(完整word版)沪科版七年级上册数学期末复习习题集
沪科版七年级上册数学期末考试试卷含答案
沪科版七年级上册数学期末考试试题一、单选题1.已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为()A .2B .6C .2-D .6-2.2-的相反数是()A .2-B .2C .12D .12-3.计算()32---的最后结果是()A .1B .1-C .5D .5-4.将数7206万用科学记数法表示为()A .77.20610⨯B .67.20610⨯C .80.720610⨯D .672.0610⨯5.如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为()A .3-B .0C .3D .6-6.下列运算中,正确的是()A .325a b ab+=B .325235a a a +=C .22330a b ba -=D .22541a a -=7.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅尚不完整的统计图,根据图中的信息,下列结论错误的是()A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .样本中选择公共交通出行的有2400人D .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人8.若∠A =40°,则∠A 的补角为()A .40°B .50°C .60°D .140°9.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为()A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元10.如图,观察图中正方形四个顶点所标的数字规律,可知数2020应标在()A .第505个正方形的左下角B .第505个正方形的右下角C .第506个正方形的左下角D .第506个正方形的右下角二、填空题11.用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为6C -︒,攀登2km 后,气温下降__________C ︒.12.已知2a ﹣5b =3,则2+4a ﹣10b =________.13.点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为______;(2)若线段5BM =,则线段OM 的长为______.14.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).15.若一个角的补角是1156'︒,则这个角的余角是________.16.如图所示,将两块三角板的直角顶点重叠,若124AOD ∠= ,则BOC ∠=______.17.对a b ,,定义新运算“*”如下:2*2a b a b a b a b a b +≥⎧=⎨-<⎩,,,已知*31x =-,则实数x =_______.三、解答题18.计算:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭.19.解方程:221123x x x ---=-.20.已知方程组271x y x y +=⎧⎨-=-⎩的解也是关于x ,y 的方程4ax y +=的一个解,求a 的值.21.先化简,再求值:()()22232422b ab a a ab -+--,其中12a =-,2b =-.22.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.23.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.24.如图,已知∠AOB 内部有三条射线,OE 平分∠BOC ,OF 平分∠AOC .(1)若∠AOB=90°,∠AOC=30°,求∠EOF 的度数;(2)若∠AOB= ,求∠EOF 的度数(写出求解过程);(3)若将条件中“OE 平分∠BOC ,OF 平分∠AOC .平分”改为“∠EOB=13∠COB ,∠COF=23∠COA”,且∠AOB=,求∠EOF 的度数(写出求解过程).25.为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).(1)求被调查的师生人数,并补全条形统计图,(2)求扇形统计图中表示“满意”的扇形圆心角度数.(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.26.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.参考答案1.A2.B3.C4.A5.A6.C7.C8.D9.D10.D11.1212.813.1-4或614.24a15.256'︒16.5617.118.1 619.2x =20.12a =21.234b ab -,8【分析】先去括号,再合并同类项,最后将字母的值代入计算.【详解】解:原式=22236442b ab a a ab-+-+=234b ab -,当12a =-,2b =-时,原式=()()2132422⎛⎫⨯--⨯-⨯- ⎪⎝⎭=8.22.这种服装每件的标价是110元【分析】设这种服装每件的标价是x 元,根据题意列出方程进行求解即可.【详解】解:设这种服装每件的标价是x 元,根据题意,得()100.81130x x ⨯=-,解得110x =;答:这种服装每件的标价是110元.23.(1)钢笔的单价为21元,毛笔的单价为25元;(2)王老师肯定搞错了.【分析】(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)根据第一问的结论设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支,求出方程的解不是整数则说明算错了.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755解得:x =21则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105﹣y )支.根据题意,得21y+25(105﹣y )=2447.解得:y =44.5(不符合题意).所以王老师肯定搞错了.二元一次不定方程的运用,在解答时根据题意等量关系建立方程是关键.24.(1)∠EOF=45°;(2)∠EOF=12α;(3)∠EOF=23α.【详解】∵∠AOB=90°,∠AOC=30°,∴∠COB=60°;∵OE平分∠BOC,OF平分∠AOC,∴∠FOC=15°,∠EOC=30°,∴∠EOF=∠EOC+∠FOC=45°∵∠AOB=α,OE平分∠BOC,OF平分∠AOC,∴∠EOF=∠EOC+∠FOC=12(∠BOC+∠AOC)=12∠AOB=12α;∵∠AOB=α,∠EOB=13∠COB,∠COF=23∠COA,∴∠EOF=∠EOC+∠FOC=23(∠BOC+∠AOC)=23∠AOB=23α.考点:角平分线的定义;角的和差.25.(1)200人;见解析;(2)126°;(3)1710人【分析】(1)根据很满意人数和所占的百分比可以求得本次调查的师生人数,进而可以将条形统计图补充完整;(2)根据(1)中的结果可以求得满意的人数的扇形圆心角度数;(3)总人数1800乘以很满意”或“满意”的比例和,即可求解.【详解】(1)师生人数为12060%200÷=.条形统计图如图.(2)表示“满意”的圆心角度数为70360126 200⨯︒=︒.(3)全校师生对食堂“半份菜”服务“很满意”或“满意”的师生总人数约有1207018001710200+⨯=人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体等知识点,能根据图形得出正确信息是解此题的关键.26.12cm ,16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =.点E 、点F 分别为AB 、CD 的中点,1 1.52AE AB xcm ∴==,122CF CD xcm ==.6 1.52 2.5EF AC AE CF x x x xcm ∴=--=--=.10EF cm = ,2.510x ∴=,解得4x =.12AB cm ∴=,16CD cm =.。
沪科版七年级上册数学期末考试试卷附答案
沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。
(完整word版)沪科版七年级上册数学期末复习习题集.docx
沪科版七年级上册数学常考题型归纳第一章有理数一、正负数的运用:1、某种药品的说明书上标明保存温度是 (20 ± 2) ℃ , 则该药品在()范围内保存才合适 ;A . 18℃~ 20℃ ;B . 20℃~ 22℃ ; C. 18℃~ 21℃ ; D. 18℃~ 22℃ ;2、我县 2011 年 12 月 21 日至 24 日每天的最高气温与最低气温如下表:日期 12 月 21 日12 月 22 日12 月 23 日12 月 24 日最高气温 8℃ 7℃ 5℃ 6℃最低气温-3℃- 5℃- 4℃- 2℃其中温差最大的一天是【】 ;A . 12 月 21 日 ;B. 12 月 22 日 ; C .12 月 23 日 ;D . 12 月 24 日 ;二、数轴 : (在数轴表示数,数轴与绝对值综合 )3、如图所示, A ,B 两点在数轴上, 点 A 对应的数为 2.若线段 AB 的长为3,则点 B 对应的数为【】;A .- 1;B.- 2 ;C.- 3 ; D.- 4;B(思考:如果没有图,结果又会怎样?)A24 、若数轴上表示2 的点为 M ,那么在数轴上与点 M 相距 4 个单位的点所对应的数是 ___ ___;5、 a 、 b 两数在数轴上位置如图 3 所示,将 a 、b 、 a 、 A . a < a < b < b ; B . b < a < a < b ; C . a < b < b < a ;D.b < a < b < a ;b 用“<”连接,其中正确的是();-11图 36、实数 a , b 在数轴上的对应点如图所示,则下列不等式中错误的是() ;aA . ab 0B . a b 01D . a b 0C .b7 、有理数 a 、 b 、 c 在数轴上的位置如图 3 所示,且 aba 与b 互为相反数,则a cbc =;boac图 3三、相反数 : (相反的两数相加等于0,相反数与数轴的联系)8、下列各组数中,互为相反数的是 ( );A . ( 1) 与 1 ;B .(- 1)2与 1; C .1 与 1;D .- 12 与 1;四、倒数 : (互为倒数的两数的积为1)9、- 3 的倒数是 ________;五、绝对值(| a|≥ 0,即非负数 ; 化简| a+b|类式子时关键看a+b 的符号; 如果| a|= b,则 a=±b)10、 2 等于();A .- 2 ;B. 1 ;C. 2 ;D.1 ;2211、若 ab≠ 0,则等式aba b成立的条件是 ______________;12、若有理数 a, b满足( a-1 )2+|b+3|=0,则 a-b=;13、有理数 a、b、c在数轴上的位置如图所示,化简 a b a c b c 的结果是_____________;22六、乘方运算 [ 理解乘方的意义; (-a)与-a的区别;14、下列计算中正确的是() ;A.a2 a 3a5; B .a2 a 2; C .( a)3a3; D .( a2) a2 ;七、科学计数法(表示形式 a×10n)16、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000 平方千米.将 2 500 000 用科学记数法表示应为 _________________平方千米.八、近似数与准确数(两种表示方法)17、由四舍五入法得到的近似数8.8× 103,下列说法中正确的是【】 ;A.精确到十分位;B.精确到个位 ;C.精确到百位 ;D.精确到千位 ;18、下面说法中错误的是() ;A . 368 万精确到万位;B. 2.58 精确到百分位 ;C. 0.0450 有精确到千分位;D. 10000 精确到万位表示为“ 1 万”或“ 1× 104” ;九、有理数的运算 (运算顺序;运算法则;运算定律;简便运算)19、计算:( 1)- 212 + 33 -1 - 0. 25(2)22+2× [( - 3) 2- 3÷ 1 ]3 4 3 2( 3) -2÷ 1 ÷ - 2 + 4 + 2 2 × - 3( 3)2 ( ) ( )4 3 2( 4)- 0.25÷(- ) 2 ×(-1)3+ (11 +7- 3.75)×2412 8 3( 5) ( -1) 3- 14× [2 - ( - 3) 2] .( 6)计算:14 ( 2)324 53十、综合应用 :20 、已知 a 3, b2 ,则 a b 的值为 __________21 、绝对值大于 6 小于 13 的所有负整数的和是 __________ 22 、 - 54的底数是 ________, 它表示 ________________________;23、下列说法正确的是()A、正数和负数互为相反数B、数轴上,原点两旁的两个点所表示的数是互为相反数C、除 0 外的数都有它的相反数 D 、任何一个数都有它的相反数24、下列说,其中正确的个数为() ;①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤ a 一定在原点的左边。
(精练)沪科版七年级上册数学期末测试卷及含答案
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7B.﹣1C.1D.﹣42、的倒数是()A. B. C. D.3、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线4、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定5、某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1 )接受这次调查的家长人数为200人(2 )在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3 )表示“无所谓”的家长人数为40人(4 )随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A.4B.3C.2D.16、化简的结果是()A. B. C. D.7、下列说法中正确的是()A.实数-a²是负数B. =|a|C.|-a|一定是正数 D.实数-a的绝对值是a8、中国古代数学著作《九章算术》在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么﹣90元表示()A.支出10元B.收入10元C.支出90元D.收入90元9、下列计算正确的是()A. B. C. D.10、下列计算正确的是()A.a 3•a 5=a 15B.a 6÷a 2=a 3C.(﹣2a 3)2=4a 6D.a 3+a 3=2a 611、在平面直角坐标系中,点P(1,2)到原点的距离是()A.1B.C.D.12、-3的绝对值是()A.-3B.-C.D.313、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为()A.14°B.28°C.32°D.40°14、下列说法中,正确的是()A. 是最小的负整数B.0是最小的正整数C.相反数是它本身的只有0D.倒数是它本身的数只有115、中国的“天眼”绝对是我们中国人额骄傲,他可以一眼看穿130亿光年以外,换计划来说就是它们接收的到130亿光年之外的电磁信号,几何可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿)正确的表示是()A.1.3×10 10B.1.30×10 10C.0.13×10 11D.130×10 8二、填空题(共10题,共计30分)16、如图,射线所表示的方向为________.17、如果是关于的方程的解,那么的值为________.18、 7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为________.19、AB=8cm,点C是线段AB的中点,点D是线段BC的中点,那么AD=________ cm20、如果x的倒数是2019,那么x的值是________.21、|a|=4,b2=4,且|a+b|=a+b,那么a-b的值是________.22、多项式,按x的升幂排列为________.23、在数轴上与-2所对应的点距离为5个单位长度的点表示的数为________.24、a的相反数与b的3倍的和用代数式表示为________.25、已知|6﹣3m|+(n﹣5)2=3m﹣6﹣,则m﹣n=________•三、解答题(共5题,共计25分)26、﹣4、5、﹣7这三个数的和比这三个数绝对值的和小多少?27、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠BOE,∠AOG的度数.28、已知,试求多项式的值.29、某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣13,﹣2,+12,﹣5,+4,+6,求:(1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A地,请说明检修小组最后的位置;(2)距离A地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为0)30、如图所示,化简|a﹣c|+|a﹣b|+|c|参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、B5、A6、C7、B8、C9、B10、C11、D12、D13、B14、C15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪科版七年级上册数学期末考试试卷及答案
沪科版七年级上册数学期末考试试题一、单选题1.已知02x y =⎧⎨=⎩和41x y =⎧⎨=⎩是方程8mx ny +=的解,则m 、n 的值分别为()A .1,-4B .-1,4C .-1,-4D .1,42.两个有理数的和为正数,那么这两个数一定()A .都是正数B .至少有一个正数C .有一个是0D .绝对值不相等3.下列各组整式中,是同类项的有()A .323m n 与32n m -B .2xy 与3yz C .33与3a D .2yx 与-xy 4.在所给的:①15°;②65°;③75°;④115°;⑤135°的角中,可以用一副三角板画出来的是()A .②④⑤B .①②④C .①③⑤D .①③④5.如图,数轴的单位长度为1,如果点A 表示的数是2-,那么点B 表示的数是()A .1-B .0C .1D .26.下列说法正确的是()①正整数和负整数统称整数.②平方等于9的数是3.③51.6110⨯是精确到千位.④a+1一定比a 大.⑤(﹣2)4与﹣24相等.A .2个B .3个C .4个D .5个7.某种商品每件进价为a 元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售每件还能盈利()A .0.12a 元B .0.2a 元C .1.2a 元D .1.5a 元8.一列数1a ,2a ,3a …满足条件:12a =,111n n a a -=-(2n ≥,且n 为整数),则2022a 等于()A .-1B .12C .1D .29.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为67.则x 的值可能是()A .3B .7C .12D .2310.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为acm 、宽为bcm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是()A .4acmB .4bcmC .2(a +b )cmD .4(a -b )cm二、填空题11.将14.75亿用科学记数法表示为______.12.已知2310x x +-=,则2262021x x ++=______.13.某同学把()56⨯- 错抄为56⨯- ,若正确答案为m ,抄错后的结果为n ,则m n -=______.14.如果向东行走10m ,记作+10m ,那么向西行走15m ,应记作____________.15.当x 1=时,代数式2ax 2bx 1++的值为3,则2a 4b 3+-=______.16.如果α∠和β∠互补,且αβ∠>∠,则下列式子中:①90β︒-∠;②90α∠-︒;③1()2αβ∠+∠;④1()2αβ∠-∠,可以表示β∠的余角的有____________(填序号即可).17.如图,点O 在直线AB 上,从点O 引出射线OC ,其中射线OD 平分∠AOC ,射线OE 平分∠BOC ,下列结论:①∠DOE =90°;②∠COE 与∠AOE 互补;③若OC 平分∠BOD ,则∠AOE =150°;④∠BOE 的余角可表示为()12AOE BOE ∠-∠.其中正确的是______.(只填序号)三、解答题18.计算:()201281130.531223-+-+-⎛⎫-- ⎪⎝-⎭+.19.先化简,再求值:()222212632122ab a b ab a b ab ab ⎛⎫⎡⎤++---- ⎪⎣⎦⎝⎭,其中a 为最大的负整数,b 为最小的正整数.20.解方程:2221234x x x +-+=+21.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.22.定义新运算“@”与“⊕”:@2a b a b +=,2a b a b -⊕=.(1)计算()()()3@212---⊕-的值;(2)化简()()3@23b a a b -+⊕-.23.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B .它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(2)若AM=BN,43MN BM,求m和n值.24.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?25.如图,直线AB,CD相交于O点,OM平分∠AOB,(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.26.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?27.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案1.D2.B3.D4.C5.D6.A7.B8.B9.B10.B11.91.47510⨯12.202313.24-14.15-m15.116.①②④17.①②③④18.113-19.222ab +,020.14x =-21.51x y ==⎧⎨⎩22.(1)1(2)31b -【分析】(1)根据新定义列出式子,再进行整式的加减运算即可;(2)根据新定义列出式子,再进行化简运算即可;(1)()()()3@212---⊕-322122--+=-1122=+1=;(2)()()3@23b a a b -+⊕-()23322a b b a ---=+3322b a a b -++-=622b -=31b =-23.(1)见解析(2)48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩【分析】(1)分三种情况:①当M 是A ,N 的中点时;②当A 是M 、N 的中点时;③当N 是M 、A 的中点时分别进行求解;(2)根据AM =BN ,可得31m n +=-,再根据43MN BM =,可得413n m m -=-,二者组成方程组即可求解.(1)解:①当M 是A ,N 的中点时,32n m -=∴n =2m +3②当A 是M 、N 的中点时,32m n +-=∴n =-6-m③当N 是M 、A 的中点时,32m n -+=.(2)解:∵AM =BN ,∴31m n +=-,∵43MN BM =,∴413n m m -=-∴313344m n n m m +=-⎧⎨-=-⎩或313344m n n m m +=-+⎧⎨-=-⎩或313344m n n m m --=-⎧⎨-=-+⎩或313344m n n m m --=-+⎧⎨-=-+⎩,解得48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或0.21.8m n =-⎧⎨=-⎩或53m n =-⎧⎨=⎩∵n m >,∴48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩.24.(1)20;(2)36天【分析】(1)总的工作量是“1”,甲的工作效率是160,乙的工作效率是140,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x 天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【详解】(1)设剩余由乙工程队来完成,还需要用时x 天,依题意得:3060+40x =1解得:x=20.即剩余由乙工程队来完成,还需要用时20天.故答案为20;(2)设共需x 天完成该工程任务,根据题意得:60x +2040x -=1解得:x=36.答:共需36天完成该工程任务.25.(1)90°;(2)∠AOC =60°;∠MOD =150°.【分析】(1)根据角平分线的性质可得∠1+∠AOC =90°,再利用等量代换可得∠2+∠AOC =90°,利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1,进而可得求出∠1=30°,从而可得∠AOC 的度数,再利用邻补角互补可得∠MOD 的度数.【详解】(1)∵OM 平分∠AOB ,∴∠1+∠AOC =90°.∵∠1=∠2,∴∠2+∠AOC =90°,∴∠NOD =180°﹣90°=90°;(2)∵∠BOC =4∠1,∴90°+∠1=4∠1,∴∠1=30°,∴∠AOC =90°﹣30°=60°,∠MOD =180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角,关键是掌握邻补角互补.26.(1)年降水量为200万m 3,每人年平均用水量为50m 3;(2)该镇居民人均每年需节约16m 3水才能实现目标.【分析】(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,根据题意等量关系可得出方程组,解出即可.(2)设该镇居民人均每年用水量为z m 3水才能实现目标,由等量关系得出方程,解出即可.【详解】解:(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,由题意得,1200020x 1620y {1200015x 2015y+=⋅+=⋅,解得:x 200{y 50==.答:年降水量为200万m 3,每人年平均用水量为50m 3.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34.50﹣34=16m3.答:该镇居民人均每年需节约16m3水才能实现目标.27.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数;(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数;(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.(4)总人数乘以样本中A、B人数占总人数的比例即可.【详解】解:(1)本次调查的学生有30÷20%=150人(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×60150=144°故答案为144°(4)600×(4530150)=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.。
(完整word)沪科版七年级上册数学期末复习习题集
ab沪科版七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】; A .-1; B .-2 ; C .-3 ; D .-4;(思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ;C .a -<b <b -<a ;D .b -<a <b <a -;6、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .B .C .D .7、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则= ;三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)8、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1; C .1-与1; D .-12与1;四、倒数 :(互为倒数的两数的积为1)9、-3的倒数是________;0ab >0a b +<1a b <0a b -<c b c a +--B 0 2 A-1图3ao cb 图3五、绝对值(|a|≥0,即非负数;化简|a+b|类式子时关键看a+b的符号;如果|a|=b,则a=±b)10、2-等于();A.-2 ; B.12- ; C.2 ; D.12;11、若ab≠0,则等式a b a b+=+成立的条件是______________;12、若有理数a, b满足(a-1)2+|b+3|=0, 则a-b= ;13、有理数a、b、c在数轴上的位置如图所示,化简的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a2的区别;(-1)奇与(-1)偶的区别]14、下列计算中正确的是();A.532aaa=+ ; B.22aa-=- ; C.33)(aa=- ; D.22)(aa--;七、科学计数法(表示形式a×10n)16、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)17、由四舍五入法得到的近似数,下列说法中正确的是【】;A.精确到十分位 ; B.精确到个位;C.精确到百位; D.精确到千位;18、下面说法中错误的是();A.368万精确到万位; B.2.58精确到百分位;C.0.0450有精确到千分位; D.10000精确到万位表示为“1万”或“1×104”;cbcaba-+--+3108.8×九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)19、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12](3)(4)(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:20、已知2,3==b a ,则b a +的值为__________ 21、绝对值大于6小于13的所有负整数的和是__________ 22、45-的底数是________,它表示________________________;)23(24)32(412)3(22---×++÷÷24)75.337811()1()21(25.032×++×÷----23、下列说法正确的是( )A 、正数和负数互为相反数B 、数轴上,原点两旁的两个点所表示的数是互为相反数C 、除0外的数都有它的相反数D 、任何一个数都有它的相反数24、下列说,其中正确的个数为( ); ①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
(完整版)沪科版七年级上册数学期末测试卷及含答案(突破训练)
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.3与的和是有理数B. 的相反数是C.与最接近的整数是4 D.81的算术平方根是±92、已知ab互为相反数,、d互为倒数x等于-2的2次方,则式子2017(a+b)+2018cd+ x的值为A.2017B.2018C.2019D.20203、对于近似数0.7048,下列说法中正确的是()A.它的准确值x的范围是0.70475<x<0.70485B.它有三个有效数字 C.对它四舍五入精确到百分位为0.71 D.用科学记数法表示它为7.048×10 ﹣14、下列运算正确的是( )A.a 2+2a=3a 3B.(﹣2a 3) 2=4a 5C.(a+2)(a﹣1)=a 2+a﹣2 D.(a+b) 2=a 2+b 25、已知是方程的一个解,那么的值是()A.1B.3C.-3D.-16、下列计算正确的是( )A.2 a2+2 a3=2 a5B.2 a-1=C.(-) 0=0D.-a3÷a=-a27、﹣8的相反数是()A. B.﹣8 C.8 D.﹣8、方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=29、m,n都是正整数,多项式x m+y n+3m+n的次数是().A.2m+2nB.m或nC.m+nD.m,n中的较大数10、在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A. B. C. D.11、下列说法中不正确的是( )A.任何实数都有一个立方根B.任何正数的两个平方根的和等于0C.自然数与数轴上的点一一对应D.非负数可以实施开方运算12、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是()A.卫B.防C.讲D.生13、春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为()A.9608×10 3B.960.8×10 4C.96.08×10 5D.9.608×10 614、下列调查中,适宜采用抽样调查方式的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品 D.调查初三某班的体考成绩的优秀率15、天水市某网店父亲节这天的营业额为341000元,将数341000用科学记数法表示为( )A. B. C. D.二、填空题(共10题,共计30分)16、把下列各数填在相应的大括号里:1,, 8.9,﹣7,,﹣3.2, +1 008,﹣0.06, 28,﹣9.正整数集合:{________…};负整数集合:{________…};正分数集合:{________…};负分数集合:{________…};.17、如图是一个运算程序的示意图,若开始输入x的值为9,则第2016次输出的结果为________.18、比3小的非负整数有 ________个,19、已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为________.20、用“>”或“<”填空:-________-;21、生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们座上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为________ 只.22、已知多项式6x2+(1﹣2m)x+7m的值与m的取值无关,则x=________.23、如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1, A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1, y1),C2(x2, y2),C3(x3, y3),…均在反比例函数y= (x>0)的图象上.则y1+y2+…+y20的值为________.24、已知代数式x+2y﹣1的值是6,则代数式3x+6y+1的值是________.25、如果与是同类项,那么xy=________.三、解答题(共5题,共计25分)26、解方程组:27、某稻谷加工厂从生产的大米中抽出16袋检查质量,以每袋50kg为标准,将超过的kg数记为正数,不足的kg数记为负数,偏差结果记录如表:偏差(kg)﹣0.5 ﹣0.4 0 +0.2 +0.5袋数 4 3 4 2 3与标准质量比较,这16袋大米总计超过多少kg或不足多少kg?这16袋大米的总质量是多少?28、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?29、某校对九年级500名同学完成数学学习任务情况进行随机抽查,抽查结果分为“很好”、“较好”、“一般”、“较差”四个等级.根据抽查的数据,制成不完整的表格和扇形统计图如下:完成情况很好较好一般较差人数30 45 a 15根据所学知识分析,解答下列问题:(1)补填表图中的空缺a,m,n(2)通过计算,估计全校完成学习任务(一般、较好、很好)的同学有多少人?(3)请你根据自己的知识和经验,或者从数据分析角度,给某等级的同学提些合理化的建议,目标或给予评价.30、把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.( 1 )非负数集合:{ …};( 2 )负数集合:{ …};( 3 )正整数集合:{ …};( 4 )负分数集合:{ …}.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、A6、D7、C8、D9、D10、B11、C12、B13、D14、A15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
沪科版七年级上册数学期末考试试卷及答案
沪科版七年级上册数学期末考试试题一、单选题1.下列四个有理数中是负数的是()A .0B .12-C .2D .3.52.34-表示()A .3个4-相乘B .3个4相乘的相反数C .4个3-相乘D .4个3相乘的相反数3.数据“14.1亿”用科学记数法表示应为()A .14.1×108B .1.41×108C .1.41×109D .1.41×10104.某立体图形的表面展开图如图所示,这个立体图形是()A .B .C .D .5.若使方程()31m x -=是关于x 的一元一次方程,则m 的值是()A .3m ≠-B .0m ≠C .3m ≠D .3m >6.下列不是同类项的是()A .3ab -与3b aB .12与0C .23x y 与26xy -D .2xyz 与zyx-7.方程()3235x x --=去括号变形正确的是()A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=8.已知点A 、B 、P 在一条直线上,则下列等式中,能判断P 是线段AB 的中点的是()A .AP BP =B .12BP AB =C .2AB AP =D .AP PB AB+=9.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1-C 2=()A .10cmB .20cmC .30cmD .40cm10.如图,若A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是()A .a+b <0B .b ﹣c >0C .ab >0D .0c d>二、填空题11.若一个角度数是115°6′,则这个角的补角是___________.12.若a 、b 互为相反数,则a-(2-b )的值为_____13.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列以及各条对角线上的三个数字之和均相等,则图中a 的值为______.14.如果x=-2是关于x 的方程3x+5=x-m 的解,则m=___________15.如图,在数轴上有A 、B 两个动点,O 为坐标原点.点A 、B 从图中所示位置同时向数轴的负方向运动,A 点运动速度为每秒2个单位长度,B 点运动速度为每秒3个单位长度,当运动___________秒时,点O 恰好为线段AB 中点.三、解答题16.(1)计算:29835245-÷--⨯+();(2)化简:2222212(126)3(2)2a b ab a b ab a b --+-.17.先化简再求值:3(3xy –x 2)−(2x 2−xy ),其中x=1,y=2.18.解方程:2531162x x -+-=19.(1)解方程:4372153x x ---=;(2)解方程组:3+2y=14y=6x x ⎧⎨--⎩20.某粮库10月23日到25日这3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):日期10月23日10月24日10月25日进出库情况26+,38-20-,34+32-,15-(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库的装卸费是每吨8元,出库的装卸费是每吨10元,那么这3天要付出多少装卸费?21.如图,点C 、D 是线段AB 上两点,AC ∶BC =3∶2,点D 为AB 的中点.(1)如图1所示,若AB =40,求线段CD 的长.(2)如图2所示,若E 为AC 的中点,ED =7,求线段AB 的长.22.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)若一用户需Ⅰ型的窗框2个,Ⅱ型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)已知y>x,求一个Ⅰ型的窗框比一个Ⅱ型的窗框节约这种材料多少米?23.某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了名学生,扇形统计图中D对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1800名学生,试估计该校选择“一般了解”的学生有多少人?24.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,使OE为∠AOD的角平分线,当∠COE=25°时,∠BOD的度数为;(2)如图2,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF 平分∠BOD,求∠EOF的度数;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,当∠EOF=10°时,求∠BOD的度数.参考答案1.B【分析】根据任何正数前加上负号都是负数依次判断即可.【详解】解:A既不是正数也不是负数;B是负数;C、D均为正数;故选:B.【点睛】题目主要考查正数和负数的定义,深刻理解正数、负数的定义是解题关键.2.B【分析】根据在一个数的前面加上负号就是这个数的相反数,乘方是几个相同因数的简便运算,可得答案.-⨯⨯,表示3个4相乘的相反数【详解】解:34-的底数为4,为444故选:B.【点睛】本题考查了有理数的乘方,注意34-的底数是4,(﹣4)3的底数是﹣4.3.C【详解】解:14.1亿写作1410000000,绝对值较大的数表示成10n a ⨯的形式1.41a =,1019n =-=∴14.1亿可表示成91.4110⨯故选C .【点睛】本题考查了科学记数法.解题的关键在于确定a n 、的值.4.A【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A .【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.C【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可【详解】解:∵方程()31m x -=是关于x 的一元一次方程,∴30m -≠即3m ≠,故选C .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.6.C【分析】根据同类项的性质,对各个选项逐个分析,即可得到答案.【详解】A 、3ab -与3b a ,所含字母相同,且相同的字母的指数也相同,是同类项,故本选项不合题意;B 、12与0,都是不含字母的单项式,是同类项,故本选项不合题意;C 、23x y 与26xy -,所含字母相同,但是相同字母的指数不相同,不是同类项,故本选项符合题意;D 、2xyz 与zyx -所含字母相同,且相同的字母的指数也相同,是同类项,故本选项不合题意;故选:C .【点睛】本题考查了同类项的知识;解题的关键是熟练掌握同类项的性质,有些字母顺序不同,只要确定所含字母相同,且相同的字母的指数也相同,就是同类项.7.D【分析】直接利用去括号法则化简得出答案即可.【详解】解:3x−2(x−3)=5,去括号得:3x−2x+6=5,故选:D .【点睛】本题主要考查了解一元一次方程,正确掌握去括号法则是解题关键.8.A【分析】根据线段中点的定义和性质判断选项的正确性.【详解】解:∵AP=BP ,且点A 、B 、P 在一条直线上,∴P 是线段AB 的中点,故A 正确;若12BP AB =,则点P 不一定在线段AB 上,不一定是线段AB 的中点,故B 错误;若2AB AP =,则点P 不一定在线段AB 上,不一定是线段AB 的中点,故C 错误;若AP PB AB +=,则点P 只要在线段AB 上就能满足,不一定是线段AB 的中点,故D 错误.故选:A .【点睛】本题考查线段的中点,解题的关键是掌握线段中点的定义和性质.9.D【分析】设图2与图3中的大长方形的宽为acm ,则长为()20+a cm ,图1中的长方形长为xcm ,宽为ycm ,结合图形分别表示出两个长方形的周长,然后相减即可得.【详解】解:设图2与图3中的大长方形的宽为acm ,则长为()20+a cm ,图1中的长方形长为xcm ,宽为ycm ,由图2可知:()1202440C a a a =++⨯=+;由图3可知:20x y a +=+,()()()222022=++-+-C a a x a y ,()24042=++-+a a x y ,6402(20)=+-+a a ,4a =,则21440440-=+-=C C a a (cm),故选:D .【点睛】题目主要考查整式加减的运用,理解题意,结合图形列出代数式是解题关键.10.B【分析】结合数轴,根据代数式性质计算,即可得到答案.【详解】根据题意,得:0a b c d<<<<∴0a b +<,0b c -<,0ab >,0c d>∴选项A 、C 、D 正确,选项B 错误;故选:B .【点睛】本题考查了数轴、代数式的知识;解题的关键是熟练掌握代数式的性质,从而完成求解.11.64°54'【分析】根据补角的定义(若两个角之和为180︒,则这两个角互为补角)进行求解即可得.【详解】解:180********''︒-︒=︒,故答案为:6454'︒.【点睛】题目主要考查补角的定义,理解补角的定义是解题关键.12.-2【分析】根据题意可先求出a=-b 的关系式,然后代入计算即可.【详解】解:∵a ,b 互为相反数,∴a=-b ,∴a-(2-b )=-b-2+b=-2.故答案为:-2.【点睛】本题考查了代数式求值、相反数的概念,根据相反数的概念得到a=-b 是解题的关键.13.-2【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为-6,则-6+a+2=-6,即可得.【详解】解:∵-1+0+(-5)=-6,∴-6+a+2=-6,解得:a=-2,故答案为:-2.14.-1【分析】把x=−2代入方程即可得到一个关于m 的方程,从而求解.【详解】解:把x=−2代入方程,得:−6+5=−2−m ,解得:m=-1,故答案是:−1.15.45【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒点A ,B 表示的数为,-2-2t ,6-3t ,根据题意可知-2-2t <0,6-3t >0,化简|-2-2t|=|6-3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点,根据题意可得,经过t 秒,点A 表示的数为-2-2t ,AO 的长度为|-2-2t|,点B 表示的数为6-3t ,BO 的长度为|6-3t|,因为点B 不能超过点O ,所以0<t <2,则|-2-2t|=|6-3t|,因为-2-2t <0,6-3t >0,所以,-(-2-2t )=6-3t ,解得t=45.故答案为:45.16.(1)6;(2)223a b ab --【分析】(1)先计算乘方,再计算乘除,最后计算加减,即可求解;(2)先去括号,再合并同类项,即可求解.【详解】解:(1)29835245-÷--⨯+()4895295=-⨯+⨯+482=-++6=;(2)2222212(126)3(2)2a b ab a b ab a b --+-2222226336a b ab a b ab a b=-++-223a b ab =--.17.10xy –5x 2,15.【分析】先去括号,再合并同类项完成化简,再将字母的值代入求值即可.【详解】解:3(3xy –x 2)−(2x 2−xy )=9xy –3x 2−2x 2+xy=10xy –5x 2,当x=1,y=2时,原式=10×1×2–5×12=20–5=15.【点睛】本题考查了整式的化简求值,掌握去括号、合并同类项法则是解题的关键.18.x =﹣2.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得,(2x ﹣5)﹣3(3x+1)=6,去括号得,2x ﹣5﹣9x ﹣3=6,移项得,2x ﹣9x =6+5+3,合并同类项得,﹣7x =14,系数化为1得,x =﹣2.19.(1)1423x =-;(2)12x y =-⎧⎨=⎩【分析】(1)先去分母,再去括号,然后移项合并同类项,即可求解;(2)由①+②×2可得1x =-,再代入②,即可求解.【详解】解:4372153x x ---=去分母得:()()34315572x x --=-,去括号得:129153510x x --=-,移项合并同类项得:2314x -=,解得:1423x =-;(2)3+2=14=6x y x y ⎧⎨--⎩①②由①+②×2得:1111x =-,解得:1x =-,把1x =-代入②得:()416y ⨯--=-,解得:2y =,∴原方程组的解为12x y =-⎧⎨=⎩.20.(1)3天前粮库里的存量525吨,(2)这3天要付出1098元装卸费.【分析】(1)先求出进库与出库粮食的总和,用总和的符号判定是出库还是进库,负出正进,是进库的用480减三天之和,是出库的用480加上三天总和计算即可;(2)用进库粮食吨数总和×8+出库粮食吨数总和×10计算即可.【详解】解:(1)26-38-20+34-32-15=(26+34)-(38+20+32+15)=60-105=-45,∴3天前粮库里的存量=480+45=525吨,(2)60×8+105×10=48+1050=1098元.∴这3天要付出1098元装卸费.21.(1)4(2)35【分析】(1)根据AC ∶BC =3∶2,AB =40,可得24AC =,再由点D 为AB 的中点.可得2201AD AB ==,即可求解;(2)设3,2AC x BC x ==,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x ==,再由E 为AC 的中点,可得1322AE AC x ==,从而得到DE AD AE x =-=,即可求解.(1)解:∵AC ∶BC =3∶2,AB =40,∴3402432AC =⨯=+,∵点D 为AB 的中点.∴2201AD AB ==,∴4CD AC AD =-=;(2)解:设3,2AC x BC x ==,则5AB x =,∵点D 为AB 的中点.∴1522AD AB x ==,∵E 为AC 的中点,∴1322AE AC x ==,∴5322DE AD AE x x x =-=-=,∵ED =7,∴7x =,∴535AB x ==.22.(1)1213x y +;(2)y x -【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个Ⅱ型的窗框的用料减去1个Ⅰ型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个Ⅰ型窗框用料(32x y +)米;1个Ⅱ型窗框用料(23x y +)米;(1)2个Ⅰ型窗框和3个Ⅱ型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y=+++1213x y =+;(2)1个Ⅱ型窗框和1个Ⅰ型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y=+--y x =-.23.(1)60名,18°;(2)见解析;(3)540人【分析】(1)“B 比较了解”的有24人,占调查人数的40%,可求出调查人数,进而求出“D 不了解”所占的百分比,进而计算其相应的圆心角的度数,(2)求出“A 非常了解”的人数,即可补全条形统计图;(3)样本估计总体,样本中“C 一般了解”的占1860,因此估计总体1800名学生的1860是“一般了解”的人数.【详解】解:(1)24÷40%=60(名),360°×360=18°;(2)60×25%=15(人),补全条形统计图如图所示:(3)1800×1860=540人,答:该校1500名学生中选择“一般了解”的有540人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.24.(1)50°(2)135°(3)55°或35°【分析】(1)根据已知求出EOD ∠,由角平分线定义可得2AOD EOD ∠=∠,根据平角定义可得结论;(2)由已知得出∠AOC+∠BOD=90°,由角平分线定义得出∠EOC=12∠AOC ,∠DOF=12∠BOD ,即可得出答案;(3)分OF 在OE 的左侧和右侧两种情况讨论求解即可.(1)∵OE 为∠AOD 的角平分线,∴2AOD EOD∠=∠又∵∠COD =90°,∠COE =25°∴65EOD ∠=︒,∴2130AOD EOD ∠=∠=︒,∴180********BOD AOD ∠=︒-∠=︒-︒=︒故答案为:50°;(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE 为∠AOC 的角平分线,OF 平分∠BOD ,∴∠EOC=12∠AOC ,∠DOF=12∠BOD ,∴∠EOF=∠COD+∠EOC+∠DOF=90°+12(∠AOC+∠BOD )=90°+12×90°=135°,(3)①如图∵OF 是COD ∠的角平分线∴1452COF COD ∠=∠=︒∵10EOF ∠=︒∴451035COE COF EOF ∠=∠-∠=︒-︒=︒∵OC 是AOE ∠的平分线∴35AOC COE ∠=∠=︒,∴180180359055BOD AOC COD ∠=︒-∠-∠=︒-︒-︒=︒②如图同理可得∴55AOC COE ∠=∠=︒,∴180180559035BOD AOC COD ∠=︒-∠-∠=︒-︒-︒=︒综上,BOD ∠的度数为55°或35°.。
沪科版七年级上册数学期末考试试卷含答案
沪科版七年级上册数学期末考试试卷含答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪科版七年级上册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg)8零售价(元/kg)14请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为×107.【解答】解:数据10 620 000用科学记数法可表示为×107,故答案为:×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg)8零售价(元/kg)14请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(﹣)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是 4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。
沪科版七年级上册数学期末考试试卷带答案
沪科版七年级上册数学期末考试试题一、单选题1.与8--相等的是()A .2B .8C .2-D .8-2.在数轴上将点A 向右移动10个单位,得到它的相反数,则点A 表示的数为()A .10B .10-C .5-D .53.若关于x 的方程35x m +=与25x m -=有相同的解,则x 的值是()A .3B .4C .4-D .3-4.如图,A 、C 、D 三点在一条直线上,观察图形,下列说法正确的个数是()(1)直线BA 和直线AB 是同一条直线;(2)射线AC 和射线AD 是同一条射线;(3)AB BD AD +>;(4)∠ACD 是一条直线.A .1个B .2个C .3个D .4个5.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是()A .﹣3B .0C .6D .96.一件商品先按成本提高50%标价,再以8折(标价的80%)出售,结果仍获利200元,则这件商品的成本是()A .800元B .1000元C .1600元D .2000元7.一个三位数,它的百位数字是a ,十位数字和个位数字组成的两位数是b ,用代数式表示这个三位数是()A .a b +B .10a b +C .100a b +D .ab8.如图所示的是一个正方体的展开图,把展开图折叠成小正方体,和“民”字一面相对面的字是()A .强B .明C .文D .主9.下列等式变形正确的是()A .若2x =12,则x =1B .若4x ﹣2=2﹣3x ,则4x+3x =2﹣2C .若5(x-1)﹣3=2(x+2),则5x-1﹣2x+2=3D .若311223x x +--=1,则3(3x+1)﹣2(1﹣2x )=610.如图是一个正四面体,现沿它的棱AB 、AC 、AD 剪开展成平面图形,则所得的展开图是()A .B .C .D .11.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是()A .95元B .90元C .85元D .80元12.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入形状、大小完全相同的四个小长方形后得图①、图②,已知大长方形长为a ,大长方形未被覆盖的部分均用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是(用含a 的代数式表示()A .a -B .aC .12a -D .12a二、填空题13.将267368.8万精确到千万位并用科学记数法表示为___________.14.整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌便整整齐齐摆在了一条线上,这其中蕴含的数学道理是_____.15.单项式312ax y 的次数是___________.16.已知方程532x y +=,将其写成用含x 的代数式表示y 的形式为___________.17.已知2=a ,24b =,那么-a b 的值是___________.18.若∠α=48°36′,∠α的补角是∠β的2倍,则∠β=________.三、解答题19.计算()2215243612⎛⎫⎡⎤--⨯--÷- ⎪⎣⎦⎝⎭20.先化简,再求值:()()2232431a ab ab a ---++,其中32a =,2b =-.21.2233236x x x -+-=-.22.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.23.如图,已知A 、B 、C 、D 、E 五点共线,线段AB 长为20,C 是AB 的中点,E 是DB 的中点,D 是CB 上一点,且7CE =.(1)求CD 的长;(2)若以C 为原点,向右为正方向建立数轴,请根据以上数据,直接写出数轴上A 、B 、D 、E 各点表示的数.24.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?25.某商场新进一种服装,每套服装售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?26.体育课上,七(1)班男生进行一分钟跳绳测试,以能完成180次为基准,超过的次数用正数表示,不足的次数用负数表示,下表是该班25名男生该次测试成绩统计记录成绩20-13-6-035911人数12465322(1)此次测试中,跳绳次数最多的同学比次数最少的多跳多少次?(2)在这次测试中,25名男生共完成了多少次跳绳?(3)若规定一分钟跳绳次数未达到170次为不达标,达到170~179次为基本达标,达到180次及以上为达标,请统计各层次人数,并选择适当的统计图表示你统计的结果.27.如图,100ACB ∠=︒,直线DE 过C 点,∠ACE 比∠ACD 大22°,90BCF ∠=︒.(1)请根据题意补画出射线CF ;(2)根据所画图形,求∠DCF 的度数.参考答案1.D【分析】计算求解即可.【详解】解:88--=-,故选:D .【点睛】本题考查了绝对值.解题的关键在于熟练掌握绝对值的运算.2.C【分析】设点A 表示的数为a ,则由题意知100a a ++=,计算求解即可.【详解】解:设点A 表示的数为a则由题意知100a a ++=解得5a =-故选C .【点睛】本题考查了数轴上的数的表示,相反数的定义.解题的关键在于明确互为相反数的两个数和为零.3.D【分析】根据两个方程有相同的解,可联立方程组,然后解二元一次方程组即可.【详解】解:联立方程组得3525x m x m +=⎧⎨-=⎩①②,①3-⨯②式得5615m m +=-解得:4m =-,则x=-3故选:D .【点睛】本题考查了方程的解与解二元一次方程组.解题的关键在于熟练掌握方程的解并正确的解方程组.4.C【分析】结合图形,根据直线、射线、两点之间,线段最短和平角的定义逐一进行判断即可.【详解】(1)直线BA 和直线AB 是同一条直线,直线没有端点,此说法正确;(2)射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确;(3)AB+BD >AD ,两点之间,线段最短,所以此说法正确;(4)因∠ACD是一个平角,故错误.所以共有3个正确.故选:C.【点睛】本题考查了直线、射线、线段的概念,属于基础题型,熟练掌握概念是解题关键.5.A【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.6.B【分析】先求得标价,等量关系为:标价×80%=成本+利润,把相关数值代入求解即可.【详解】设这种商品的成本价是x元,x×(1+50%)×80%=x+200,解得x=1000故答案选:B.【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.7.C【分析】直接利用百位数字乘100,表示出这个三位数即可.【详解】解: 一个三位数,百位数字是a,十位数字和个位数字组成的两位数是b,这个三位数是:100a b+.故选:C.【点睛】本题主要考查了列代数式,正确表示出百位数是解答关键.8.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,和“民”字一面相对面的字是“明”,故B正确.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.D【分析】根据等式的基本性质对各选项进行逐一判断即可.【详解】解:A 中若122x =,则14x =,故本选项错误;B 中若4223x x -=-,则432+2+=x x ,故本选项错误;C 中若()()51322x x --=+,则55243x x ---=,故本选项错误;D 中若3112123x x +--=,则()()3312126x x +--=,故本选项正确;故选:D .【点睛】本题考查了等式的性质.解题的关键在于熟练运用等式的性质对已知的等式进行变形.10.B【分析】亲自动手具体操作,或根据三棱锥的图形特点作答.【详解】沿它的棱AB 、AC 、AD 剪开展开后会以BC 、CD 、BD 向外展开形成如图B 样的图形,故选:B .【点睛】本题考查了几何体的展开图的知识,动手具体操作的同时,注意培养空间想象能力.11.B【详解】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .【点睛】本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.12.C【分析】设小长方形的长为m ,宽为n ,则由①图可知,2n m a +=,2m n =,可得14n a =,12m a =,由②图可知,大长方形的宽为3n ,表示出两个图中阴影部分的周长,计算求解即可.【详解】解:设小长方形的长为m ,宽为n由①图可知,2n m a +=,2m n=∴14n a =,12m a =由②图可知,大长方形的宽为3n∴①图阴影部分周长为()52232222a n n a n a +-=+=②图阴影部分周长为()()22322283a m n n a n n a-+⨯+=-+=∴图①阴影部分周长与图②阴影部分周长的差是51322a a a -=-故选C .【点睛】本题考查了二元一次方程组的几何应用.解题的关键在于表示出小长方形与大长方形的长、宽的数量关系.13.2.67×109【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将267368.8万精确到千万位并用科学记数法表示为:2.67×109.故答案为:2.67×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.两点确定一条直线【分析】根据直线的确定方法,易得答案.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的知识点是直线的性质:两点确定一条直线,解题的关键是熟练的掌握直线的性质:两点确定一条直线.15.5【分析】根据单项式的次数的定义解答.【详解】单项式312ax y 的次数是:1+3+1=5.故答案是:5.【点睛】本题考查了单项式.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.16.5233y x =-+【分析】把方程532x y +=看作关于y 的一元一次方程,然后解一次方程即可.【详解】解:532x y +=移项得:325y x=-系数化为1得:5233y x =-+.故答案为:5233y x =-+.【点睛】本题主要考查方程的基本变形.解题的关键在于熟练运用等式的性质.17.4-或0或4【分析】先根据绝对值和乘方的定义,结合已知条件分别求出a ,b 的值,再代入计算-a b 的值.【详解】解:∵224a b ==,∴22a b =±=±,∴当22a b ==,时,220a b -=-=;当22a b ==-,时.()224a b -=--=;当22a b =-=,时,224a b -=--=-;当22a b =-=-,时,()220a b -=---=故答案为:4-或0或4.【点睛】本题考查了绝对值和乘方的定义,代数式求值.解题的关键在于熟练掌握运算法则.18.65°42′【分析】先根据补角的定义求出∠α的补角,再除以2即可.【详解】解:由补角的定义可知,∠α的补角为:180°-∠α=180°-48°36′=131°24′,∵∠α的补角是∠β的2倍,∴∠β=12∠α=65°42′,故答案为:65°42′.【点睛】此题主要考查了补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.19.-6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:﹣22﹣16×[4﹣(﹣3)2]÷(﹣512)=﹣4﹣16×(4﹣9)×(﹣125)=﹣4﹣16×(﹣5)×(﹣125)=﹣4﹣2=﹣6.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.-2ab-1,5【分析】首先去括号进而合并同类项,再将已知代入求出答案【详解】解:原式=3a 2−6ab +4ab−3a 2−1=−2ab−1,当32a =,b =−2时,原式=−2×32×(−2)−1=6−1=5.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.3x =-【分析】按照解方程的步骤与方法解方程即可.【详解】解:2233236x x x -+-=-,去分母得,3(2)182(23)x x x --=-+去括号得,6318223x x x --=--,移项得,33618x -=--+,合并同类项得,39x -=,系数化为1,3x =-.【点睛】本题考查了一元一次方程的解法,解题关键是熟练运用一元一次方程的解法进行计算.22.51x y ==⎧⎨⎩【分析】整理方程组为一般式,再利用代入消元法求解可得.【详解】()x 1232122y x y +⎧=⎪⎨⎪+-=⎩①②由①得x+1=6y ③将③代入②得:2×6y ﹣y=22解得:y=2把y=2代入③得:x+1=12解得:x=11∴112x y =⎧⎨=⎩.23.(1)4(2)数轴上A 、B 、D 、E 各点表示的数分别为:10,10,4,7-【分析】(1)由线段的中点可表示21CB AC AB ==,12EB DE DB ==,根据线段的数量关系可表示EB CB CE =-,进而对CD CE DE =-计算求解即可;(2)根据以C 为原点,向右为正方向建立数轴,可知C 点表示的数为0,然后根据各线段的长度表示数轴上点即可.(1)解:∵C 是AB 的中点,E 是DB 的中点∴1102CB AC AB ===,12EB DE DB ==∵1073EB CB CE =-=-=∴734CD CE DE =-=-=∴CD 的长为4.(2)解:以C 为原点,向右为正方向建立数轴,则C 点表示的数为0∵10AC =,10CB =,4CD =,7CE =∴01010-=-,01010+=,044+=,077+=∴数轴上A 、B 、D 、E 各点表示的数分别为:10-,10,4,7.24.6.46【分析】设行驶时相邻两车之间的间隔为x 米,根据等量关系式:18辆小轿车之间的间隔+18辆小轿车车身总长=20秒×车的行驶速度,列出方程,再解方程即可.【详解】解:设行驶时相邻两车之间的间隔为x 米,36千米/小时=10米/秒,根据题意得:1718 5.011020x +⨯=⨯,解得: 6.46x =.答:行驶时相邻两车之间的间隔为6.46米.25.原来裤子的单价为200元,原来上衣的单价为800元【详解】试题分析:设裤子原来的单价是x 元,上衣原来的单价是y 元,根据等量关系:(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%),列出方程组即可解得.试题解析:设裤子原来的单价是x 元,上衣原来的单价是y 元,依题意得方程组:1000{(110%)(15%)1000(12%)x y x y +=-++=+,解得:200{800x y ==,答:这套服装原来裤子的单价为200元,原来上衣的单价为800元.点睛:本题主要考查二元一次方程组的应用,分析题意从中找到两个等量关系“(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%)”是解题的关键.26.(1)31(2)4500次(3)见解析【分析】(1)求出这组数据的极差即可;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次);(3)求出不达标的人数,基本达标的人数,达标的人数,画出条形图即可.(1)解:11−(−20)=31,答:跳绳次数最多的同学比次数最少的多跳31次;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次),答:25名男生共完成了多少次跳绳4500次.(3)不达标的人数有:3人,基本达标的人数有:4人,达标的人数有:18人,条形图计算如图所示:27.(1)画图见解析;(2)69︒或110︒【分析】(1)根据题意画出射线CF 的两种情况图形;(2)设ACD x ∠=︒,列出方程求出ACD ∠的度数,进而求出BCD ∠的度数,最后根据图形即可求解.(1)解:根据题意画图如下:(2)解:设ACD x ∠=︒,则22ACE x ∠=+()22180x x ++=,解得79x =,1006921∴∠=∠-∠=︒-︒=︒,BCD ACB ACD∴∠=︒-︒=︒或9021111902169DCF∠=︒+︒=︒.DCF。
沪科版七年级上册数学期末考试试卷及答案
沪科版七年级上册数学期末考试试题一、单选题1.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是( )A .﹣2℃B .﹣4℃C .﹣6℃D .﹣8℃2.下列合并同类项的结果正确的是( )A .9a 2﹣2a 2=7B .22033--=xy xy C .3m 2+2n 2=5m 2n 2 D .4x 2y ﹣4yx 2=03.用科学记数法表示34 000 000的结果是( )A .0.34×108B .3.4×106C .34×106D .3.4×107 4.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5 B .1 C .-1 D .35.如图,点O 在直线AB 上,射线OC 平分℃DOB .若℃COB=35°,则℃AOD 等于( )A .35°B .70°C .110°D .145°6.小红将考试时自勉的话“细心、规范、勤思”写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“细”相对的字是( )A .规B .范C .勤D .思7.若x =2时,多项式ax 4+bx 2+5的值是3,则当x =﹣2时,多项式ax 4+bx 2+7的值是() A .﹣5 B .﹣3 C .3 D .58.已知℃A=55°34′,则℃A 的余角等于( )A.44°26′ B.44°56′ C.34°56′ D.34°26′9.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x 的不同值最多有()A.2个B.3个C.4个D.5个10.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm,若记图2中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1-C2=()A.10cm B.20cm C.30cm D.40cm二、填空题11.32-的绝对值是__.12.若℃α=36°24′,则℃α的补角的度数为____.13.在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________.14.对于有理数a,b,规定一种新运算:a℃b=a×b+b.如2℃3=2×3+3=9,下列结论:℃(﹣3)℃4=﹣8;℃a℃b=b℃a;℃方程(x﹣4)℃3=6的解为x=5;℃(4℃3)℃2比4℃(3℃2)小8.其中正确的是_____.(把所有正确的序号都填上).15.已知关于,x y的方程组292x y mx y m+=⎧⎨-=⎩的解满足212x y+=,m=_________.16.一张长方形的桌子可坐6人,按下图将桌子拼起来.按这样的规律做下去第n张桌子可以坐_____人.三、解答题17.计算:(﹣1)2022﹣8÷(﹣2)﹣4×|﹣5|18.已知(x+2)2+|y ﹣12|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值. 19.解方程(组)(1)解方程:2132134x x x ++-=-; (2)解方程组:()()12323211x y x y x y -⎧=⎪⎨⎪+--=⎩.20.随着人们的生活水平的提高,家用轿车越来越多地进人普通家庭小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”,记录数据如下表:(1)请你估计小明家的小轿车一月(按30天计)行驶多少千米?(2)若每行驶100km 需要汽油8L ,汽油每升6.75元,试求小明家一年(按12个月计)的汽油费用是多少元?(L 为汽油单位:升)21.某市城市居民用电收费方式有以下两种:甲、普通电价:全天0.53元/度;乙、峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.(1)小明家估计七月份总用电量为200度,其中峰时电量为50度,则小明家应选择哪种方式付电费比较合算?(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方式省了14元,求八月份的峰时电量为多少度?22.线段AB=10,AB上有一动点C,以每秒2个单位的速度,按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.(1)当t=6时,AC=.(2)用含t的式子表示线段AC的长;当0≤t≤5时,AC=;当5<t≤10时,AC=.(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,23.某中学组织七年级学生春游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元.”请你根据以上信息,求出45座和60座的客车每辆每天的租金各是多少元.(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,但会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,你还有别的方案吗?”请你设计租车方案,并说明理由.24.如图,点C、D是线段AB上两点,AC℃BC=3℃2,点D为AB的中点.(1)如图1所示,若AB=40,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=7,求线段AB的长.25.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)若一用户需℃型的窗框2个,℃型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)已知y>x,求一个℃型的窗框比一个℃型的窗框节约这种材料多少米?参考答案1.B2.D3.D4.B5.C6.B7.D8.D9.C10.D11.3 212.143°36′13.3 14.℃℃℃15.m=116.(4+2n )17.-1518.16219.(1)25x =;(2)376x y =⎧⎨=⎩ 【分析】(1)先去分母、去括号、移项,然后合并后把x 的系数化为1即可;(2)先变形,利用加减消元法求解可得;【详解】解:(1)2132134x x x ++-=-, 去分母得()()1242133212x x x -+=+-,去括号得12849612x x x --=+-,移项得12894612x x x --=+-,合并得52x -=-,系数化为1得25x =; (2)方程组变形得:61811x y x y -=⎧⎨-+=⎩①②, ℃+℃得212y =,解得6y =,代入℃中,解得:37x =,所以原方程组的解为376x y =⎧⎨=⎩. 20.(1)1500km ;(2)9720元.【分析】(1)用7天的标准量加上7天的记录数据除以7,求出平均每天的行驶路程,然后乘以30计算即可得解;(2)用一个月的行驶路程除以100乘8乘6.75,再乘以12个月,计算即可得解.【详解】(1)50×7-6-12+0+6-18+38-8=350(km )或:44+38+50+56+32+88+42=350(km )350÷7×30=1500(km )(2)1500100⨯8×6.75×12=9720(元) 21.(1)按峰谷电价付电费合算(2)八月份的峰时电量为100度【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设八月份的峰时电量为x 度,根据用峰谷电价付费方式比普通电价付费方式省了14元,建立方程后求解即可.(1)按普通电价付费:2000.53106⨯=(元),按峰谷电价付费:()500.56200500.3682⨯+-⨯=(元),82106<,所以按峰谷电价付电费合算;(2)设八月份的峰时电量为x 度,根据题意得:0.53200[0.560.36(200)]14x x ⨯-+-=,解得100x =.答:八月份的峰时电量为100度.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)8(2)2t ,202t -;(3)MN 的长度不变,长度为5【分析】(1)根据点C 的运动速度和10AB =可得答案;(2)根据路程=速度⨯时间可求AC 的长度;(3)分情况讨论,再根据线段中点的定义可得答案.(1)当6t =时,动点C 运动了2612⨯=个单位,10AB =,2BC ∴=.1028AC ∴=-=.故答案为:8;(2)当510t <时,210BC t =-10(210)202AC AB BC t t ∴=-=--=-.故答案为:2t ,202t -;(3)当05t 时,11112(102)52222MN MC NC AC BC t t =+=+=⋅+-=; 当510t <时,1111(202)(210)52222MN MC NC AC BC t t =+=+=-+-=; 故MN 的长度不变,长度为5.23.(1)45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元(2)租用4辆45座的客车,1辆60座的客车总费用最低【分析】(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(100)x +元,根据“租2辆60座和5辆45座的客车,一天的租金为1600元”,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设只租60座的客车需要y 辆,则只租45座的客车需要(2)y +辆,根据总人数不变,即可得出关于y 的一元一次方程,解之即可得出y 值,进而可求出参加拓展训练的人数,设租45座的客车m 辆,租60座的客车n 辆,根据总人数45=⨯租用45座客车的辆数60+⨯租用60座客车的辆数,即可得出m ,n 的二元一次方程,结合m ,n 均为正整数,即可求出费用更低的租车方案.(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(100)x +元, 依题意,得:52(100)1600x x ++=,解得:200x =,100300x ∴+=.答:45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)设只租60座的客车需要y 辆,则只租45座的客车需要(2)y +辆,依题意,得:6045(2)30y y =+-,解得:4y =,60240y ∴=,即参加拓展训练的一共有240人.设租45座的客车m 辆,租60座的客车n 辆,依题意,得:4560240m n +=,344n m ∴=-. m ,n 均为正整数,4m ∴=,1n =.∴新方案:租用4辆45座的客车,1辆60座的客车甲的费用:62001200⨯=(元)乙的费用:43001200⨯=(元)新方案的费用:42003001100⨯+=(元)∴租用4辆45座的客车,1辆60座的客车总费用最低.【点睛】本题考查了一元一次方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程. 24.(1)4(2)35【分析】(1)根据AC℃BC =3℃2,AB =40,可得24AC = ,再由点D 为AB 的中点.可得2201AD AB == ,即可求解; (2)设3,2AC x BC x == ,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x == ,再由E 为AC 的中点,可得1322AE AC x == ,从而得到DE AD AE x =-=,即可求解. (1)解:℃AC℃BC =3℃2,AB =40, ℃3402432AC =⨯=+ , ℃点D 为AB 的中点. ℃2201AD AB == , ℃4CD AC AD =-= ;(2)解:设3,2AC x BC x == ,则5AB x = ,℃点D 为AB 的中点. ℃1522AD AB x == , ℃E 为AC 的中点, ℃1322AE AC x == , ℃5322DE AD AE x x x =-=-= , ℃ED =7,℃7x = ,℃535AB x == .25.(1)1213x y +;(2)y x -【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个℃型的窗框的用料减去1个℃型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个℃型窗框用料(32x y +)米;1个℃型窗框用料(23x y +)米;(1)2个℃型窗框和3个℃型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y =+++1213x y =+;(2)1个℃型窗框和1个℃型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y =+--y x =-.。
2022年沪科版数学七年级上册期末测试题附答案(共3套)
沪科版数学七年级上册期末测试题(一)(时间:120分钟 分值:120分)一选择题(本大题共10小题,每小题4分,满分40分)1.如图所示,a,b,c 表示有理数,则a,b,c 的大小顺序是 ( )A.a <b <c Ba <c <b C. b <a <c D.c <b <a 2.多项式3222m n --是( )A.二次二项式B.三次二项式C.四次二项式D.五次二项式 3.与方程12x x -=的解相同的方程是( )A. x-2=1+2xB. x=2x+1C.x=2x-1D. 12x x +=4.用代入法解方程组124y xx y =-⎧⎨-=⎩ 时,代人正确的是( )A.x-2-x=4B.x-2-2x=4C. x-2+2x=4D.x-1+x=4 5. 20011精确到百位的近似数可表示为( )A.200B. 200×510C. 2×410D. 2.00×410 6.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=12BC C.CD=12AB -BD D.CD=AD-BC7.在8︰30时,时钟上的时针和分针之间的夹角为( ) A.85° B.75° C. 80° D.70° 8.化简[]235(27)a b a a b ----的结果是( ) A. -7a-10b B.5a+4b C.-a-4b D.9a-10b9.小明在做解方程题目时,不小心将方程题目中的一个常数污染了看不清楚,被污染的方A C DBb程是:11222y y -=-℘ ,小明想了一想,便翻看书后答案,此方程的解是53y =- ,很快补了这个常数,迅速地完成了作业,同学们,你能补出这个常数吗?它应是( ) A. 1 B.2 C.3 D.4二.填空题(本大题共4小题,每小题5分,满分20分)10.已知4a + 和2(3)b -互为相反数,那么3a b +等于 。
沪科版七年级上册数学期末考试试卷含答案
沪科版七年级上册数学期末考试试题一、单选题1.12022-的倒数是()A .-2022B .2022C .12022D .12022-2.单项式﹣212a b π的系数和次数分别为()A .﹣12,3B .﹣12,4C .﹣12π,3D .﹣12π,43.如图是一个正方体的展开图,折成小正方体后,和“党”字所在面相对的面上的字是A .跟B .百C .走D .年4.如图,以A 为一个端点的线段共有()A .1条B .2条C .3条D .4条5.将5000亿用科学记数法表示为()A .5×104B .5×1010C .5×1011D .5×10126.老师用长为4a 的铁丝做了一个长方形教具,其中一边长为a ﹣2b ,则其邻边长为A .3a+2bB .3a ﹣2bC .5a ﹣2bD .a+2b7.已知5a =,3b =,且0a b +<,则a b -的值为()A .8-B .2-C .2或8-D .28.如图所示是我们常用的一副直角三角板.用一副三角板不能拼出的角度是()A .15︒B .55︒C .75︒D .105︒9.如图,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式中正确的是()A .12BOD AOD ∠=∠B .23AOD AOB ∠=∠C .12BOD AOD ∠=∠D .23BOC AOD ∠=∠10.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有()A .2个B .3个C .4个D .5个11.若1∠与2∠互为余角,1∠与3∠互为补角,则下列结论:①3290∠-∠=︒;②3227021∠+∠=︒-∠;③3122∠-∠=∠;④312∠<∠+∠.其中正确的有()A .4个B .3个C .2个D .1个12.有四个完全相同的小方形和两个完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是()A .5.5B .5C .4D .2.5二、填空题13.6°30′=_____°.14.若式子3x 与7x ﹣10互为相反数,则x =_____.15.某校为了解八年级1600名学生的视力情况,从中抽查了100名学生的视力情况进行统计分析,这个问题中的样本容量是_____.16.如图,长度为12cm 的线段AB 的中点是点M ,点C 在线段MB 上,且:1:2MC CB =,则线段AC的长为______.三、解答题17.计算:(1)(﹣34)+4154-﹣(﹣15)(7546-)×(﹣24)18.解方程组:521 35x yx y+=⎧⎨-=⎩.19.某商店规定,购买超过10000元的物品可以采用分期付款方式付款,顾客可以先付商品售价的20%,剩下的金额在约定的时间内还清即可.王叔叔想购买价值15000元的家具,采用商店分期付款的方式约定剩下金额12个月还清,那么他平均每月需还多少元?20.如图是由一些火柴棒搭成的图案.(1)摆第4个图案用根火柴棒.(2)按照这种方式摆下去,摆第n个图案用根火柴棒.(3)计算一下摆481根火柴棒时,是第几个图案?21.如图,线段AB =20cm ,C 为AB 的中点,D 为BC 的中点,在线段AC 上取点E ,使CE =25AC ,求线段DE 的长.22.如图,O 是直线AB 上的一点,23BOD ∠=︒,OD 、OE 分别是BOC ∠、AOC ∠的平分线.(1)图中所有与COD ∠互余的角有______;(2)图中与COD ∠互补的角有______;(3)求AOE ∠的度数.23.为了更好的推进乡村振兴,某城市一机构对乡村居民比较关心的四类信息进行了民意调查问卷,A :乡村医疗机构保障信息;B :农村大学生就业信息;C :乡村孩子上学信息;D :乡村居民住房保障信息,根据调查获得的信息关注度进行统计,得到下面两幅不完整的统计图,请根据图中的信息解答相关问题.(1)本次参与调查的乡村居民人数是多少?(2)补全条形统计图.(3)在扇形统计图中,求B所在的扇形圆心角的度数.24.已知一个三角形的第一条边长为3a+b,第二条边比第一条边短2a﹣b,第三条边是第二条边长的2倍还多a﹣2b.(1)求第三条边的边长.(用含a,b的式子表示)(2)用含a,b的式子表示这个三角形的周长,并化简.(3)若a,b满足|a﹣5|+(b﹣2)2=0,求出这个三角形的周长.25.如图,A,B,P三点在数轴上,点A对应的数为多项式3m2﹣2m+1中一次项的系数,点B对应的数为单项式5m2n4的次数,点P对应的数为x.(1)请直接写出点A和点B在数轴上对应的数.(2)请求出点P对应的数x,使得P点到A点,B点距离和为10.(3)若点P在原点,点B和点P同时向右运动,它们的速度分别为1,4个长度单位/分钟,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?参考答案1.A2.C3.D4.C5.C6.D7.A8.B9.D10.C11.B12.B13.6.514.115.10016.8cm17.(1)0(2)-22【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用乘法分配律计算即可得到结果.(1)解:原式34114545=-+-+31414455⎛⎫⎛⎫=--++⎪ ⎪⎝⎭⎝⎭=﹣1+1=0;(2)解:原式=74×(﹣24)﹣56×(﹣24)=﹣42+20=﹣22.18.12 xy=⎧⎨=-⎩【分析】方程组利用加减消元法求出解即可.【详解】解:52135x yx y+=⎧⎨-=⎩①②,①+②×2得:11x=11,解得:x=1,把x=1代入①得:5+2y=1,解得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.19.1000元【分析】设他平均每月需还x元,根据先付商品售价的20%+分期付款=总金额,列出方程,解方程即可.【详解】解:设他平均每月需还x元,根据题意列方程,得:15000×20%+12x=15000,解得:x=1000,答:他平均每月需还1000元.【点睛】此题考查了一元一次方程与实际问题,正确列出方程并解出方程是解题的关键.20.(1)17(2)(4n+1)(3)120个【分析】(1)由前三个图案可得第4个图案的火柴棒根数;(2)根据图形中的图案知,每个图案都比上一个图案多一个五边形,但是只增加4根火柴,根据此规律来分析,可得答案;(3)把481代入(2)中得到的式子即可.(1)解:由题目得,第①个图案所用的火柴数:1+4×1=5,第②个图案所用的火柴数:1+4×2=9,第③个图案所用的火柴数:1+4×3=13,第④个图案所用的火柴数:1+4×4=17,故答案为:17;(2)解:按(1)的方法,依此类推,第n个图案中,所用的火柴数为:1+4×n=4n+1;故摆第n个图案用的火柴棒是4n+1,故答案为:(4n+1);(3)解:由题意得,4n+1=481,解得n=120,答:摆481根火柴棒时,是第120个图案.【点睛】本题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.21.9cm【分析】先根据题意求出AC、BC、CD、BD的长,再根据线段的和差可得答案.【详解】解:∵线段AB=20cm,点C为AB中点,∴AC=BC=12AB=12×20=10cm,∵点D为BC中点,∴CD=BD=12BC=12×10=5cm,∵CE=25 AC,∴CE=25×10=4cm,∴DE =CD+CE =5+4=9cm ;答:线段DE 长9cm .【点睛】本题考查了线段的和差计算,数形结合是解题的关键.22.(1)AOE ∠,COE ∠(2)AOD ∠(3)67︒【分析】(1)利用角平分线的定义可得AOE COE ∠=∠,COD BOD ∠=∠,结合平角的定义可得90AOE COD COD COE ∠+∠=∠+∠=︒,进而可求解;(2)根据补角的定义可求解;(3)由角平分线的定义可求得BOC ∠的度数,结合平角的定义求解AOC ∠的度数,再利用角平分线的定义可求解.(1)OD 、OE 分别是BOC ∠、AOC ∠的平分线.AOE COE ∴∠=∠,COD BOD ∠=∠,180AOE COE COD BOD ∠+∠+∠+∠=︒ ,90AOE COD COD COE ∴∠+∠=∠+∠=︒,∴图中所有与COD ∠互余的角有AOE ∠,COE ∠,故答案为:AOE ∠,COE ∠;(2)180AOD BOD ∠+∠=︒ ,BOD COD ∠=∠,180AOD COD ∴∠+∠=︒,∴图中与COD ∠互补的角有AOD ∠,故答案为:AOD ∠;(3)OD 是BOC ∠的平分线,23BOD ∠=︒,246BOC BOD ∴∠=∠=︒,180********AOC BOC ∴∠=︒-∠=︒-︒=︒,OE 是AOC ∠的角平分线,1672AOE EOC AOC ∴∠=∠=∠=︒.【点睛】本题主要考查角的计算,角平分线的定义,补角和余角的定义,灵活运用角平分线的定义是解题的关键.23.(1)1000人(2)见解析(3)54°【分析】(1)从两个统计图中可知,选择“D”的人数是400人,占调查人数的40%,根据频率=频数总数可求出调查总人数;(2)求出选择“C”“B”的人数即可补全条形统计图;(3)求出样本中“B”所占的百分比,即可估计总体中“B”所占的百分比,进而求出相应的人数.(1)解:400÷40%=1000(人),答:本次参与调查的乡村居民人数是1000人;(2)解:选择“C”的人数:1000×20%=200(人),选择“B”的人数:1000﹣250﹣400﹣200=150(人),补全的条形统计图如下:(3)解:360°×1501000=54°,答:在扇形统计图中,B 所在的扇形圆心角的度数是54°.24.(1)3a+2b (2)7a+5b (3)45【分析】(1)根据“第二条边比第一条边短2a ﹣b”先求得第二条边长,然后再根据“第三条边是第二条边长的2倍还多a ﹣2b”再求得第三边长即可;(2)根据三角形周长等于三边之和列式,然后去括号,合并同类项进行化简即可;(3)根据绝对值和偶次幂的非负性求得a 和b 的值,然后代入求值即可.(1)解:由题意,第二条边长为:(3a+b )﹣(2a ﹣b )=3a+b ﹣2a+b =a+2b ,∴第三条边长为:2(a+2b )+(a ﹣2b )=2a+4b+a ﹣2b =3a+2b ,答:第三条边长为3a+2b ;(2)解:(3a+b )+(a+2b )+(3a+2b )=3a+b+a+2b+3a+2b =7a+5b ,答:三角形的周长为7a+5b ;(3)解:∵|a ﹣5|+(b ﹣2)2=0,且|a ﹣5|≥0,(b ﹣2)2≥0,∴a ﹣5=0,b ﹣2=0,解得:a﹣5,b=2,∴7a+5b=7×5+5×2=35+10=45,答:这个三角形的周长为45.25.(1)点A对应的数为﹣2,点B对应的数为6(2)﹣3或7(3)第47或7分【分析】(1)根据多项式3m2﹣2m+1中一次项的系数是﹣2,单项式5m2n4的次数是6得到A、B两点表示的数;(2)根据P的位置不同,分三种情况分别求解;(3)分P为AB的中点和B为AP的中点两种情况.(1)解:∵多项式3m2﹣2m+1中一次项的系数是﹣2,∴点A对应的数为﹣2,∵单项式5m2n4的次数是6,∴点B对应的数为6;(2)解:若P在A点左侧,则﹣2﹣x+6﹣x=10,解得x=﹣3;若P在A点、B中间,因为AB=8,故不存在这样的点P;若P在B点右侧,则x﹣(﹣2)+x﹣6=10,解得x=7.故点P对应的数x为﹣3或7;(3)解:设第y分钟时,点B的位置为6+y,点P的位置为4y.①当P为AB的中点时,则6+y﹣4y=4y﹣(﹣2),解得y=4 7;②当B为AP的中点时,则4y﹣(6+y)=6+y﹣(﹣2),解得y=7.故第47或7分钟时,A、B、P三点中,其中一点是另外两点连成的线段的中点.。
沪科版七年级上册数学期末测试卷
沪科版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、生物课题研究小组对附着在物体表面的三个微生物(课题组成员把他们分别标号为1,2,3)的生长情况进行观察记录,这三个微生物第一天各自一分为二,产生新的微生物(依次被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录),那么标号为1000的微生物会出现在()A.第7天B.第8天C.第9天D.第10天2、点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个B.3个C.2个D.1个3、如图,从A到B有3条路径,最短的路径是③,理由是()A.两点之间,线段最短B.两点确定一条直线C.两点间距离的定义 D.因为③是直的4、若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25B.25C.-32D.325、计算:-32+(-3)2的值是( )A.-12B.0C.-18D.186、小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A. B. C.D.7、如图,已知直线,直线分别交、于点、,于点,则图中与互余的角有().A.1个B.2个C.3个D.4个8、下列四个数中,小于0的是()A.-1B.0C.1D.29、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“抗”字所在面相对的面上的汉字是()A.一B.定C.胜D.利10、解方程3x+7=32-2x正确的是()A.x=25B.x=5C.x=39D.11、观察以下一列数的特点:,,,,,,,则第个数是()A. B. C. D.12、我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=2 22=4 23=8 …31=3 32=9 33=27 …新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③13、如果关于的不等式组的解集为,且整数使得关于的二元一次方程组的解为整数(均为整数),则符合条件的所有整数的和是()A. B.2 C.6 D.1014、若6x3m y4与﹣x9y2n是同类项,则m,n的值分别是()A.m=2,n=3B.m=3,n=2C.m=﹣3,n=2D.m=﹣2,n=315、有理数的相反数是()A.2B.C.-2D.二、填空题(共10题,共计30分)16、由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.17、若-3x a-2b y7与2x8y5a+b是同类项,则a=________,b=________.18、已知:,,,,…,根据上面各式的规律,等式中口里应填的数是________.19、我们规定一种运算:,按照这种运算的规定,请解答下列问题:当________时,.20、 ________.21、若(x﹣2)x=1,则x=________.22、-3与a互为倒数,则a等于________.23、的相反数是________.24、如图,在△ABC中,∠A=800,∠ABC与∠ACB的平分线义交于点O,则∠BOC=________度.25、如图,有一根木棒放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5(单位:),则木棒长为________ .三、解答题(共5题,共计25分)26、已知(a+1)2+(2b-3)2+|c-1|=0,求的值.27、数学课上李老师让同学们做一道整式的化简求值题,李老师把整式在黑板上写完后,让一位同学随便给出一组,的值,老师说答案.当刘阳刚说出,的值时,李老师不假思索,立刻说出了答案.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?28、把下列各数在数轴上表示出来,并用“<”连接;﹣(﹣3);﹣|﹣2.5|;0;(﹣1)3;229、完成下面的证明过程:如图,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.求证:BE∥DF.证明:∵AB∥CD,(已知)∴∠ABC+∠C=180°.(________)又∵AD∥BC,(已知)∴________+∠C=180°.(________)∴∠ABC=∠ADC.(________)∵BE平分∠ABC,(已知)∴∠1=∠ABC.(________)同理,∠2=∠ADC.∴________=∠2.∵AD∥BC,(已知)∴∠2=∠3.(________)∴∠1=∠3,∴BE∥DF.(________)30、一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,填写表中空格.点的个数线段的条数2 13 34 65 106 157参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、C5、B6、A7、D8、A9、B10、B11、D12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
(完美版)沪科版七年级上册数学期末测试卷及含答案(考试突破)
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、实数7的相反数是()A. B.- C.-7 D.72、若a=(﹣2)﹣2, b=(﹣2)0, c=(﹣)﹣1,则a、b、c大小关系是()A.a>c>bB.b>a>cC.a>b>cD.c>a>b3、下列说法中:①40°35′=2455′;②如果∠A+∠B=180°,那么∠A与∠B互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为().A.1个B.2个C.3个D.4个4、已知a2+2a-3=0,则代数式2a2+4a-3的值是()A.-3B.0C.3D.65、在-(-2),-|-7|,-|+1|,,中,负数的个数是()A.1个B.2个C.3个D.4个6、如图所示,下列表示角的方法错误的是()A.∠1与∠ AOB表示同一个角B.∠β表示的是∠ BOCC.图中共有三个角:∠ AOB ,∠ AOC ,∠ BOCD.∠ AOC也可用∠ O来表示7、下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)-2xB.x(x+3)+6C.3(x+2)+x 2D.x2+5x8、已知和是同类项,则的值是()A.2B.3C.4D.69、如图,CO⊥AB,垂足为O,∠DOE=90°,下列结论错误的是()A.∠1+∠2=90°B.∠2+∠3=90°C.∠1+∠3=90°D.∠3+∠4=90°10、如图,一棵大树在一次强台风中从离地面5 m处折断倒下,倒下部分与地面成30°角,这棵大树在折断前的高度为( )A.10mB.15mC.25mD.30m11、有理数5的相反数是()A.5B.﹣5C.﹣D.12、下列运算不正确的是( )A. (-3b 2c 3) 2 = -9b 4c 6B. a 5+a 5 = 2a5 C. 2a 2·a -1 = 2a D.(2a 3-a 2)×a 2 = 2a 5-a 413、5的绝对值是()A.5B.C.D.14、对于(﹣3)5,下列说法错误的是()A.(﹣3)5>(﹣5)3B.其结果一定是负数C.其结果与﹣3 5相同D.表示5个﹣3相乘15、如图所示是小刚一天中的作息时间分配的扇形统计图如果小刚希望把自己每天的阅读时间调整为2.5小时,那么他的阅读时间需增加A.48分钟B.60分钟C.90分钟D.105分钟二、填空题(共10题,共计30分)16、用四舍五入法把数字精确到百分位的近似值是________.17、按如图所示的程序计算,如果开始输入的x的值为48,我们发现第一次输出得到的结果为24,第二次输出的结果为12,第三次得到的输出结果为6,……,则第2019次得到的结果为________.18、如图是一个简单的运算程序:,如果输入的x值为-2,则输出的结果为________.19、如图,直线AB,CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为________.20、已知,则________..21、已知a,b互为相反数,m、n互为倒数,|s|=3,求a-mn+b-s的值是________;22、用“=,<,>”填空:0.1________-100;________ .23、一组按一定规律排列的式子:,,,,,…(,为正整数),则第个式子是________.24、据调查,地球海洋面积约为361000000平方千米,请用科学记数法表示该数:________25、计算:= ________三、解答题(共5题,共计25分)26、已知x=是方程6(2x+m)=3m+2的解,求关于y的方程my+2=m(1-2y)的解.27、有这样一道题:“计算的值,其中,”.甲同学把错抄成,但他计算的结果也是正确的.试说明理由,并求出这个结果.28、如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF 的大小.29、已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.30、计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、C6、D7、D8、C9、C10、B11、B12、A13、A14、A15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪科版七年级上册数学期末测试卷及含答案
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列合并同类项中,正确的是()A.3x+2y=6xyB.2a 2+3a 3=5a 3C.3mn﹣3nm=0D.7x﹣5x=22、下列说法中,正确的是()A.若a≠b,则a 2≠b 2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b3、在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,……,这样依次得到点A1, A2, A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为()A.(-3,1)B.(0,-2)C.(3,1)D.(0,4)4、从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的标准差就越大C.样本容量越小,样本平均标准差就越大D.样本容量越大,对总体的估计就越准确5、下列各式是一元一次方程的是()A. B. C. D.6、下列计算正确的是()A. B. C. D.7、下列运算正确的是()A.a 3﹣a 2=aB.(a 2)3=a 5C.a 4•a=a 5D.3x+5y=8xy8、与﹣1的和等于零的数是()A.﹣1B.0C.1D.9、-17的相反数是()A.17B.-17C.D.-10、已知线段AB,以下作图不可能的是()A.在AB上取一点C,使AC=BCB.在AB的延长线上取一点C,使BC=AB C.在BA的延长线上取一点C,使BC=AB D.在BA的延长线上取一点C,使BC=2AB11、的相反数是()A. B.-6 C.6 D.12、在图中,互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…,则第⑥个图形中平行四边形的个数为()个.A.41B.110C.19D.10913、如果与是同类项,那么的值是()A.4B.3C.2D.114、下列方程中,是一元一次方程的是()A. B. C. D.15、定义“*”的运算规则为:a*b=ab+2a,若(3* x)+(x* 3)=14, 则x=( )A.-1B.1C.-2D.2二、填空题(共10题,共计30分)16、规定:,,若m是最小的质数,n是大于100的最小的合数,则________,________;17、若一种零件的直径尺寸为mm.则该种零件的最大直径为________mm,最小直径________mm.18、|x﹣3|+|y+5|=0则x+y=________.19、如图,在第1个中,,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个,…按此做法继续下去,第2021个三角形的底角度数是________.20、将有理数0,,2.7,﹣4,0.14用“<”号连接起来应为________.21、定义:为不为1的有理数,我们把称为的差倒数.如:2的差倒数是,-1的差倒数是.已知, 是的差倒数, 是的差倒数, 是的差倒数,…,以此类推,则________.22、二次函数y=x2的图象如图,点A0位于坐标原点,点A1, A2, A3…An在y轴的正半轴上,点B1, B2, B3…Bn在二次函数位于第一象限的图象上,点C 1, C2, C3…∁n在二次函数位于第二象限的图象上,四边形AB1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAn∁n都是正方形,则正方形An﹣1BnAn∁n的周长为________.23、一组按规律排列的式子:,,,-,,…,其中第7个式子是________,第n个式子是________(用含的n式子表示,n为正整数).24、若x b y4与﹣5x3y4a是同类项,则a﹣b=________.25、已知和的图象交于点,那么关于的二元一次方程组的解是________.三、解答题(共5题,共计25分)26、先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b﹣1),其中a= ,b=1.27、解方程:(1)4x﹣3(5﹣x)=6;(2).28、已知时钟在5点到6点之间,分析时钟的时针与分针成直角时的时间可能是几点几分?29、数、、在数轴上的位置如图所示,化简:.30、在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、B6、D7、C8、C10、C11、D12、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
沪科版七年级上册数学期末测试卷(完整版)
沪科版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、计算a+(-a)的结果是()A.2aB.0C.-a 2D.-2a2、如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=38°,则∠AOD的度数是()A.52°B.90°C.104°D.142°3、下列各对数中,是互为相反数的是()A.+(﹣2)和﹣(+2)B.﹣(﹣2)和﹣2C.+(+2)和﹣(﹣2) D.(﹣2) 3和3 24、下列运算正确的是()A.5a 2+3a 2=8a 4B.a 3•a 4=a 12C.(a+2b)2=a 2+4b 2D.(a-b)(-a-b)=b 2-a 25、某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为()A.2.58×10 7元B.0.258×10 7元C.2.58×10 6元 D.25.8×10 6元6、将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.60567、已知且,则xy的值等于()A.10和-10B.10C.10D.以上答案都不对8、图为在某居民小区中随机调查的10户家庭一年的月均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是()A.6.5,7B.7,6.5C.7,7D.6.5,6.59、下列计算正确的是()A.a 4+a 4=2a 4B.C.(a 4) 3=a 7D.10、﹣7的相反数是()A. B.7 C.﹣ D.﹣711、小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况12、下列四个数中,最大的数是()A.0B.2C.﹣3D.413、下列结论正确的是()A.有理数包括正数和负数B.无限不循环小数叫做无理数C.0除以任何数都得0 D.两个有理数的和一定大于每一个加数14、已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°15、下列各式正确的是()A.﹣8+5=3B.(﹣2) 3 =6C.﹣2﹣1=﹣1D.(﹣2) 2 =4二、填空题(共10题,共计30分)16、如果﹣x m y与2x2y n+1是同类项,则m=________,n=________.17、若多项式与多项式相加后不含二次项,则的值为________.18、把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数为________.19、一项工程,甲单独做4天能完成工程的,那么甲的工作效率是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab沪科版七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】; A .-1; B .-2 ; C .-3 ; D .-4;(思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ;C .a -<b <b -<a ;D .b -<a <b <a -;6、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .B .C .D .7、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则= ;三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)8、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1; C .1-与1; D .-12与1;四、倒数 :(互为倒数的两数的积为1)9、-3的倒数是________;0ab >0a b +<1a b <0a b -<c b c a +--B 0 2 A-1图3ao cb 图3五、绝对值(|a|≥0,即非负数;化简|a+b|类式子时关键看a+b的符号;如果|a|=b,则a=±b)10、2-等于();A.-2 ; B.12- ; C.2 ; D.12;11、若ab≠0,则等式a b a b+=+成立的条件是______________;12、若有理数a, b满足(a-1)2+|b+3|=0, 则a-b= ;13、有理数a、b、c在数轴上的位置如图所示,化简的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a2的区别;(-1)奇与(-1)偶的区别]14、下列计算中正确的是();A.532aaa=+ ; B.22aa-=- ; C.33)(aa=- ; D.22)(aa--;七、科学计数法(表示形式a×10n)16、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)17、由四舍五入法得到的近似数,下列说法中正确的是【】;A.精确到十分位 ; B.精确到个位;C.精确到百位; D.精确到千位;18、下面说法中错误的是();A.368万精确到万位; B.2.58精确到百分位;C.0.0450有精确到千分位; D.10000精确到万位表示为“1万”或“1×104”;cbcaba-+--+3108.8×九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)19、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12](3)(4)(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:20、已知2,3==b a ,则b a +的值为__________ 21、绝对值大于6小于13的所有负整数的和是__________ 22、45-的底数是________,它表示________________________;)23(24)32(412)3(22---×++÷÷24)75.337811()1()21(25.032×++×÷----23、下列说法正确的是( )A 、正数和负数互为相反数B 、数轴上,原点两旁的两个点所表示的数是互为相反数C 、除0外的数都有它的相反数D 、任何一个数都有它的相反数24、下列说,其中正确的个数为( ); ①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个 ; B .2个 ; C .3个 ; D .4个;25、a 是绝对值最小的有理数,b 是最小的正数,c 的相反数是它本身,d 的倒数等于它本身,且为负数。
求d c b a -++的值。
26、出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km )如下:-2,+5,-1,+1,-6,-2,问: (1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为 0.21L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km (包括3km ),超过部分每千米1.2元,问小李这天上午共得车费多少元?第二章、整式的加减一、单项式与多项式的定义、项、系数、次数、升降幂排列:1、多项式3x 2-2xy 3-21y -1是( ); A .三次四项式 ; B .三次三项式 ; C .四次四项式; D .四次三项式;2、单项式12-xy 2的系数是_________;3、下列结论中,正确的是( );A .单项式732xy 的系数是3,次数是2 ; B .单项式m 的次数是1,没有系数;C .单项式z xy 2-的系数是1-,次数是4 ; D .多项式322++xy x 是三次三项式;4、请写出一个系数为5,且含有x 、y 两个字母的三次单项式 ;5、下列式子中是单项式的是( ); A .2x 2-3x-1 ;B . ;C .; D .;6、若单项式1275+n y ax 与457y ax m -的差仍是单项式,则m-2n=_____.二、同类项:7、下面不是同类项的是( ); A .-2与21; B .2m 与2n; C .b a 22-与b a 2; D .22y x -与2221y x ;8、下列各组单项式中,为同类项的是( ); A .a 3与a 2; B .12a 2与2a 2; C .2xy 与2x ; D .-3与a; 9、若-2X m+1y 2与3x 3y n-1是同类项,则m+n 的值( ); A. 3 ; b. 4 ; C. 5 ; D. 6;10、若-5a n b n-1与是同类项,则(-n )m的值为( );三、整式的化简与求值:11、先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.32y x 37-zxy2)y x (212-21m b a 31+12、化简的结果是【 】; A . ; B .; C . ; D .;13、先化简再求值:,其中,;14、先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x=21.四、综合应用:15、多项式223368x kxy y xy --+-不含xy 项,则k = ; 16、已知:22321A x xy x =+--,21B x xy =-+-(1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。
17、已知()0212=++-y x ,求()()16322222++--y x xyxyy x 的值.18、小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示. 根据图中的数据(单位:m ),解答下列问题:1)写出用含、的代数式表示地面总面积;2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍铺1m 2地砖的平均费用为80元,求铺地砖的总费用)3232)21(x --x (+317+x -315+x -6115x --6115+x -)2(3)2(4)2(2)2(522b a b a -b a -b a +++++21=a 9=b x y 3 226卧 室 卫生间厨 房客 厅第三章一次方程(组)一、一元一次方程的定义:1、下列方程为一元一次方程的是( )A .y +3= 0 ;B .x +2y =3 ;C .x 2=2x ; D .21=+y y; 2、若方程(a -1)x a-2=3是关于x 的一元一次方程,则a 的值为_______;3、若(m+3)x︱m ︱-2+2=1是关于x 的一元一次方程,则m 的值为 .;二、方程的解:4、若x =3是方程a -x =7的解,则a 的值是( ); A .4 ; B .7 ; C .10 ; D .73; 5、请你写出一个解为x =2的一元一次方程 ; 6、若x=-2是方程3x-4m=2的解,则m 的值为( ) A .1; B .-1; C .2; D .-2;三、方程的解法:7、在解方程123123x x -+-=时,去分母正确的是( ); A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1C .3(x -1)+2(2+3x )=6D .3(x -1)-2(2x +3)=6 8、解下列方程:(1)231x x -=+ (2)13312x x --=-9、解方程:(1)513x +-216x -=1. (2)13421+=-x x (3)0.10.20.02x --10.5x += 3.四、列方程解应用题:10、甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程( );A .98+x =x -3;B .98-x =x -3;C .(98-x )+3=x ;D .(98-x )+3=x -3; 11、如图4,宽为50cm 的长方形图案由10个大小相等的小 长方形拼成,其中一个小长方形的面积为【 】;A.4000cm 2 ;B. 600cm 2 ;C. 500cm 2 ;D. 400cm 2; 12、一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ); A .(1+50%)x ×80%=x -28 ; B .(1+50%)x ×80%=x +28; C .(1+50%x)×80%=x -28 ; D .(1+50%x)×80%=x +28;13、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ); A .32428-=x x ; B .32428+=x x ; C .3262262+-=+x x ; D .3262262-+=-x x ; 14、某商店将某种超级VCD 按进价提高35%,然后打出“九折酬宾,外送50元出租费的广告”,结果每台VCD 仍获利208元,那么每台VCD 的进价是 元;15、某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他( ); A.不赚不赔 ; B.赔12元; C.赔18元; D.赚18元;五、综合应用:1、方程2432-=+--m x m m )(是关于x 的一元一次方程。