高中物理万有引力与航天模拟试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力与航天模拟试题
一、高中物理精讲专题测试万有引力与航天
1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:
(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R
m
-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】
(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l
在最高点:2
22mv F mg l += ① 在最低点:2
11mv F mg l
-= ② 由机械能守恒定律,得
221211222
mv mg l mv =⋅+ ③ 由①②③,解得1
2
6F F g m
-= (2)
2
GMm
mg R
= 2GMm R =2
mv R
两式联立得:12()6F F R
m
-
(3)在星球表面:2
GMm
mg R = ④ 星球密度:M
V
ρ=
⑤ 由④⑤,解得12
8F F GmR
ρπ-=
点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.
2.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3
μ=
,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11
226.6710
N?m /kg G -=⨯,求(计算结果均保留一位有效数字)
(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】2
6/g m s =,
【解析】 【分析】 【详解】
(1)对物块受力分析如图所示;
假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:
2
11111sin 02
F s fs mgs mv θ--=- N mgcos θ=
f N μ=
小物块在力F 2作用过程中有:
222221
sin 02
F s fs mgs mv θ---=-
由题图可知:1122156?
3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:
,则:
,
,
代入数据得
3.地球同步卫星,在通讯、导航等方面起到重要作用。已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;
(2)同步卫星距离地面的高度h 。
【答案】(1) (2)
【解析】 【详解】
(1)地球表面的物体受到的重力等于万有引力,即:mg=G
解得地球质量为:M=
;
(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有
引力提供向心力,由牛顿第二定律得:
解得:;
【点睛】
本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.
4.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)
(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T
(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)0
2A T π
ω=(2)3
2B r T GM
π
=(3)03
t GM r ω∆=
- 【解析】 【分析】 【详解】
(1)A 的周期与地球自转周期相同 0
2A T π
ω=
(2)设B 的质量为m , 对B 由牛顿定律:
2
2
2()B
GMm m r r T π= 解得: 3
2B r T GM
π
= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:
03
t GM r ω∆=
- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.
5.我国预计于2022年建成自己的空间站。假设未来我国空间站绕地球做匀速圆周运动时离地面的高度为同步卫星离地面高度的,已知同步卫星到地面的距离为地球半径的6倍,地球的半径为R ,地球表面的重力加速度为g 。求: (1)空间站做匀速圆周运动的线速度大小;
(2)同步卫星做圆周运动和空间站做圆周运动的周期之比。