 1 'T>>"।>T 1 'T1>T 1 11T 1 'T L 'Ti 11T 01 0.031893 0-3G342 ■ 击山543皿曲 ,下甲邙不下陋邙0JI6248 2 0.022994 0.26619■■ pi if 11 ■,71 ^p: rpOJ3O702 3 0.019579 0-22665 if ■ iliili i ।ill0J37834 4 0.010833 0.21224玳**求 ,0J42782 5 0.016344 0.18916 0J469S3 e 0.017916 0.207400J 50297 7 C.012543 0.14520.OJ54056 e 0.0091481 0.09B460.165096 s 0*013767 0.15937.0.1 痴11 10 0.014037 o.ieaeo 0J58196 ii 0.010613 0J22860.160455 12 0.0007B04 0.10174** *OJ61721 13 -0.0001808 -.00209■■0.162584 14 -0.0022815 -.02583. *■OJB2504 15 O.C003S5230.00458■■0.162640 IE 叩.0028539-.03304■0J62641 17-0.013391 -.15502 . ***■0.162732-0.012922-.14969■0JG4710Autocoir re Iftt ions:marks two starid&rd errorsPe rt i * I ftutocorrelat ionsCorrect ion - ■19 8 7 6 5 4 3 2 10 1 21-OJOSSB2 0.179713 0,002264 -0404428 $6 -0,06941 . in£ -0.I20G2 , 榔7 0.01860 8 0.00439e -0,06650 , in10 0JQ871 ii 0.142SO 12 -0*0094113 0.0819B ,*>K14 0JBB98 15 -0.00129IE 0.22QS9 . 索索常修17 0.06201 , *18 -0.10519B. AR(2) D. MA(2)3.下图中,图3为某序列一阶差分后的自相关函数图, 偏自相关函数图,请对原序列选择模型 。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列期末精彩试题B卷

时间序列期末精彩试题B卷

成都信息工程学院考试试卷2012——2013学年第2学期课程名称:《金融时间序列分析》 班级:金保111本01、02、03班一、判断题(每题1分,正确的在括号内打√,错误的在括号内打×,共15分) 1.模型检验即是平稳性检验( )。

2.模型方程的检验实质就是残差序列检验( )。

3.矩法估计需要知道总体的分布( )。

4.ADF 检验中:原假设序列是非平稳的( )。

5.最优模型确定准则:AIC 值越小、SC 值越大,说明模型越优( )。

6.对具有曲线增长趋势的序列,一阶差分可剔除曲线趋势( )。

7.严平稳序列与宽平稳时序区分主要表现在定义角度不同( )。

8.某时序具有指数曲线增长趋势时,需做对数变换,才能剔除曲线趋势( )。

9.时间序列平稳性判断方法中 ADF 检验优于序时图法和自相关图检验法( )。

10.时间序列的随机性分析即是长期趋势分析( )。

11.ARMA (p,q )模型是ARIMA(p,d,q)模型的特例( )。

12.若某序列的均值和方差随时间的平移而变化,则该序列是非平稳的( )。

13. MA(2)模型的3阶偏自相关系数等于0( )。

14.ARMA(p,q)模型自相关系数p 阶截尾,偏自相关系数拖尾( )。

15.MA(q)模型平稳的充分必要条件是关于后移算子B 的q 阶移动自回归系数多项式根的绝对值均在单位圆内( )。

二、填空题。

(每空2分,共20分) 1.t X 满足ARMA (1,2)模型即:t X =0.43+0.341-t X +t ε+0.81-t ε–0.22-t ε,则均值= ,1θ(即一阶移动均值项系数)= 。

2.设{x t }为一时间序列,B 为延迟算子,则B 2X t = 。

3.在序列y 的view 数据窗,选择 功能键,可对序列y 做ADF 检验。

4.若某平稳时序的自相关图拖尾,偏相关图1阶截尾,则该拟合 模型。

5. 已知AR (1)模型:t X +0.81-t X =t ε,t ε服从N(0,0.36),则一阶自相关系数= ,方差= 。

10-11上学期时间序列分析A卷及答案

10-11上学期时间序列分析A卷及答案
一、填空题(每小题 2 分, 共 20 分):
1. 若 { X t , t T } 为白噪声序列, 则 (t , s) 等于 0 , t , s T , t s. 2. 若时间序列 { X t , t T } 平稳, 则其自协方差函数 (t , s ), t , s T 只与 t s 有关, 而
ˆ (l ) 的均方误差为 的 MA(q) 序列, 则已知 X t , X t 1 , X t 2 , 时, X t l 的最佳线性预测 X t
2 (1 12 l21 ) , l 1, , q .
二、选择题(每小题 2 分, 共 20 分):
1. 对于正态序列来说, 其严平稳性与(宽)平稳性是 a a.等价的, b.不等价的.
1.试求模型的传递形式. 2.试求模型的逆转形式. 3.试求满足模型的 ARMA(1,1) 序列 { X t , t 0, 1, 2,} 的均值和自协方差函数.
-3-
-4-
得 分
评卷人
四、计算题(每小题 5 分, 共 15 分) 设 { X t , t 0, 1, 2,} 是满足 AR(2) 模型
.
2. 为了度量序列中两个随机变量之间真实的相关程度, 应该使用 b . a.自相关函数, b.偏相关函数. .
3. 平稳序列的偏相关函数 p 步截尾是其为 AR( p) 序列的 b a.充分条件, 4. 若一序列严平稳, 则其 a.一定, b b.充要条件.
是(宽)平稳的.
b.不一定. .
5. 满足平稳 ARMA 模型的 ARMA 序列有 a a.一个, b.无穷多个. .
中, 用白噪声序列 { t , t 0, 1, 2,} 线性地表示 ARMA( p, q) 序列称为模型的 a

时间序列分析试卷及答案3套

时间序列分析试卷及答案3套

时间序列分析试卷及答案3套时间序列分析试卷1⼀、填空题(每⼩题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其⼀阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征⽅程为_______________________。

4. 对于⼀阶⾃回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满⾜_________时,模型平稳。

6. 对于⼀阶⾃回归模型MA(1):10.3t t t X εε-=-,其⾃相关函数为______________________。

7. 对于⼆阶⾃回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满⾜的Yule-Walker ⽅程是______________________。

8. 设时间序列{}t X 为来⾃ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测⽅差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来⾃GARCH(p ,q)模型,则其模型结构可写为_____________。

⼆、(10分)设时间序列{}t X 来⾃()2,1ARMA 过程,满⾜()()210.510.4ttB B X B ε-+=+,其中{}t ε是⽩噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析试题

时间序列分析试题

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。

A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。

A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列期末试题及答案

时间序列期末试题及答案

时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。

题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。

3. 什么是季节性、趋势性和周期性?请分别举一个例子。

4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。

题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。

请计算该时间序列的移动平均值,并绘制移动平均图。

2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。

| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。

该时间序列数据是否呈现ARCH效应?请解释原因。

4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。

2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。

时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。

时间序列分析试卷及答案

时间序列分析试卷及答案

其中 t 是白噪声序列,并且 E0,Var时间序列分析试卷 1一、 填空题(每小题 2分,共计 20 分)1. ARMA(p, q) 模 型 ____________________________________________ , 其 中 模 型 参 数 为_________________________ 。

2. 设时间序列X t ,则其一阶差分为 _____________________________________________ 。

3. 设 ARMA (2, 1) :X t 0.5X t 1 0.4X t 2 t 0.3 t 1则所对应的特征方程为 _________________________ 。

4. 对于一阶自回归模型 AR(1): X t 10+ X t 1 t ,其特征根为 _________________ ,平稳域是____________________________ 。

5. 设ARMA(2, 1): X t 0.5X t 1 aX t 2 t 0.1 t 1,当 a 满足 _________________________ 时,模型平稳。

6. 对 于 一 阶 自 回 归 模 型 MA(1): X tt0.3 t 1 , 其 自 相 关 函 数 为____________________________ 。

7. 对于二阶自回归模型 AR(2):X t 0.5X t 1 0.2X t 2 t则模型所满足的 Yule-Walker 方程是 _________________________ 。

8. 设时间序列 X t 为来自 ARMA(p,q)模型:X t 1X t 1 Lp X t p t 1 t 1 L q t q则预测方差为 _____________________ 。

9. 对于时间序列 X t ,如果 _________________________ ,则 X t ~ I d 。

(精校版)时间序列分析试卷及答案

(精校版)时间序列分析试卷及答案

(完整word版)时间序列分析试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)时间序列分析试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)时间序列分析试卷及答案的全部内容。

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA (p , q)模型_________________________________,其中模型参数为____________________.2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳.6. 对于一阶自回归模型MA (1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA (p,q )模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________.9. 对于时间序列{}t X ,如果___________________,则()~t X I d .10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分, 共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型, 其中模型参数为p和q。

2.设时间序列{Xt}, 则其一阶差分为Xt-Xt-1.3.设ARMA (2.1): Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1, 则所对应的特征方程为1-0.5B-0.4B^2+0.3B。

4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt, 其特征根为φ, 平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1, 当a满足|a|<1时, 模型平稳。

6.对于一阶自回归模型Xt=φXt-1+εt, 其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1, 其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt, 则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2, ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型: Xt=φ1Xt-1+。

+φpXt-p+εt+θ1εt-1+。

+θqεt-q, 则预测方差为σ^2(1+θ1^2+。

+θq^2)。

9.对于时间序列{Xt}, 如果它的差分序列{ΔXt}是平稳的, 则Xt~I(d)。

10.设时间序列{Xt}为来自GARCH(p,q)模型, 则其模型结构可写为σt^2=α0+α1εt-1^2+。

+αpεt-p^2+β1σt-1^2+。

+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程, 满足(1-B+0.5B^2)Xt=(1+0.4B)εt, 其中{εt}是白噪声序列, 并且E(εt)=0, Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。

根据特征方程1-φ1B-φ2B^2, 求得其根为0.5±0.5i, 因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1, 即-1<φ1<1.因为0.5i不在实轴上, 所以模型不是严平稳的, 但是是宽平稳的。

时间序列分析期末试卷AB卷

时间序列分析期末试卷AB卷

卷A一、 判定下列模型的稳定性和可逆性。

(10)1.t t t a X X =--11.12.14.0--=t t t a a X3.1218.04.03.1----=+-t t t t t a a X X X二、简述(25)1.宽平稳的定义是什么?它和严平稳有什么联系?(10)2.写出AR (1),MA (1),ARMA (2,1)模型的表达式,并分别说明它们的基本假设。

(15)三、计算(65)1.根据下面AR (4)模型的估计值求关于一个ARMA (2,1)模型的可逆初始猜测值6.01=ϕ,2.02-=ϕ,2.03-=ϕ,8.04=ϕ (10)2. 求模型2114.03.15.0---+-=-t t t t t a a a X X 的前5个格林函数和逆函数。

(10)3.对于ARMA (2,1)模型 1214.03.0---+=+-t t t t t a a X X X ,t a ~NID (0,100),给定345=-t X ,364=-t X ,=-3t X 12=-t X ,3.01=-t X ,10-=t X ,并假定1-t a =-25(a )计算)(ˆl X t )2,1(=l 及)1(ˆtX 的95%的概率限。

(b )给定09.111-=+t X ,4.11=G ,修正)2(ˆtX 。

4. 有t=1,2,3,4,5的数据序列如下:7.0,6.8,7.2,6.9,7.1 (a )求零均值化后的序列t X(b )用AR(1)模型拟合t X ,求1ϕ的估计。

5. 某过程的逆函数2,)7.0(3.0,5.021≥==-j I I j j ,试求相应的ARMA 模型的表达式。

卷B二、 判定下列模型的稳定性和可逆性。

(10)1.t t t a X X =--15.02.12.1--=t t t a a X3.21216.07.11.07.0----+-=+-t t t t t t a a a X X X二、简述(25)1.宽平稳的定义是什么?它和严平稳有什么联系?(10)2.写出AR (1),MA (1),ARMA (2,1)模型的表达式,并分别说明它们的基本假设。

《时间序列》试卷答案

《时间序列》试卷答案

《时间序列》试卷答案【篇一:时间序列分析试卷及答案3套】>一、填空题(每小题2分,共计20分)1. arma(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列?xt?,则其一阶差分为_________________________。

3. 设arma (2, 1):xt?0.5xt?1?0.4xt?2??t?0.3?t?1则所对应的特征方程为_______________________。

4. 对于一阶自回归模型ar(1): xt?10+?xt?1??t,其特征根为_________,平稳域是_______________________。

5. 设arma(2, 1):xt?0.5xt?1?axt?2??t?0.1?t?1,当a满足_________时,模型平稳。

6. 对于一阶自回归模型______________________。

7. 对于二阶自回归模型ar(2):xt?0.5xt?1?0.2xt?2??tma(1):xt??t?0.3?t?1,其自相关函数为则模型所满足的yule-walker方程是______________________。

8. 设时间序列?xt?为来自arma(p,q)模型:xt??1xt?1?l??pxt?p??t??1?t?1?l??q?t?q则预测方差为___________________。

9. 对于时间序列?xt?,如果___________________,则xt~i?d?。

10. 设时间序列?xt?为来自garch(p,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列?xt?来自arma?2,1?过程,满足1b0.5bx2t1?0.4bt,2其中??t?是白噪声序列,并且e??t??0,var??t。

(1)判断arma?2,1?模型的平稳性。

统计学考试题目 时间序列分析

统计学考试题目  时间序列分析

统计学考试题目时间序列分析(总3页)-本页仅作为预览文档封面,使用时请删除本页-B C C A A, A C B D D , B B D B D , B A第六章时间序列分析一、单项选择题1.某地区1990—1996年排列的每年年终人口数动态数列是( b)。

A、绝对数动态数列B、绝对数时点数列C、相对数动态数列D、平均数动态数列2.某工业企业产品年生产量为20 万件,期末库存万件,它们( c)。

A、是时期指标 B、是时点指标C、前者是时期指标,后者是时点指标D、前者是时点指标,后者是时期指标3.间隔相等的不连续时点数列计算序时平均数的公式为(c )。

4.某地区连续4 年的经济增长率分别为%,9%,8%,%,则该地区经济的年平均增长率为( a)。

5.某工业企业生产的产品单位成本从2005年到2007年的平均发展速度为98%,说说明该产品单位成本( a)。

A、平均每年降低2%B、平均每年降低1%C、2007 年是2005 年的98%D、2007年比2005年降低98%6.根据近几年数据计算所的,某种商品第二季度销售量季节比率为,表明该商品第二季度销售( a)。

A、处于旺季B、处于淡季C、增长了70%D、增长了170%7.对于包含四个构成因素(T,S,C,I)的时间序列,以原数列各项数值除以移动平均值(其平均项数与季节周期长度相等)后所得比率(c )。

A、只包含趋势因素B、只包含不规则因素C、消除了趋势和循环因素D、消除了趋势和不规则因素8.当时间序列的长期趋势近似于水平趋势时,测定季节变动时(b )。

A、要考虑长期趋势的影响B、可不考虑长期趋势的影响C、不能直接用原始资料平均法D、剔除长期趋势的影响9.在对时间序列作季节变动分析时,所计算的季节比率是( d)。

A、某一年月或季平均数相对于本年度序列平均水平变动的程度B、某一年月或季平均数相对于整个序列平均水平变动的程度C、各年同期(月或季)平均数相对于某一年水平变动的程度D、各年同期(月或季)平均数相对于整个序列平均水平变动的程度10.企业5月份计划要求销售收入比上月增长8%。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B卷)考核方式 闭卷 考核时间 120 分钟注:为延迟算子,使得;∇为差分算子,1--=∇t t t Y Y Y 。

一、单项选择题(每小题3 分,共24 分。

)1、 若零均值平稳序列,其样本ACF 与样本PAC F都呈现拖尾性,则对可能建立( B )模型。

A 、 M A(2)B 、AR MA(1,1)C 、AR(2)D 、M A(1)2、下图就就是某时间序列得样本偏自相关函数图,则恰当得模型就就是( B )。

A 、B 、C 、 D、3、 考虑MA (2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程得根就就是( C )。

(A)5.0,4.021==λλ (B )5.0,4.021-=-=λλ(C)5.2221==λλ, (D) 5.2221=-=λλ,4、 设有模型,其中11<φ,则该模型属于( B )。

A.A RM A(2,1) B 、ARIMA(1,1,1) C 、AR IMA(0,1,1) D 、A RIMA(1,2,1)5、 A R(2)模型,其中,则( B )。

A、 B 、 C、 D 、6.对于一阶滑动平均模型MA (1): ,则其一阶自相关函数为( C )。

A 、B 、 C、 D 、7、 若零均值平稳序列,其样本A CF 呈现二阶截尾性,其样本P ACF 呈现拖尾性,则可初步认为对应该建立( B )模型。

A 、 M A(2)B 、C 、D 、AR IM A(2,1,2) 8、 记∇为差分算子,则下列不正确得就就是( C )。

A 、 B、C 、D 、二、填空题(每题3分,共24分);1、 若满足: , 则该模型为一个季节周期为__12____得乘法季节模型。

2、 时间序列得周期为s 得季节差分定义为: _____________________________。

3、 设AR MA (2, 1):则所对应得AR 特征方程为________________,其MA 特征方程为_____________________。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列分析试题

时间序列分析试题

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。

A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。

A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷1一、填空题(每小题2分,共计20分)1. ARMA(p, q)模型 ______________________________________ ,其中模型参数为_________________________________________________ O2. 设时间序列{X/},则其一阶差分为 ___________________________ 「3. 设ARMA (2, 1):X[ = 0.5Xf_] +0.4X—2 + £, —0.3吕_]则所对应的特征方程为 _______________________ ‘4. -对于一阶自回归模型AR(1): X, =1O+0X I+勺,其特征根为________________ ,平稳域是 _______________________________________________________ 06. ARMA(2,1): %, = 0.5X;_, + aX t_2 + -0.1 £s_x,当 a 满足___________ 时,模型平稳。

7. 对于一阶自回归模型MA(1): X, =^-0.3^_,,其自相关函数为_______________________________________________________ O8. 对于二阶自回归模型AR(2):X, =0.5X_+0.2X—+E则模型所满足的Yule-Walker方程是 ______________________ 一’9. 设时间序列{/}为来自ARMA(p,q)模型:X/ +--- +(/t p X,_p +吕+q§_] +••• + &庐r则预测方差为 ___________________ a10. 对于时间序列{X,},如果____________________ ,则X, ~/(〃)。

11.设时间序列{/}为来自GARCH(p, q)模型,则其模型结构可写为_________________二、(10分)设时间序列{X,}来自ARM4(2,1)过程,满足(l-^ + 0.5B2)X, =(1 + 0.43)殆其中{吕}是白噪声序列,并且E(q) = 0,V?/r(£t) = <T2o(1) 判断ARMA (2A )模型的平稳性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析期末考试 Prepared on 22 November 2020
诚信应考,考试作弊将带来严重后果!
湖南大学课程考试试卷
课程名称:时间序列分析;课程编码:试卷编号: A ;考试时间:120分
题号一二三四五六七八九十总分
应得分20 20 15 15 20 10 100
实得分
评卷人
一、简答题(每小题5分,共计20分)
1、说明平稳序列建模的主要步骤。

2、ADF检验与PP检验的主要区别是什么
3、如何进行两变量的协整检验
4、简述指数平滑法的基本思想。

二、填空题(每小题2分,共计20分)
1.对平稳序列,在下列表中填上选择的的模型类别
____年___月___日
考试用
2. 时间序列模型建立后,将要对模型进行显着性检验,那么检验的对象为___________,检验的原假设是___________。

3.
时间序列预处理常进行两种检验,即为_______检验和_______检验。

4. 根据下表,利用AIC 和BIC 准则评判两个模型的相对优劣,你认为______模型优 于______模型。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 设ARMA (2, 1):
1210.50.40.3t t t t t X X X εε---=++-
则所对应的特征方程为_______________________。

7. 简单季节差分模型的模型结构为: ______________________。

8、对于时间序列{}t X ,如果___________________,则()~2t X I 。

9. 设时间序列{}t X 为来自GARCH(p, q)模型,则其模型结构可写为_____________。

10. k 步差分的定义为k t X ∇=___________________________。

三、 (15分)设{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,时间序列}{t X 来自
1t-21-0.80.5X + 1.1t t t t X X εε--=+-
试检验模型的平稳性与可逆性。

四、 (15分)设}{t X 服从ARMA(1, 1)模型: 110.80.6t t t t X X εε--=+- 其中1001000.3,0.01X ε==。

、给出未来3期的预测值;(8分) 2、给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(7分)
五、(20分)设平稳时间序列}{t X 服从AR(1)模型:10.8t t t X X ε-=+,其中{}t ε为白噪声,求 .),(V ar (E 222φρ和),t t X X 六、(1) 请分别论述 ARCH 模型、GARCH 模型、EGARCH 模型以及GARCH-M (即GARCH-in-Mean 模型)模型的经济含义; (5分) (2) 请简要给出ARCH(1)模型、GARCH(1,1)模型, EGARCH(1,1)模型以及GARCH(1,1)-M 模型的形式。

(5分)
湖南
大学
课程考试试卷
湖南大学教务处。

相关文档
最新文档