新人教版九年级数学上册第24章试卷及 答案解析

合集下载

九年级数学上册第二十四章圆测试卷1新人教版附答案

九年级数学上册第二十四章圆测试卷1新人教版附答案

九年级数学上册第二十四章圆测试卷1新人教版附答案一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm25.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm26.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm27.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.1410.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.312.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm218.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为cm2(结果用含π的式子表示).21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为cm2.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是度.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为cm.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是cm.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是cm.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是.参考答案与试题解析一、选择题1.用圆心角为120°,半径6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.3cm C.4cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.2.如图,边长为40cm的等边三角形硬纸片,小明剪下与边BC相切的扇形AEF,切点为D,点E、F分别在AB、AC上,做成圆锥形圣诞帽,(重叠部分忽略不计),则圆锥形圣诞帽的底面圆形半径是()A.cm B.cm C.cm D.cm【考点】圆锥的计算.【专题】计算题.【分析】连结AD,如图,根据切线的性质得AD⊥BC,再根据等边三角形的性质得∠BAC=∠B=60°,BD=BC=20,所以AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,再解方程即可.【解答】解:连结AD,如图,∵边BC相切于扇形AEF,切点为D,∴AD⊥BC,∵△ABC为等边三角形,∴∠BAC=∠B=60°,BD=BC=×40=20,∴AD=BD=20,设圆锥形圣诞帽的底面圆形半径为rcm,∴2πr=,解得r=(cm),即圆锥形圣诞帽的底面圆形半径为cm.故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A.cmB.2cm C.3cm D.4cm【考点】圆锥的计算.【分析】先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.4.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.5.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【考点】圆锥的计算.【专题】计算题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.【点评】由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.6.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm2【考点】圆锥的计算.【专题】数形结合.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的侧面积=2π×2×5÷2=10π.故选:B.【点评】本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【考点】圆锥的计算.【专题】计算题.【分析】圆锥的母线长=圆锥的底面周长×.【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选:D.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5B.12C.13D.14【考点】圆锥的计算.【专题】几何图形问题.【分析】首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【解答】解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.【点评】此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.10.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15πB.20πC.24πD.30π【考点】圆锥的计算;简单几何体的三视图.【专题】计算题.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=•5•2π•3=15π.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3【考点】圆锥的计算.【专题】计算题.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.【解答】解:设圆锥的底面半径是r,半径为6的半圆的弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选:D.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.12.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:此圆锥的侧面积=•4•2π•2=8π.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.一个立体图形的三视图如图,根据图中数据求得这个立体图形的侧面积为()A.12πB.15πC.18πD.24π【考点】圆锥的计算;由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为3,高为4,故母线长为5,据此可以求得其侧面积.【解答】解:由三视图可知圆锥的底面半径为3,高为4,所以母线长为5,所以侧面积为πrl=3×5π=15π,故选:B.【点评】本题主要考查了由三视图确定几何体和求圆锥的侧面积.牢记公式是解题的关键,难度不大.14.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π【考点】圆锥的计算.【专题】计算题.【分析】根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:圆锥的侧面积=•2π•2•3=6π.故选:B.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.【解答】解:设底面圆的半径为r,则:2πr==π.∴r=,∴圆锥的底面周长为,故选:B.【点评】本题考查的是弧长的计算,利用弧长公式求出弧长,然后根据扇形弧长与圆锥底面半径的关系求出底面圆的半径.16.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.【考点】圆锥的计算.【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.【解答】解:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为=,故选:D.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】圆锥的计算;由三视图判断几何体.【专题】几何图形问题.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵半径为1,圆锥母线长为4,∴侧面积=2πrR÷2=2π×1×4÷2=4π;故选:B.【点评】本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.18.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π【考点】圆锥的计算.【专题】计算题.【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故选:C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.二、填空题19.一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15π.【考点】圆锥的计算.【专题】计算题.【分析】根据图中数据得到圆锥的高为4,底面圆的半径为3,则根据勾股定理计算出母线长为5,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的母线长==5,所以该圆锥形漏斗的侧面积=•2π•3•5=15π.故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.20.在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为20πcm2(结果用含π的式子表示).【考点】圆锥的计算;点、线、面、体;勾股定理的逆定理.【分析】易得此几何体为圆锥,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在△ABC中,AB=3,BC=4,AC=5,∴△ABC为直角三角形,∴底面周长=8π,侧面积=×8π×5=20πcm2.故答案为:20π.【点评】本题考查了圆锥的计算,以及勾股定理的逆定理,利用圆的周长公式和扇形面积公式求解.21.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.22.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面积=π×6×10=60πcm2.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.23.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.【考点】圆锥的计算.【专题】计算题.【分析】利用底面周长=展开图的弧长可得.【解答】解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为:120.【点评】考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.24.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于24π.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×8÷2=24π,故答案为:24π.【点评】本题考查圆锥的侧面积的求法,牢记公式是解答本题的关键,难度不大.25.若圆锥的侧面展开图的弧长为24πcm,则此圆锥底面的半径为12cm.【考点】圆锥的计算.【分析】利用扇形的弧长等于圆锥的底面周长列出等式求得圆锥的底面半径即可.【解答】解:设圆锥的底面半径为r,∵圆锥的侧面展开图的弧长为24πcm,∴2πr=24π,解得:r=12,故答案为:12.【点评】本题考查了圆锥的计算,解题的关键是牢记扇形的弧长等于圆锥的底面周长.26.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为4.【考点】圆锥的计算.【专题】计算题.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:∵扇形的弧长==8π,∴圆锥的底面半径为8π÷2π=4.故答案为:4.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.27.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为π.【考点】圆锥的计算.【分析】根据圆锥的底面周长即为圆锥的侧面展开扇形的弧长求解.【解答】解:圆锥的底面圆的周长=π,故答案为:π.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.28.如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是2cm.【考点】圆锥的计算.【专题】几何图形问题.【分析】易求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.【点评】考查了扇形的弧长公式,圆的周长公式,用到的知识点为:圆锥的弧长等于底面周长.29.用圆心角是216°,半径是5cm的扇形围成一个圆锥体的侧面(接缝处不重叠),则这个圆锥体的高是4cm.【考点】圆锥的计算.【分析】设圆锥底面的圆的半径为r,利用圆锥的侧面展开图为一扇形得到2πr=,解得r=3,然后根据勾股定理计算这个圆锥的高.【解答】解:设圆锥底面的圆的半径为r,根据题意得2πr=,解得r=3,所以这个圆锥的高==4(cm).故答案为:4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.【解答】解:∵轴截面是一个边长为4的等边三角形,∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为:180°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。

2023-2024学年第一学期人教版九年级数学上册第24章复习测试卷附答案

2023-2024学年第一学期人教版九年级数学上册第24章复习测试卷附答案

2023-2024学年第一学期九年级数学上册第24章【圆】复习测试卷一、选择题:1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,不能选择的是()A.①B.②C.③D.④2.如图,⊙O 的半径长为10cm,弦AB=16cm,则圆心O 到弦AB 的距离为()A.4cm B.5cm C.6cmD.7cm 3.如图所示,已知四边形ABDC 是圆内接四边形,∠1=112°,则∠CDE=()A.56°B.68°C.66°D.58°4.如图,AB 与⊙O 相切于点A,BO 与⊙O 相交于点C,点D 是优弧AC 上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°5.如图,O 是锐角三角形ABC 的外接圆,OD AB OE BC OF AC ⊥⊥⊥,,,垂足分别为D,E,F,连接DE,EF,FD.若 6.5DE DF ABC += ,的周长为21,则EF 的长为()A.8B.4C.3.5D.36.如图,⊙O 是四边形ABCD 的内切圆,切点依次是E、F、G、H,下列结论一定正确的有()个①AF=BG ②CG=CH ③AB+CD=AD+BC ④BG<CG.A.1B.2C.3D.47.一个长为4cm,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板左上角一点A 位置的变化为A→A 1→A 2,其中第二次翻滚被面上一小木块挡住,使木板与桌面成30°的角,则点A 滚到A 2位置时共走过的路径长为()A.7π2cm B.23π6cm C.4π3cm D.5π2cm 8.如图,O 是ABC 的外接圆,弦BD 交AC 于点E,AE DE =,BC CE =,过点O 作OF AC ⊥于点F,延长FO 交BE 于点G,若3DE =,2EG =,则AB 的长为()A.43B.7C.8D.459.如图,AB 是O 的直径,弦CD 与AB 垂直,垂足为点E,连接OC 并延长交O 于点F ,30CDB ∠=︒,3CD =,则图中阴影部分的面积为()A.π332-B.2π33C.4π33-D.2π23-二、填空题:10.已知正六边形的边心距为32,则这个正六边形的周长为.11.点P 到O 上一点A 的距离PA 的最大值是18cm ,PA 的最小值为8cm ,则O的半径为.12.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:1.732π≈,取3.142)13.如图,在O 中,直径AB 与弦CD 交于点 2E AC BD=,.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.14.如图,Rt ABC 中,60C ∠=︒,斜边4BC =,以边AB 为直径在ABC 另一侧作半圆,点P 为半圆上一点,将半圆沿AP 所在直线翻折,翻折后的AP 与BC 边相切于点D ,与AB 边相交于点E ,则BE 的长为.15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于.三、解答题:16.如图,在⊙O 中,弦AB、CD 的延长线交于点P,且DA=DP.求证:BC=BP.17.如图,边长为1的正方形ABCD 的边AB 是⊙O 的直径,CF 是⊙O 的切线,E 为切点,F 点在AD 上,BE 是⊙O 的弦,求△CDF 的面积.18.已知O 的直径为10,四边形ABDC 内接于O ,AD 平分CAB ∠.(1)如图1,若BC 为O 的直径,求BD 的长;(2)如图2,若120BDC ∠=︒,求BD 的长.19.如图,已知AC 是⊙O 的直径,B 为⊙O 上一点,D 为 BC的中点,过D 作EF∥BC 交AB 的延长线于点E,交AC 的延长线于点F.(Ⅰ)求证:EF 为⊙O 的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求 BC 的长.20.如图,等边三角形ABC 内接于O ,D 是 BC上一动点,连接AD ,BD ,CD ,延长DC 到点E ,使CE BD =,连接AE .(1)求证:ADE 是等边三角形;(2)填空:①若1BD =,2CD =,则AD 的长为;②当BAD ∠的度数为时,四边形OBDC 为菱形.参考答案:1.C 2.C 3.A 4.C 5.B 6.B 7.B 8.B 9.B 10.611.5cm 或13cm12.1513.6614.3-15.5π16.证明:∵DA=DP,∴∠P=∠A.又∵∠C=∠A,∴∠P=∠C.∴BC=BP.17.解:设AF=x,∵四边形ABCD 是正方形,∴∠DAB=90°,∴DA⊥AB,∴AD 是圆的切线,∵CF 是⊙O 的切线,E 为切点,∴EF=AF=x,∴FD=1﹣x,∴CF=CE+EF=CB+EF=1+x.∴在Rt△CDF 中由勾股定理得到:CF 2=CD 2+DF 2,即(1+x)2=1+(1﹣x)2,解得x=14,∴DF=1﹣x=34,∴S △CDF =12×1×34=38.18.(1)解:∵AD 平分CAB ∠,∴CAD BAD ∠=∠,∴ CD BD =,∴CD BD =,∵BC 为O 的直径,O 的直径为10,∴1090BC BDC ∠==︒,,∴BDC 为等腰直角三角形,∴2BD BC ==;(2)解:如图所示,连接OB OD ,,∵四边形ABDC 内接于O ,120BDC ∠=︒,∴18060BAC BDC ∠=︒-∠=︒,∵AD 平分CAB ∠,∴1302CAD BAD BAC ∠=∠=∠=︒,∴260BOD BAD ∠=∠=︒,又∵OB OD =,∴BOD 是等边三角形,∴11052BD OB ==⨯=.19.解:(1)连接OD,OB,∵D 为BC 的中点,∴∠BOD=∠COD,∵OB=OC,∴OD⊥BC,∴∠OGC=90°,∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD 是⊙O 的半径,∴EF 是⊙O 的切线;(2)∵四边形ABDC 是⊙O 的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A=60°,∵OA=OB,∴△OAB 等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴EC=12024=1803ππ⨯⨯20.(1)证明:∵△ABC 是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵∠CBD 与∠CAD 是 CD 所对的圆周角,∴∠CBD=∠CAD,同理可得:∠ABC=∠ADC=60°,∵∠ACE=∠CAD+∠ADC,∴∠ACE=∠ABC+∠CBD=∠ABD,在△ABD 和△ACE 中,AB ACABD ACE BD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE,∴AD=AE,∴△ADE 是等边三角形(2)8;30°①∵BD=CE=1,DE=CD+CE,CD=2,∴DE=3,∵△ADE 是等边三角形,∴AD=DE=3.故答案为:3;②如图,连接OB、OC,∵∠BAC 和∠BOC 分别是 BC 所对的圆周角和圆心角,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OCB=30°,∵四边形OBDC 为菱形,∵∠BAD和∠BCD都是 BD所对的圆周角,∴∠BAD=∠BCD=30°,的度数为30°时,四边形OBDC为菱形.∴当BAD故答案为:30°。

人教版数学九年级上册第24章《圆》单元培优练习题卷(含解析)

人教版数学九年级上册第24章《圆》单元培优练习题卷(含解析)

《圆》单元培优练习卷一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A.2 B.3 C.6 D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4πB.2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.7.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BAC=∠BOD,则⊙O 的半径为()A.4B.8 C.10 D.68.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.59.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若AC=6,则图中阴影部分的面积是()A.2π﹣3B.2π+3C.π﹣D.π+11.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°12.如图,四边形ABCD中,CD∥AB,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D,点B在⊙O上,连接BD,若DE=4,则BD的长为()A.4 B.4C.8 D.813.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接P D,BC=6,DP =4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=42°,则∠CAD=16.如图,在Rt△ABC中,∠C=90°,∠B=30°,其中AC=2,以AC为直径的⊙O交AB 于点D,则圆周角∠A所对的弧长为(用含π的代数式表示)17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为.18.如图,在边长为2的菱形ABCD中,∠B=45°,以点A为圆心的扇形FAG与菱形的边BC相切于点E,则图中的弧长是.19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.23.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.参考答案一.选择题1.解:设扇形的半径为r.由题意:=6π,∴r2=36,∵r>0,∴r=6,故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:∵四边形ABCD为圆O的内接四边形,∴∠B+∠D=180°,∵∠B=135°,∴∠D=45°,∵∠AOC=2∠D,∴∠AOC=90°,则l==2π,故选:B.5.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.6.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.7.解:∵∠BAC=∠BOD,∴,∴AB⊥CD,∵AE=CD=16,∴DE=CD=8,设OD=r,则OE=AE﹣r=16﹣r,在Rt△ODE中,OD=r,DE=8,OE=16﹣r,∵OD2=DE2+OE2,即r2=82+(16﹣r)2,解得r=10.故选:C.8.解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.9.解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.10.解:∵在菱形ABCD中,AC与BD交于点O,BD=CD,AC=6,∴AC⊥BD,OC=3,BD=CD=BC,BD=2OB,∴△BCD是等边三角形,∴∠BDC=60°,OB=,∴BD=2,∴图中阴影部分的面积是:S阴=S扇形CDB﹣S△CDB=﹣×2×3=2π﹣3,故选:A.11.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.12.解:如图,连接OD,设⊙O的半径为r,∵⊙O与边CD相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ADE=90°,∴∠ODA+∠ODE=90°,∴∠ODA=∠3,而∠ODA=∠1,∴∠1=∠3,∵ED=EC=4,∴∠2=∠3,∴∠1=∠2,∵AB∥CD,∴∠2=∠CAB,∴∠1=∠CAB∴=,∴AE⊥BD,∵∠1=∠2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠DEF=∠AED,∠DFE=∠ADE,∴△EDF∽△EAD,∴DE:EA=EF:DE,即4:2r=(r﹣2):4,整理得r2﹣2r﹣8=0,解得r=﹣2(舍去)或r=4,∴EF=r﹣2=2,在Rt△DEF中,DF==2,∴DB=2DF=4.故选:B.二.填空题(共6小题)13.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连接OC,OD,如图所示.∵∠CAB=42°,∴∠COB=84°.∵=,∴∠COD=(180°﹣∠COB)=48°,∴∠CAD=∠COD=24°.故答案为:24°.16.解:连接OD,在Rt△ABC中,∠C=90°,∠B=30°,∴∠A=60°,∴∠COD=2∠A=120°,∵AC=2,∴圆周角∠A所对的弧长为:=,故答案为:.17.解:如图,连接OF.S阴=(S扇形OFC﹣S△OFC)+(S△ABC﹣S△OFC﹣S扇形OBF)=﹣•×+×2×﹣××﹣=﹣+﹣=+,故答案为: +.18.解:连接AE,如图,∵以点A为圆心的扇形FAG与菱形的边BC相切于点E,∴AE⊥BC,在Rt△ABE中,∵AB=2,∠B=45°,∴∠BAE=45°,AE=AB=×2=2,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAE=∠BEA=90°,∴的弧长==π.故答案为π.三.解答题(共6小题)19.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PF,FC,FO并延长交⊙O于G,则∠G=∠ACF,∠G+∠PFG=90°,∵AF是⊙O的切线,∴∠AFG+∠PFG=90°,∴∠AFP=∠G=∠ACF,∵∠FAP=∠A CF,∴△AFP∽△ACF,∴=,∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ABO∽△AOE,∴,∴=,∴AE=3.22.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.23.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.24.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠A DO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.。

人教版九年级上册第24章数学圆单元测试卷(含答案)(6)

人教版九年级上册第24章数学圆单元测试卷(含答案)(6)

人教版九年级上册第24章数学圆单元测试卷(含答案)(6)一、选择题(每题3分,共30分) 1.下列说法中不正确的是( )A .圆是轴对称图形B .三点确定一个圆C .半径相等的两个圆是等圆D .每个圆都有无数条对称轴2.若⊙O 的面积为25π,在同一平面内有一个点P ,且点P 到圆心O 的距离为4.9,则点P 与⊙O 的位置关系为( ) A .点P 在⊙O 外 B .点P 在⊙O 上 C .点P 在⊙O 内D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°(第3题) (第4题) (第5题) (第6题)4.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为点N ,则ON =( ) A .5B .7C .9D .115.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( ) A .1<r <4B .2<r <4C .1<r <8D .2<r <86.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为( ) A .45°B .50°C .55°D .60°7.如图,⊙O 与矩形ABCD 的边相切于点E ,F ,G ,点P 是EFG ︵上一点,则∠P的度数是( )A .45°B .60°C .30°D .无法确定8.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( ) A.π3B.3π3C.2π3D .π(第7题) (第8题) (第10题)9.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( ) A .60°B .90°C .120°D .180°10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( ) A.24329B.81329C.8129D.81328二、填空题(每题3分,共30分)11.如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4∶3∶5,则∠D 的度数是________.(第11题) (第12题) (第13题) (第14题)12.如图,PA ,PB 是⊙O 的切线,切点分别为A ,B ,若OA =2,∠P =60°,则AB︵的长为________.13.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为________.14.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC=110°.连接AC ,则∠A 的度数是________.15.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过________mm.16.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°. 17.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为________.(第16题) (第17题) (第18题) (第19题)18.如图,AC ⊥BC ,AC =BC =4,以BC 长为直径作半圆,圆心为点O .以点C 为圆心,BC 长为半径作弧AB ,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是________.19.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径是7,则GE +F H 的最大值是________.(第20题)20.如图所示,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________.(填序号)三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分)21.如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD . (1)求证:BC =BD ;(2)已知CD =6,O H =2,求圆O 的半径长.(第21题)22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=25,OA=5,求⊙O的半径.(第23题)24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=43,OA=4,求阴影部分的面积.(第24题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第25题)26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数;(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.(第26题)答案一、1.B 2.C 3.B 4.A 5.B 6.B7.A 点拨:连接OE ,OG ,易得OE ⊥AB ,OG ⊥AD .∵四边形ABCD 是矩形,∴∠A =90°,∴∠EOG =90°,∴∠P =12∠EOG =45°.8.B 点拨:∵∠ACB =90°,∠ABC =30°,AB =2,∴AC =12AB =1.∴BC =AB 2-AC 2=22-12= 3.∴点B 转过的路径长为60π·3180=3π3.9.C10.D 点拨:∵正六边形A 1B 1C 1D 1E 1F 1的边长为2=(3)1-121-2,∴正六边形A 2B 2C 2D 2E 2F 2的外接圆的半径为3,则正六边形A 2B 2C 2D 2E 2F 2的边长为3=(3)2-122-2,同理,正六边形A 3B 3C 3D 3E 3F 3的边长为32=(3)3-123-2,…,正六边形A n B n C n D n E n F n 的边长为(3)n -12n -2,则当n =10时,正六边形A 10B 10C 10D 10E 10F 10的边长为(3)10-1210-2=(3)8·328=34·328=81328,故选D. 二、11.120° 12.43π 13.65° 14.35° 15.1216.215 点拨:∵A ,B ,C ,D 四点共圆,∴∠B +∠ADC =180°.又∵A ,C ,D ,E 四点共圆,∴∠E +∠ACD =180°.∴∠ACD +∠ADC +∠B +∠E =360°.∵∠ACD +∠ADC =180°-35°=145°,∴∠B +∠E =360°-145°=215°. 17.15π 18.53π-23 19.10.520.①②④ 点拨:连接OM ,ON ,易证Rt △OMC ≌Rt △OND .可得MC =ND ,故①正确.在Rt △MOC 中,CO =12MO .得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以A M ︵=M N ︵=NB ︵.故②正确.易得CD =12AB =OA =OM ,因为MC <OM ,所以MC <CD .所以四边形MCDN 不是正方形.故③错误.易得MN =CD =12AB ,故④正确.三、21.(1)证明:∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,∴BC ︵=BD ︵,∴BC =BD .(第21题)(2)解:如图,连接OC .∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,CD =6, ∴CH =3,∴OC =OH 2+CH 2=22+32=13,即圆O 的半径长为13.22.解:设经过A ,B 两点的直线对应的函数解析式为y =kx +b .∵A (2,3),B (-3,-7), ∴⎩⎨⎧2k +b =3,-3k +b =-7.解得⎩⎨⎧k =2,b =-1.∴经过A ,B 两点的直线对应的函数解析式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C (5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线上.∴平面直角坐标系内的三个点A (2,3),B (-3,-7),C (5,11)可以确定一个圆.23.(1)证明:如图,连接OB .∵OA ⊥l , ∴∠PAC =90°, ∴∠APC +∠ACP =90°. ∵AB =AC ,OB =OP ,∴∠ABC =∠ACB ,∠OBP =∠OPB . ∵∠BPO =∠APC ,∴∠ABC +∠OBP =90°,即∠OBA =90°, ∴OB ⊥AB , ∴AB 是⊙O 的切线.(第23题)(2)解:设⊙O 的半径为r ,则AP =5-r ,OB =r . 在Rt △OBA 中,AB 2=OA 2-OB 2=52-r 2, 在Rt △APC 中,AC 2=PC 2-AP 2=(25)2-(5-r )2. ∵AB =AC ,∴52-r 2=(25)2-(5-r )2, 解得r =3,即⊙O 的半径为3. 24.(1)证明:连接OC .∵AB 与⊙O 相切于点C , ∴OC ⊥AB . ∵CD =CE , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠ACO =∠BCO =90°,∴△AOC ≌△BOC ,∴OA =OB .(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =2 3.∵OB =OA =4,且△OCB 是直角三角形,∴根据勾股定理,得OC =OB 2-BC 2=2,∴OC =12OB ,∴∠B =30°, ∴∠BOC =60°.∴S 阴影=S △BOC -S 扇形COE =12×2×23-60π×22360=23-23π. 25.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交⊙E 于点C ,连接AE , 则CF =20米.由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40米.设圆的半径是r ,由勾股定理,得AE 2=AF 2+EF 2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50米.∴桥拱的半径为50米.(第25题)(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=E M2-D M2=502-302=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)①AE=OD.理由如下:如图,连接OE.∵OC=OA,CD=OA,∴OC=CD,∴∠COD=∠CDO.∵AE∥OC,∴∠EAD=∠COD,∴∠EAD=∠CDO,∴AE=DE.∵OA=OE,OC=CD,∴∠DOE=2∠EAD,∠OCE=2∠CDO,∴∠DOE=∠OCE.∵OC=OE,∴∠DEO=∠OCE,∴∠DOE=∠DEO,∴OD=DE,∴AE=OD.②由①得,∠DOE=∠DEO=2∠ODC. ∵∠DOE+∠DEO+∠ODC=180°,∴2∠ODC+2∠ODC+∠ODC=180°,∴∠ODC=36°.(第26题)人教版数学九年级上册第二十四章《圆》培优单元测试卷(含解析)一.选择题1.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE=3,则EG的长为()A.B.C.D.9.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.B.πC.50 D.50π10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,C D=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.(1)求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长.参考答案一.选择题1.解:圆锥的侧面积=×2π×1×3=3π,故选:B .2.解:连接OD ,交CB 于点F ,连接BD ,∵=,∴∠DBC =∠ABC =30°,∴∠ABD =60°,∵OB =OD ,∴△OBD 是等边三角形,∴OD ⊥FB ,∴OF =DF ,∴BF ∥DE ,∴OB =BE =6∴CF =FB =OB •cos30°=6×=3,在Rt △POD 中,OF =DF ,∴PF =DO =3(直角三角形斜边上的中线,等于斜边的一半),∴CP =CF ﹣PF =3﹣3. 故选:B .3.解:∵ABCDEF 为正六边形,∴∠COB =360°×=60°,∴△OBC 是等边三角形,∴OB =OC =BC =6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠OAB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:圆锥的侧面积=•5•5=.故选:A.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,=﹣=﹣=18π.∴S阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD =1,∴四边形ODCE 和四边形ABEO 都是正方形,∴BE =1,∠DOE =∠BEO =90°∵∠BFE =∠DFO , OD =BE ,∴△ODF ≌△EBF (AAS ),∴S △ODF =S △EBF ,∴阴影部分的面积=S 扇形EOD ==.故选:C .二.填空题(共6小题)13.解:∵圆锥的底面圆的周长是5πcm ,∴圆锥的侧面展开扇形的弧长为5πcm ,∴=5π,解得:n =150故答案为150°.14.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.15.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,O A⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最大,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OA=OB=8,∵AB是直径,∴∠APB=90°,∴AB长度的最大值为16,故答案为16.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵O C∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积=﹣2×1=﹣23.证明:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.(2)证明:连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.24.(1)解:∵AB是⊙O的直径,∴∠ADB=90°,∵DH⊥AB,∴∠DHA=∠ADB=90°,又∵∠DAB=∠HAD,∴△DAB∽△HAD,∴=即=,∴AH=3.6.(2)证明:∵=,∴∠DAC=∠DBA,∵DH⊥AB,∴∠FDE+∠B=90°,∵∠ADB=90°,∴∠DEF+∠DAC=90°,∴∠DEF=∠DEF,∴DF=EF.25.(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC.(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE,∵OC=OE,∴∠BCE=∠OEC,∴∠DCE=∠OEC,∴OE∥CD,∴△POE∽△PCD,∴=,∵PB=BO,DE=2∴PB=BO=OC∴==,∴=,∴PE=4.人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)一.选择题1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4 C.2D.4.83.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.点到直线的距离就是点到直线的垂线段D.过三点确定一个圆4.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.如图,已知钝角△ABC内接于⊙O,且⊙O的半径为5,连接OA,若∠OAC=∠ABC,则AC 的长为()A.5B.C.5D.86.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.77.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.8.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.29.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°10.如图,在⊙O的内接正六边形ABCDEF中,OA=2,以点C为圆心,AC长为半径画弧,恰好经过点E,得到,连接CE,OE,则图中阴影部分的面积为()A.﹣4B.2π﹣2C.﹣3D.﹣211.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°12.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6 D.3≤C≤6二.填空题13.已知圆锥底面圆的半径为5,高为12,则圆锥的侧面积为(结果保留π).14.如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=.15.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.16.如图,AB是⊙O的直径,点C、D在⊙O上,若∠DCB=110°,则∠AED=.17.如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=.18.如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是.三.解答题19.已知等边△ABC内接于⊙O,D为弧BC的中点,连接DB、DC,过C作AB的平行线,交BD的延长线于点E.(1)求证:CE与⊙O相切;(2)若AB长为6,求CE长.20.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.21.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且PA是⊙O的切线.(1)求证:AP=AB;(2)若PD=,求⊙O的直径.22.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.23.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,C F 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.24.在等边△ABC中,BC=8,以AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线.(2)求弧DE的长度;(3)求EF的长.25.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.解:A、菱形的对角线垂直但不一定相等,故错误;B、到线段两端点距离相等的点,在线段的垂直平分线上,正确;C、点到直线的距离就是点到直线的垂线段的长度,故错误;D、过不在同一直线上的三点确定一个圆,故错误,故选:B.4.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.5.解:连接OC,如图,设∠OAC=α,则∠OAC=∠ABC=α,∠AOC=2∠ABC=2α,∵OA=OC,∴∠OCA=∠OAC=α,∴α+2α+α=180°,解得α=45°,∴∠AOC=90°,∴△AOC为等腰直角三角形,∴AC=OA=5.故选:A.6.解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:C E=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.7.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.8.【解答】解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.9.解:由题意得:正六边形的每个内角都等于120°,正方形的每个内角都等于90°,故∠BAC=360°﹣120°﹣90°=150°,∵AB=AC,∴∠ABC=∠ACB==15°.故选:B.10.解:连接OB、OC、OD,S 扇形CAE ==2π,S △AOC ==,S △BOC ==,S 扇形OBD ==,∴S 阴影=S 扇形OBD ﹣2S △BOC +S 扇形CAE ﹣2S △AOC =﹣2+2π﹣2=﹣4; 故选:A .11.解:连接OB ,如图,∵AB 为切线,∴OB ⊥AB ,∴∠ABO =90°,∴∠AOB =90°﹣∠A =90°﹣28°=62°,∴∠ACB =∠AOB =31°.故选:C .12.解:根据对称性可知,△GKI ,△HLJ 是等边三角形.阴影部分是正六边形,边长为GK的.∵GK 的最大值为2,GK 的最小值为3,∴阴影部分的正六边形的边长的最大值为,最小值为1,∴图中阴影部分的周长C 的取值范围为:4≤C ≤6.故选:C.二.填空题(共6小题)13.解:∵圆锥的底面半径为5,高为12,∴圆锥的母线长为13,∴它的侧面积=π×13×5=65π,故答案为:65π.14.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣70°=110°.∵点B是弧AC的中点,∴弧AB=弧BC.∴∠ADB=∠BDC.∴∠ADB=∠ADC=×110°=55°.故答案为55°.15.解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.16.解:连接BE,如图,∵AB是⊙O的直径,∴∠AEB=90°,∵∠DEB+∠DCB=180°,∴∠DEB=180°﹣110°=70°,∴∠AED=∠AEB﹣∠DEB=90°﹣70°=20°.故答案为20°17.解:∵AD∥OC,∴∠BAD=∠AOC=70°,∵AB是⊙O的直径,∴∠D=90°,∴∠ABD=90°﹣70°=20°.故答案为20°.18.解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4﹣,故答案为:4﹣.三.解答题(共7小题)19.(1)证明:连接OC,OB,∵△ABC是等边三角形,∴∠A=∠A BC=60°,∵AB∥CE,∴∠BCE=∠ABC=60°,∵OB=OC,∴∠OBC=∠OCB=30°,∴∠OCE=∠OCB+∠BCE=30°+60°=90°,∴CE与⊙O相切;(2)∵四边形ABDC是圆的内接四边形,∴∠A+∠BDC=180°,∴∠BDC=120°,∵D为弧BC的中点,∴∠DBC=∠BCD=30°,∴∠BEC=180°﹣∠EBC﹣∠BCE=90°,∵AB=BC=6,∴.20.(1)证明:连接AC、BD,如图,∵∠CAE=∠CDB,∠ACE=∠BDE,∴△ACE∽△BDE,∴AE:DE=CE:BE,∴AE•EB=CE•ED;(2)∵OE+BE=3,OE=2BE,∴OE=2,BE=1,∴AE=5,∴CE•DE=5×1=5,∵=,∴CE=DE,∴DE•DE=5,解得DE=,∴CE=3.∵PB为切线,∴PB2=PD•PC,而PB2=PE2﹣BE2,∴PD•PC=PE2﹣BE2,即(PE﹣)(PE+3)=PE2﹣1,∴PE=321.(1)证明:连接OA,如图,∵∠AOB=2∠ACB=2×60°=120°,而OA=OB,∴∠OAB=∠OBA=30°,∠AOP=60°,∵PA是⊙O的切线,∴OA⊥PA,∴∠OAP=90°,∴∠P=90°﹣60°=30°,∴∠ABP=∠P,∴AB=AP;(2)解:设⊙O的半径为r,在Rt△OPA中,∵∠P=30°,∴OP=2OA,即r+=2r,解得r=,∴⊙O的直径为2.22.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE。

初中数学人教版九年级上册第24章《圆》测试卷解析及答案-九上24

初中数学人教版九年级上册第24章《圆》测试卷解析及答案-九上24
∴∠OCA= 120°-30°=90°,················(1分)
∴AC⊥OC,·······················(2分)
又∵OC是圆O的半径,···················(1分)
∴AC与圆O相切;
(2)在Rt△AOC中,∠A=30°,AC=6,
∴AO=2CO························(1分)
∴BC=BF=3 .························(1分)
在△ADF中,∠DAB=∠AFD=45°,
∴EF=ED=1.························(1分)
∴AB=5·························(1分)
∴AC= = ··················(1分)
∴圆O半径的长 。···················(2分)
21.(本小题满分10分)
(1)(-2, 0)·······················(2分)
(2)连接AC、AD、CD,
·················(1分)
圆D的半径长= ,···············(1分)
AC= ,····················(1分)
1.选择题
1.B
【考点】直线与圆的位置关系
【分析】若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
【解答】解:圆的直径为10cm,则圆的半径为5cm,
由圆心到直线的距离等于圆的半径,则直线和圆相切.
故选:B
2.B
【考点】圆锥的计算
【分析】利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解。

人教版 九年级上册数学 第24章质量检测(含答案)

人教版 九年级上册数学 第24章质量检测(含答案)

人教版 九年级上册数学 第24章质量检测(含答案)24.1 圆的有关性质一、选择题(本大题共10道小题) 1. 2018·衢州 如图,点A ,B ,C 在⊙O 上,∠ACB =35°,则∠AOB 的度数是( )A .75°B .70°C .65°D .35°2. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD =105°,则∠DCE 的度数为 ( )A .115°B .105°C .100°D .95°4. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 35. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.86.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( ) A . 3 3 B . 4 3 C . 5 3 D . 6 37. 如图,△ABC 的内心为I ,连接AI 并延长交△ABC 的外接圆于点D ,则线段DI 与DB 的关系是( )A .DI =DB B .DI >DBC .DI <DBD .不确定如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD 的延长线上,则∠CDE的度数为( )A.56°B.62°C.68°D.78°9. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°10. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米二、填空题(本大题共7道小题)11. 如图,C,D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=________.12. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.13. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.14. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.15. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.16. 将量角器按图所示的方式放置在三角形纸片上,使顶点C在半圆上,点A,B 的读数分别为100°,150°,则∠ACB的大小为________°.17. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.三、解答题(本大题共4道小题)18. 如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.19.如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,延长AB 到点E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.求证:BF =12BD.20. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .人教版 九年级数学 24.1 圆的有关性质 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】B2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的.故选B.3. 【答案】B4. 【答案】C5. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=, ∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .6.【答案】B【解析】如解图,延长CO 交⊙O 于点A ′,连接A ′B .设∠BAC =α,则∠BOC =2∠BAC=2α,∵∠BAC +∠BOC =180°,∴α+2α=180°,∴α=60°.∴∠BA ′C =∠BAC =60°,∵CA ′为直径,∴∠A ′BC =90°,则在Rt △A ′BC 中,BC =A ′C ·sin ∠BA ′C=2×4×32=4 3.7. 【答案】A[解析] 连接BI ,如图.∵△ABC 的内心为I , ∴∠1=∠2,∠5=∠6. ∵∠3=∠1, ∴∠3=∠2.∵∠4=∠2+∠6,∠DBI =∠3+∠5, ∴∠4=∠DBI ,∴DI =DB. 故选A.8. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD 内接于⊙O , ∴∠CDE =∠B =68°.9. 【答案】D[解析] ∵∠BOC =110°,∴∠AOC =70°.∵AD ∥OC ,∴∠A =∠AOC =70°.∵OA =OD ,∴∠D =∠A =70°.在△OAD 中,∠AOD =180°-(∠A +∠D)=40°.10. 【答案】D二、填空题(本大题共7道小题)11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.15. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.16. 【答案】25[解析] 设量角器的中心为O ,由题意可得∠AOB =150°-100°=50°,所以∠ACB =12∠AOB =25°.17. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.三、解答题(本大题共4道小题)18. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B. 又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt △ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt △ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.19. 【答案】证明:连接AC.∵AB =BE ,F 是EC 的中点, ∴BF 是△EAC 的中位线, ∴BF =12AC. ∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,即BD ︵=AC ︵, ∴BD =AC ,∴BF =12BD.20. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD.21. 【答案】证明:如图,延长AD 交⊙O 于点E , ∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD . ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD .24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A .与圆有公共点的直线B .垂直于圆的半径的直线C .到圆心的距离等于半径的直线D .经过圆的直径一端的直线2. 下列说法中,正确的是()A .垂直于半径的直线是圆的切线B .经过半径的外端且垂直于这条半径的直线是圆的切线C .经过半径的端点且垂直于这条半径的直线是圆的切线D .到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O 外一点,OP 交⊙O 于点A ,OA =AP .甲、乙两人想作一条经过点P 且与⊙O 相切的直线,其作法如下:甲:以点A 为圆心,AP 长为半径画弧,交⊙O 于点B ,则直线BP 即为所求. 乙:过点A 作直线MN ⊥OP ,以点O 为圆心,OP 长为半径画弧,交射线AM 于点B ,连接OB ,交⊙O 于点C ,直线CP 即为所求. 对于甲、乙两人的作法,下列判断正确的是( )A .甲正确,乙错误B .乙正确,甲错误C .两人都正确D .两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB =30°,⊙O 的半径为1 cm ,圆心O 在直线PB 上,OP =3 cm ,若⊙O 沿BP 方向移动,当⊙O 与直线PA 相切时,圆心O 移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB ,如图①.∵OA =AP ,∴OP 为⊙A 的直径, ∴∠OBP =90°,即OB ⊥PB , ∴PB 为⊙O 的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B=20°,∴∠AOD=∠B+∠BDO=2∠B=2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P为Rt△ACQ的外心,故③正确.16. 【答案】3或4 3[解析] 如图①,当⊙P与CD边相切时,设PC=PM=x. 在Rt△PBM中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC ⊥BC ,而AC >4,∴以点A 为圆心,4为半径的⊙A 与直线BC 相离.故答案为相离.(2)BC =AB 2-AC 2=12.∵BC ⊥AC ,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D .∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一.选择题1.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个2.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根C.一次函数y=﹣3x+2的图象经过第一、二、四象限D.正六边形每个内角的度数是外角度数的2倍3.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C 重合),则∠CPD=()A.45°B.36°C.35°D.30°4.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5 B.6 C.8 D.105.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣7.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S正八边形ABCDEFGH=AEDF.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③8.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.29.如图,正五边形ABCDE与正三角形AMN都是⊙O的内接多边形,若连接BM,则∠MBC的度数是()A.12°B.15°C.30°D.48°10.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1 B.2 C.3 D.4二.填空题11.正六边形的边长为2,则边心距为.12.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.13.中心角为36°的正多边形边数为.14.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.15.如图1,将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转°,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为.三.解答题16.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.17.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.18.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D 两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.2.【解答】解:A、为了解一种灯泡的使用寿命,此调查具有破坏性,宜采用抽查的方法;故此选项符合题意;B、一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根;故此选项不符合题意;C、一次函数y=﹣3x+2的图象经过第一、二、四象限;故此选项不符合题意;D、正六边形每个内角的度数是外角度数的2倍;故此选项不符合题意;故选:A.3.【解答】解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.4.【解答】解:∵正五边形的每个内角为:=108°,∴组成的正多边形的每个内角为:360°﹣2×108°﹣24°=120°,∵n个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,∴组成的正多边形为正n边形,则=120°,解得:n=6,故选:B.5.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.6.【解答】解:连接AC交EF于M,连接OF,∵四边形ABCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∴△ACD是等腰直角三角形,∴AC=AD=4,∴OA=OC=2,∵△AEF是等边三角形,∴AM⊥EF,∠OFM=30°,∴OM=OF=,∴CM=,∴∠ACD=45°,∠CMG=90°,∴∠CGM=45°,∴△CGH是等腰直角三角形,∴GH=2CM=2.故选:A.7.【解答】解:设圆心为O ,连接OD ,OF , ∵∠DOE =∠EOF ==45°,∴∠DOF =90°,∴弧DF 的度数为90°,∴①正确;∵∠DOF =90°,OD =OF ,∴2OD 2=DF 2,∴OD =, ∵AE =2OD ,∴AE =DF ,∴②正确;∵S 四边形ODEF =DFOE ,∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DFOE , ∵OE =AE ,∴S 正八边形ABCDEFGH =AEDF ,∴③正确;故选:D .8.【解答】解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OF A=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.9.【解答】解:连接OA、OC.∵五边形ABCDE是正五边形,∴∠AOB==72°,∴∠AOC=72°×2=144°,∵△AMN是正三角形,∴∠AOM==120°,∴∠COM=∠AOC﹣∠AOM=144°﹣120°=24°,∴∠MBC=∠COM=×24°=12°.故选:A.10.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.二.填空题(共5小题)11.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.【解答】解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.13.【解答】解:由题意可得:∵360°÷36°=10,∴它的边数是10.故答案为10.14.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.15.【解答】解:如图2所示:将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转,所得图形与原图的重叠部分是正多边形.在图2中,由题意得:PM=MN=NQ,AM=AP=BN=BQ,则MN=PM=AM,∵AM+MN+BN=AB=4,∴AM+AM+AM=4,解得:AM=4﹣2,则所得正八边形的面积为4×4﹣4××(4﹣2)2=32﹣32;故答案为:(),32﹣32.三.解答题(共4小题)16.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.17.【解答】解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.18.【解答】解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.19.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36:24.4《弧长和扇形面积》一.选择题1.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.2.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+4.如图,P A、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.πC.D.5.如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,折痕交OB于点C,则弧O'B的长是()A.πB.πC.2πD.3π6.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm27.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm28.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3B.6C.3πD.6π9.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S1 10.已知一个圆心角为270°扇形工件,未搬动前如图所示,A、B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,半圆的直径为6m,则圆心O所经过的路线长是()m.(结果用含π的式子表示)A.6πB.8πC.10πD.12π二.填空题11.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.12.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求劣弧的长.19.如图,在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.如果A(﹣4,0),B(﹣1,2).请回答:(1)点B'的坐标为.(2)点A经过的路径的长度为π.(友情提示:已经有π)20.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.21.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.22.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过网格点A(0,8)、B(﹣8,8)、C(﹣12,4),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D,则D点坐标为;(2)连接AD、CD,则⊙D的半径长为(保留根号).∠ADC的度数为°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长.(结果保留根号)参考答案一.选择题1.解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.2.解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.3.解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.4.解:∵P A、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选:C.5.解:连接OO′,∴OO′=OA,∵将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,∴OA=O′A,∴△AOO′是等边三角形,∴∠AOO′=60°,∵∠AOB=90°,∴∠BOO′=30°,∴的长==π,故选:B.6.解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π故选:B.7.解:设底面圆的半径为R,则πR2=25π,解得R=5,圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m2.故选:A.8.解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选:B.9.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S弓形==,>>,∴S2<S1<S3.故选:B.10.解:∠AOB=360°﹣270°=90°,则∠ABO=45°,则∠OBC=45°,O旋转的长度是:2×=π,O移动的距离是:=π,则圆心O所经过的路线长是:π+π=6π.故选:A.二.填空题11.解:根据l===11π,解得:n=110,故答案为:110.12.解:∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=.故答案为:.13.解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.14.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.15.解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.16.解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.三.解答题17.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.18.(1)证明:如图,连接AE.∵AB是圆O的直径,∴∠AEB=90°,即AE⊥BC.又∵AB=AC,∴AE是边BC上的中线,∴BE=CE;(2)解:∵AB=6,∴OA=3.又∵OA=OD,∠BAC=54°,∴∠AOD=180°﹣2×54°=72°,∴的长为:=.19.解:如图所示:∵A(﹣4,0),B(﹣1,2).∴A'的坐标为(0,4),B'的坐标为(2,1),∴OA=OA'=4,∴点A经过的路径的长度==2π.20.(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,.∴.∴图中阴影部分的面积为:.21.解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=S Rt△OEF==.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣.22.解:(1)点D的坐标为(﹣4,0);(2)如图,AD==4,即⊙D的半径长为4;∵AD=CD=4,AC==4,∴AD2+DC2=AC2,∴△ACD为直角三角形,∠ADC的度数为90°;故答案为(﹣4,0);4;90;(3)设该圆锥的底面圆的半径长为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径长为.。

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第二十四章 圆一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·北京通州区期末)如图,若OA⊥OB,则∠C=( )A.22.5°B.67.5°C.90°D.45°(第1题) (第2题)2.(2022·江苏镇江润州区段考改编)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是( )A.3B.4C.5D.63.(2021·江苏常熟期中)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-3,0),B(-1,2),C(3,2),则△ABC的外心的坐标是( )A.(1,-2)B.(0,0)C.(1,-1)D.(0,-1)(第3题) (第4题)4.(2021·山东寿光期中)如图,若正方形ABCD的边长为6,则其外接圆半径OA与内切圆半径OE的比值为( )A.3B.2C.2D.35.(2022·湖北十堰期末)如图,点A,B,C,D都在☉O上,OA⊥BC,∠OBC=40°,则∠ADC 的度数为( ) A.40° B.30° C.25° D.50°6.(2022·浙江金华期中改编)如图,☉O 与正六边形OABCDE 的边OA ,OE 分别交于点F ,G ,点M 为劣弧FG 的中点.连接FM ,GM ,若FM=22,则☉O 的半径为( )A.2B.6C.22D.26(第6题) (第7题)7.(2022·浙江宁波江北区期末)如图,AB 是半圆O 的直径,C ,D 是半圆上两点,连接CA ,CD ,AD.若∠ADC=120°,BC=1,则BC 的长为( )A.π3B.π4C.π6D.2π38.(2022·江苏镇江期中)简易直尺、含60°角的直角三角板和量角器如图摆放(无重叠部分),A 为三角板与直尺的交点,B 为量角器与直尺的接触点,C 为量角器与三角板的接触点.若点A 处刻度为4,点B 处刻度为6,则该量角器的直径长为( )A.2B.23C.4D.439.如图,四边形ABCD 内接于☉O ,AD ∥BC ,直线EF 是☉O 的切线,B 是切点.若∠C=80°,∠ADB=54°,则∠CBF=( )A.45°B.46°C.54°D.60°10.如图(1),AB是半圆O的直径,点C是半圆O上异于A,B的一点,连接AC,BC.点P从点A出发,沿A→C→B以1 cm/s的速度运动到点B.图(2)是点P运动时,△PAB 的面积y(cm2)随时间x(s)变化的图象,则点D的横坐标为( )A.a+2B.2C.a+3D.3二、填空题(共5小题,每小题3分,共15分)11.(2022·山东济南天桥区期末)如图,☉A,☉B,☉C两两相离,且半径都为2,则图中阴影部分的面积之和为 .(结果保留π)(第11题) (第12题)12.(2022·江苏苏州姑苏区期中)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 .13.(2022·河北唐山期末改编)如图,△ABC内接于☉O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的位置变化,试探究直线EF与☉O的位置关系.甲:如图(1),当弦AB过点O时,EF与☉O相切;乙:如图(2),当弦AB不过点O时,EF也与☉O相切.你认为 的判断正确.14.新风向关注数学文化在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为☉O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为 寸.(第14题) (第15题)15.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与点A,B重合),当PA= 时,△PAD为等腰三角形.三、解答题(共6小题,共55分)16.(7分)(2022·北京四中期中改编)某游乐园的摩天轮采用了国内首创的横梁结构,如图,摩天轮半径为44 m,中心O距离地面56 m,匀速运行一圈的时间为18 min.由于受到周边建筑物的影响,乘客与地面之间超过一定距离时,可视为最佳观赏位置.已知在运行的一圈里最佳观赏时长为12 min,求最佳观赏位置与地面的最小距离(即BD的长).17.(8分)(2021·浙江温州模拟)如图,已知AB是☉O的直径,弦CD⊥AB于点E,点M 是☉O上一动点,∠M=∠D,连接BC.(1)判断BC与MD的位置关系,并说明理由;(2)若MD恰好经过圆心O,求∠D的度数.18.(8分)(2022·山东临沂期末)如图,AB为☉O的直径,AC,DC为弦,∠ACD=60°,P 为AB延长线上的点,连接PD,∠APD=30°.(1)求证:DP是☉O的切线.(2)若☉O的半径为2,求图中阴影部分的面积.19.(10分)[与特殊平行四边形综合](2021·河南驻马店二模)如图,已知☉O的直径AB=2,C是AB上一个动点(不与点A,B重合),切线DC交AB的延长线于点D,连接AC,BC,OC.(1)请添加一个条件使△BAC≌△ODC,并说明理由.(2)若点C关于直线AB的对称点为E.①当AD= 时,四边形OCDE为正方形.②当∠CDB= °时,四边形ACDE为菱形.20.(10分)新风向探究性试题如图,已知AB是☉O的直径,BC与☉O相切于点B,CD 与☉O相切于点D,连接AD,OC.(1)求证:AD∥OC.(2)小聪与小明在做这个题目的时候,对∠CDA+∠AOC的值进行了探究:小聪说,∠CDA+∠AOC的值是一个固定值;小明说,∠CDA+∠AOC的值随∠A的度数的变化而变化.若∠CDA+∠AOC的值为y,∠A的度数为x,你认为他们之中谁的说法正确?若小聪的说法正确,请求出y;若小明的说法正确,请求出y与x之间的关系.21.(12分)新风向探究性试题【问题呈现】阿基米德折弦定理:如图(1),AB和BC是☉O的两条弦(即折线ABC是☉O的一条折弦),BC>AB,M是ABC的中点,则从点M 向BC作垂线,垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的过程. 图(1) 图(2) 图(3) 图(4)证明:如图(2),在CD上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.①∵∠A=∠C,②∴△MAB≌△MCG,∴MB=MG.又MD⊥BC,∴BD=DG,∴CD=CG+DG=AB+BD,即CD=AB+BD.根据证明过程,分别写出步骤①,②的理由:① .② .【理解运用】在图(1)中,若AB=4,BC=6,则BD= .【变式探究】如图(3),AB,BC是☉O的两条弦,点M是AC的中点,MD⊥BC于点D,请写出CD,DB,BA之间存在的数量关系: .【实践应用】如图(4),△ABC内接于☉O,BC是☉O的直径,点D为圆周上一动点,满足∠DAC=45°.若AB=6,☉O的半径为5,求AD的长.第二十四章 圆·B卷1.D ∵OA⊥OB,∴∠AOB=90°,∴∠C=12∠AOB=【技巧】同圆中,同弧所对的圆周角等于圆心角的一半45°.2.B 连接BD,由勾股定理可得BD=AB2+AD2=42+32=5,由题意可知,3<r<5,因此只有B选项符合.3.A 如图,∵三角形的外心到三角形三个顶点的距离相等,∴线段BC,AB的垂直平分线的交点即为外心P,由图可知,点P的坐标为(1,-2).4.B 由题意结合题图可知,内切圆直径等于正方形边长,则OE=3.由正方形的性质可得OA=32,则OAOE =323=2.5.C ∵OA ⊥BC ,∴AC =AB .∵∠OBC=40°,∴∠AOB=50°,∴∠ADC=12∠AOB=12×50°=25°.6.C 连接OM ,由题意知∠FOG=120°.∵点M 为劣弧FG 的中点,∴∠FOM=60°.∵OM=OF ,∴△OFM 是等边三角形,∴OM=OF=FM=22,则☉O 的半径为22,故选C .7.A 如图,连接OC.∵∠ADC=120°,∴∠ABC=60°.∵OB=OC ,∴△OBC 为等边三角形,∴∠COB=60°,OB=OC=BC=1,∴BC 的长=60π·1180=π3.8.D 如图,添加点D ,连接OA ,OB ,由题意得AB=6-4=2,∵∠CAD=60°,∴∠BAC=120°.∵AB 与半圆O 相切于点B ,AC 与半圆O 相切于C ,∴∠BAO=60°,∠AOB=30°,∴OA=2AB=4,∴OB=OA 2-AB 2=42-22=23,∴量角器的直径长为43.9.B 如图,连接OD ,OB ,则∠BOD=2∠C=160°.∵OB=OD ,∴∠OBD=180°―160°2=10°.∵四边形ABCD 内接于☉O ,∴∠A=180°-∠C=100°.∵AD ∥BC ,∴∠A+∠ABC=180°,∴∠ABC=80°.在△ABD 中,∠ADB=54°,∴∠ABD=180°-54°-100°=26°,∴∠OBC=80°-26°-10°=44°.∵EF 是☉O 的切线,∴∠OBF=90°,∴∠CBF=90°-∠OBC=90°-44°=46°.故选B .∵AD ∥BC ,∴∠ADB+∠BDC+∠C=180°.∵∠C=80°,∠ADB=54°,∴∠BDC=46°.∵∠CBF 是弦切角,∴∠CBF=∠BDC=46°.(弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数)10.A 从题图(2)看,当x=a 时,y 取得最大值a ,此时点P 运动到点C 处,即AC=a.∵∠ACB=90°,∴y=12×AC×BC=12BC×a=a ,解得BC=2.当点P 运动到点B 处时,y=0,即AC+BC=OD ,∵AC+BC=a+2,∴点D 的横坐标为a+2.11.2π 因为∠A+∠B+∠C=180°,所以阴影部分的面积之和等于半径为2的半圆的面积,为2π.12.10 如图,连接OA ,OB ,由题意知点A ,B ,C ,D 在以点O 为圆心,OA 的长为半径的同一个圆上.∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°÷36°=10.13.甲、乙 题图(1)中,∵AB 是☉O 的直径,∴∠C=90°,∴∠B+∠CAB=90°.∵∠EAC=∠B ,∴∠EAC+∠CAB=90°,∴EF ⊥AB.∵OA 是半径,∴EF 是☉O 的切线,故甲的判断正确.如图,作直径AM ,连接CM ,则∠ACM=90°,∠B=∠M.∵∠EAC=∠B ,∴∠EAC=∠M.∵∠CAM+∠M=90°,∴∠CAM+∠EAC=90°,∴EF 是☉O 的切线,故乙的判断正确.14.26 连接OC.∵CD ⊥AB ,AB 为☉O 的直径,CD=10,∴CE=12CD=5. 设OC=OA=x ,则OE=x-1.由勾股定理得OE 2+CE 2=OC 2,即(x-1)2+52=x 2,解得x=13,∴AB=26寸.15.22或85516.【参考答案】由题意得AB⊥OM,BO=44,×360°=120°,∠AOB=18―1218∴∠BOC=60°,∠OBC=30°,∴OC=1OB=22.2∵中心O距离地面56 m,∴OM=56,∴CM=OM-OC=34,∴BD=34 m,故最佳观赏位置与地面的最小距离为34 m.(7分) 17.【参考答案】(1)BC∥MD.(1分)理由:∵∠MBC=∠D,∠M=∠D,∴∠M=∠MBC,∴BC∥MD.(4分) (2)∵AB是☉O的直径,CD⊥AB于点E,∴∠D+∠EOD=90°.(6分)∵MD过圆心O,∴∠BOD=2∠M=2∠D,∴∠D+2∠D=90°,∴∠D=30°.(8分) 18.【参考答案】(1)证明:如图,连接OD.∵∠ACD=60°,∴∠AOD=120°,∴∠BOD=60°.∵∠APD=30°,∴∠ODP=90°,即PD⊥OD.∵OD是半径,∴PD是☉O的切线.(4分)(2)∵在Rt △POD 中,OD=2,∠OPD=30°,∴OP=4.由勾股定理得PD=23.∴S 阴影部分=S △POD -S扇形ODB =12×2×23-60π·22360=23-2π3.(8分)19.【参考答案】(1)添加条件∠A=30°.(1分)理由:∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OA=OC ,∴∠A=∠OCA=30°,∴∠BOC=60°.∵OC=OB ,∴△BOC 是等边三角形,∴BC=OC ,∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)或添加条件BC=1.(1分)∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OC=OB=12AB=1=BC ,∴△BOC 是等边三角形,∴∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)(答案不唯一,正确即可给分)(2)①2+1(8分)解法提示:∵AB=2,∴OA=OC=1.连接OE ,DE ,若四边形OCDE 是正方形,则△OCD 是等腰直角三角形,易得OD=2,∴AD=OD+OA=2+1.②30(10分)解法提示:∵DC 是☉O 的切线,∴∠DCO=90°,∴∠COD=90°-∠CDB.∵OC=OA ,∴∠CAB=12∠COD=90°―∠CDB2.连接AE ,若四边形ACDE 是菱形,则CA=CD ,∴∠CAB=∠CDB ,即90°―∠CDB2=∠CDB ,解得∠CDB=30°,∴当∠CDB=30°时,四边形ACDE 是菱形.20.【思路导图】(1)连接ODRt △ODC ≌Rt △OBC →∠DOC=∠BOC →∠DAO=∠BOC →AD ∥CO【参考答案】(1)如图,连接OD.(1分)∵BC 与☉O 相切于点B ,CD 与☉O 相切于点D ,∴∠ODC=∠OBC=90°.(2分)在Rt △ODC 和Rt △OBC 中,OD =OB ,OC =OC ,∴Rt △ODC ≌Rt △OBC ,∴∠DOC=∠BOC.(4分)∵∠DAO=12∠DOB ,∴∠DAO=∠BOC ,∴AD ∥CO.(5分)(2)小聪的说法正确.(6分)∵∠CDA+∠AOC=y ,∠A=x ,∴∠ODC+∠ODA+∠AOC=y ,∠ODA=∠OAD=x.∵∠ODC=90°,∴90°+x+∠AOC=y.由(1)得AD ∥CO ,∴∠OAD+∠AOC=180°,即x+∠AOC=180°,∴y=90°+x+∠AOC=90°+180°=270°.(10分)21.【参考答案】【问题呈现】①在同圆中,如果两条弧相等,那么它们所对的弦相等②同弧所对的圆周角相等(4分)【理解运用】1(6分)解法提示:∵CD=AB+BD ,∴CD=12(AB+BC )=12×(4+6)=5,∴BD=BC-CD=6-5=1.【变式探究】DB=AB+CD(8分)解法提示:如图,在DB 上截取BG=BA ,连接MA ,MB ,MC ,MG.∵M 是AC 的中点,∴AM=MC ,∠MBA=∠MBG.又MB=MB ,∴△MAB ≌△MGB ,∴MA=MG ,∴MC=MG.又DM ⊥BC ,∴DC=DG ,∴AB+DC=BG+DG ,即DB=AB+CD.【实践应用】∵BC是☉O的直径,∴∠BAC=90°.∵AB=6,☉O的半径为5,∴易得AC=8.(分类讨论思想)如图,连接AD,当∠DAC=45°时,有两种情况.①∠D1AC=45°,则D1是BC的中点.过点D1作D1G1⊥AC于点G1,则CG1+AB=AG1.∴AG1=1(6+8)=7,∴AD1=72.2②∠D2AC=45°,过点D2作D2G2⊥AC于点G2,同理易得CG2=AB+AG2,∴CG2=7,AG2=1,∴AD2=2.综上,AD的长为72或2.(12分)。

人教版九年级数学上册第24章 圆单元测试及答案解析-优质新版

人教版九年级数学上册第24章 圆单元测试及答案解析-优质新版

第二十四章圆单元测试一、单选题(共10题;共30分)1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A、40°B、30°C、45°D、50°2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有()个。

A、1B、2C、3D、43、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A、80°B、100°C、60°D、40°4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=()A、12B、6C、3D、7.55、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A、B、C、D、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A、α+βB、C、180﹣α﹣βD、7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A、2B、2+C、2D、2+8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为()A、20°B、40°C、50°D、70°9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105°B、75°或15°C、75°D、105°10、如图,在⊙O中,∠ABC=52°,则∠AOC等于()A、52°B、80°C、90°D、104°二、填空题(共8题;共25分)11、如图,⊙O是ABC的外接圆,OCB=40°,则A的度数等于________°.12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定)14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2.16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分)19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分)24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题1、【答案】 A【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理2、【答案】 D【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。

2022学年人教版版九年级数学上册24章《圆》单元试题及答案解析

2022学年人教版版九年级数学上册24章《圆》单元试题及答案解析

2022学年九年级数学上册24章《圆》单元试题(满分:120分)一、选择题1.⊙O半径为5,弦AB长为8,M是弦AB上一个动点,则线段OM长最小值为()A.2 B.3 C.4 D.52.已知点A,B,C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC度数为()A.15°B.75°或15°C.105°或15°D.75°或105°3.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.34.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A.2 B.4 C.4 D.85.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.46.如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是()A.DI=DBB.DI>DBC.DI<DBD.不确定7.在直角三角形ABC中,∠C=60°,以AB为直径的半圆交斜边BC于D,则△ACD与△ABD的面积之比为()A.1:2B.1:3C.2:3D.3:48.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )A.133B.92C.4133D.2 59.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为()A.rB.1.5rC.2rD.2.5r10.如图,以O为圆心的圆与直线y=-x+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.πB.πC. πD.π11.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )A.(2-π)cm 2B.(π-)cm 2C.(4-2π)cm 2D.(2π-2)cm 212.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.22 B.32 C. 2 D. 3 二 、填空题13.如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为 .14.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .15.如图,将△ABC 放在每个小正方形的边长均为1的网格中,点A ,B ,C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是________.16.在Rt △ABC 中,∠C=90°,AC=5,BC=12,若以点C 为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_____________17.如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______________.18.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .三、解答题19.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.20.如图所示,C是⊙O上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以1cm/s的速度沿AB方向向点B匀速运动,若y=AE2-EF2,求y关于动点F的运动时间x(s)(0≤x≤6)的函数表达式.21.如图,有两条公路OM,ON相交成30°角,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿公路ON方向行驶时,在以点P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.已知重型运输卡车P沿公路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿公路ON方向行驶一次给学校A带来噪声影响的时间.22.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10 cm,母线OE(OF)长为10 cm.在母线OF上的点A处有一块爆米花残渣,且FA=2 cm,一只苍蝇从杯口的点E处沿圆锥表面爬行到点A.(1)求该圆锥形纸杯的侧面积;(2)此苍蝇爬行的最短距离是多少?23.如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+3,BC=23,求⊙O的半径.25.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.参考答案1.B2.D.3.C.4.C5.A.6.A.7.B8.A ;9.C.10.C11.C ;12.A.13.答案为:88°.14.答案为:3 2.15.答案为: 5.16.答案为:5<r ≤12或r=6013;17.答案为:(6,2)或(-6,2);18.答案为:53π﹣23.19.20.解:如图所示,延长CO 交AB 于点G.∵C 是的中点,∴CG ⊥AB ,AG=AB=3(cm).∴AE 2=AG 2+EG 2,EF 2=FG 2+EG 2.当0≤x ≤3时,AF=x(cm),FG=(3-x)(cm),∴y=AE 2-EF 2=AG 2+EG 2-FG 2-EG 2=AG 2-FG 2=9-(3-x)2=6x-x 2. 当3<x ≤6时,AF=x(cm),FG=(x-3)(cm),∴y=AE 2-EF 2=AG 2+EG 2-FG 2-EG 2=AG 2-FG 2=9-(x-3)2=6x-x 2.∴y=6x-x 2(0≤x ≤6).21.解:(1)过点A 作ON 的垂线段,交ON 于点P ,如图①.21在Rt △AOP 中,∠APO=90°,∠POA=30°,OA=80米,所以AP=12OA=80×12=40(米),即对学校A 的噪声影响最大时,卡车P 与学校A 的距离是40米.(2)以点A 为圆心,50米长为半径画弧,交ON 于点D ,E ,连接AD ,AE ,如图②.在Rt △ADP 中,∠APD=90°,AP=40米,AD=50米,所以DP=AD 2-AP 2=502-402=30(米).同理可得EP=30米,所以DE=60米.又因为18千米/时=5米/秒,605=12(秒),所以卡车P 沿公路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.22.解:(1)由题意,得底面半径r=5 cm ,母线长l=10 cm ,则圆锥侧面积为S 侧=πrl=50π(cm 2).(2)将圆锥沿母线OE 剪开,则得到扇形的圆心角θ=rl ·360°=510×360°=180°.连结AE ,如图所示,即AE 为苍蝇爬行的最短路径,且OA=8 cm ,OE=10 cm ,θ1=12θ=90°.故苍蝇爬行的最短距离AE=OA 2+OE 2=164=241(cm).23.解:(1)连接OC ,证∠DAC=∠CAO=∠ACO ,∴PA ∥CO ,又∵CD ⊥PA ,∴CO ⊥CD ,∴CD 为⊙O 的切线(2)过O 作OF ⊥AB ,垂足为F ,∴四边形OCDF 为矩形.∵DC +DA=6,设AD=x ,则OF=CD=6-x ,AF=5-x ,在Rt △AOF 中,有AF 2+OF 2=OA 2,即(5-x)2+(6-x)2=25,解得x 1=2,x 2=9,由AD <DF 知0<x <5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6.24.解:(1)证明:连接OA .∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC ,∴∠OAC=∠OCA=30°.又∵AP=AC ,∴∠P=∠ACP=30°. ∴∠OAP=∠AOC-∠P=90°.∴OA ⊥PA .又∵点A 在⊙O 上,∴PA 是⊙O 的切线.(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,BC=23,∴BE=0.5BC=3,CE=3.∵AB=4+3,∴AE=AB-BE=4.∴在Rt △ACE 中,AC=5.∴AP=AC=5.∴在Rt △PAO 中,OA=533.∴⊙O 的半径为533.25.(1)证明:(1)如图,连接OE.∵BE ⊥EF ,∴∠BEF=90°,∴BF 是圆O 的直径,∴OB=OE ,∴∠OBE=∠OEB ,∵BE 平分∠ABC ,∴∠CBE=∠OBE ,∴∠OEB=∠CBE ,∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA ,∴BEC=∠BEH ,∵BF 是⊙O 是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA ,∴FE 平分∠AEH.(3)证明:如图,连结DE.∵BE 是∠ABC 的平分线,EC ⊥BC 于C ,EH ⊥AB 于H ,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE ,∵∠C=∠EHF=90°,∴△CDE ≌△HFE (AAS ),∴CD=HF ,。

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试题一、单选题1.下列说法正确的是( )A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .90°的圆心角所对的弦是直径C .平分弦的直径垂直于这条弦D .三点确定一个圆2.已知⊙O 的直径为4cm ,点P 与圆心O 之间的距离为4cm ,那么点P 与⊙O 的位置关系为( )A .在圆上B .在圆内C .在圆外D .不能确定 3.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶44.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .83π-B .163π-C .163π-D .83π-5.如图,王大伯家屋后有一块长12m 、宽8m 的长方形空地,他在以较长边BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过( )A .3mB .4mC .5mD .6m6.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A.1个B.2个C.3个D.4个7.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A B.C D.8.在截面为半圆形的水槽内装有一些水,如图水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽度变为8分米.则该水槽截面半径为()A.3分米B.4分米C.5分米D.10分米9.如图,已知圆周角∠BAC=40°,那么圆心角∠BOC的度数是()A.40B.60C.80D.10010.已知如图,在⊙O中,OA⊥OB,∠A=35°,则弧CD的度数为()A.20°B.25°C.30°D.35°二、填空题11.如图,小明做实验时发现,当三角板中30°角的顶点A在⊙O上移动,三角板的两边与⊙O相交于点P、Q时,PQ的长度不变.若⊙O的半径为9,则PQ长为________.12.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5BC的长为_____.13.如图,边长相等的正五边形和正六边形拼接在一起,则∠ABC的度数为________.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是________.15.如图,⊙O是△ABC的外接圆,∠OCB=30°,则∠A的度数等于____.三、解答题16.已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.17.如图,点A,B,C,D在⊙O上,连结AB,CD,BD,若AB=CD.求证:∠ABD=∠CDB.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,AB的长.19.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B 重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数.20.已知等边三角形ABC.(1)用尺规作图找出△ABC外心O.(2)记外心O到三角形三边的距离和为d,到三角形三个顶点的距离和为D,求dD的值21.如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE22.已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.(1)求∠DAB的度数;(2)求图中阴影部分的面积(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.参考答案1.A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】A选项:弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B选项:90°的圆周角所对的弦是直径,故本选项错误;C选项:应强调这条弦不是直径,故本选项错误;D选项:不在同一直线上的三点确定一个圆,故本选项错误.故选A.【点睛】考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.2.C【分析】直接根据点与圆的位置关系进行解答即可.【详解】∵⊙O的半径为2cm,点P与圆心O的距离为4cm,4cm>2cm,∴点P在圆外.故选C.【点睛】考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d<r时,点P在圆内是解答此题的关键.3.D【分析】利用圆内接四边形的对角互补判断即可.【详解】∵四边形ABCD内接于⊙O,∴∠A+∠C=180°=∠B+∠D,故选D .【点睛】考查了圆内接四边形的性质,关键是根据内接四边形的对角互补的性质解答.4.B【分析】连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,∴OB=OA=OC=4,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=2, 在Rt △COD 中利用勾股定理可知:CD=224223,243AC CD -===,∵sin ∠COD=CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =11422OB AC ⨯=⨯⨯∴S 扇形=21204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =163π-故选B.【点睛】 考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.5.B【详解】连接OA,交O于E点,在Rt△OAB中,OB=6m,BA=8m,所以;又因为OE=OB=6m,所以AE=OA−OE=4m.因此拴羊的绳长最长不超过4m.故选B.6.D【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【详解】解:如图连接OB、OD;∵AB=CD,∴AB CD=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.7.C【详解】试题分析:过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ,∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3,∴OD=AD ﹣OA=2,Rt △OBD 中,根据勾股定理,得:C .考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.8.C【分析】如图,油面AB 上升1分米得到油面CD,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC,由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1,在Rt OAE ∆中和Rt OCF ∆中,根据勾股定理求得OA 、OC 的长度,然后由OA OC =,列方程求x 即可求半径OA,得出直径MN.【详解】:如图,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC, 由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1, 在Rt OAE ∆中, 222OA AE OE =+,在Rt OCF ∆中, 222OC CF OF =+,OA OC =,()2222341x x ∴+=+-, 解得x=4,∴半径OA =5分米,故选C.【点睛】本题考查了垂径定理的运用.关键是利用垂径定理得出两个直角三角形,根据勾股定理表示半径的平方,根据半径相等列方程求解.9.C【分析】根据圆周角定理∠BOC=2∠BAC 即可解决问题.【详解】解:∵∠BOC=2∠BAC ,∠BAC=40°,∴∠BOC=80°,故选C .【点睛】本题考查圆周角定理、圆心角、弧、弦之间的关系解题的关键是熟练掌握基本知识,属于中考基础题.10.A【解析】【分析】连接OC ,根据三角形内角和定理可得∠AOB=90°和∠OBC 的度数,又得∠DOC 的度数,根据弧的度数等于所对圆心角的度数,可得结论.【详解】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴弧CD的度数为20°,故选:A.【点睛】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,正确作出辅助线是解题的关键.11.3π.【详解】试题分析:连结OP、OQ,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得出∠POQ=2∠A=60°,再根据弧长公式列式计算即可.解:如图,连结OP、OQ,则∠POQ=2∠A=60°.∵⊙O的半径为9,∴的长==3π.故答案为3π.考点:弧长的计算.12.8【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC 中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴.∵AC=6,∴.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.13.24°【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108°和正六边形的每个内角为120°,然后根据周角的定义和等腰三角形性质可得结论.【详解】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=(180132)242-︒=︒故答案是:24︒.【点睛】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键.14.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;本题可由勾股定理等性质算出点与圆心的距离d,当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】∵CA>4,∴点C在⊙A外.∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内.故答案为C.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.60 º【分析】根据等腰三角形的性质由OB=OC得∠OBC=∠OCB=30°,再根据三角形内角和定理计算出∠BOC=120°,然后根据圆周角定理求解.【详解】∵OB=OC,∴∠OBC=∠OCB=30°,∴∠BOC=180°−30°−30°=120°∠BOC=60°.∴∠A=12【点睛】本题考查了圆周角定理,解题的关键是掌握圆周角定理的用法.16.由AB=CD可得弧AB=弧CD,则可得弧AC=弧BD,从而证得结论.【详解】试题分析:∵AB=CD∴弧AB=弧CD∴弧AC=弧BD∴∠AOC=∠BOD.考点:圆周角定理点评:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17.详见解析.【分析】欲证明∠ABD=∠CDB,只要证明AD BC=即可.【详解】证明:∵AB=CD,∴AB CD=,∴AB AC CD AC-=-,∴,AD BC=,∴∠ABD=∠CDB.【点睛】考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.18.(1)证明见解析(2)8【分析】()1根据180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒得到,B EDC ∠=∠因为,AB AC =根据等边对等角得到,B C ∠=∠根据等量代换得到,EDC C ∠=∠根据等角对等边即可证明. ()2连接,AE 根据等腰三角形三线合一的性质得到2BC EC ==证,ABC EDC ∽根据相似三角形的性质即可求出AB 的长.【详解】(1)证明: 180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒∴,B EDC ∠=∠又∵,AB AC =∴,B C ∠=∠∴,EDC C ∠=∠∴ .ED EC =(2)连接,AE∵AB 是直径,∴,AE BC ⊥又∵,AB AC =∴2BC EC ==∵,.B EDC C C ∠=∠∠=∠∴,ABC EDC ∽∴::,AB EC BC CD =又∵3,EC BC CD ===∴8.AB =【点睛】考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定与性质等,正确的作出辅助线是解题的关键.19.(1)(2)100°【详解】试题分析:(1)如图,过O作OE⊥AB于E,根据垂径定理知道E是AB的中点,然后在Rt△OEB中利用已知条件即可求解;(2)首先根据三角形的外角和内角的故选得到可以得到∠BOD=∠B+∠A+∠D,接着利用圆周角和圆心角的关系和已知条件即可求出∠BOD的度数.试题解析:(1)如图,过O作OE⊥AB于E,∴E是AB的中点,在Rt△OEB中,OB=2,∠B=30°,∴OE=1,∴∴(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.∴∠BOD=∠B+∠A+∠D.…又∵∠BOD=2∠A,∠B=30°,∠D=20°,∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…∴∠BOD=2∠A=100°.…解法二:如图,连接OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.…又∵∠B=30°,∠D=20°,∴∠DAB=50°,…∴∠BOD=2∠DAB=100°考点:1.垂径定理;2.圆周角定理.20.(1)详见解析;(2)12.【分析】(1)作AB,AB的垂直平分线交于点O,则点O即为所求;(2)求出AO.OD,即可得到结论.【详解】(1)用直尺和圆规分别作线段AB、BC的垂直平分线CF、AE,两条垂直平分线相较于点O,点O即为△ABC的外心;(2)设△ABC的外接圆的半径为R,∵三角形ABC是等边三角形,∴∠OCB= 30 °,则OE=12 R,∴外心O到三角形三边的距离和d=32 R,外心O到三角形三个顶点的距离和D=3R,∴dD=31232RR.【点睛】考查了三角形的外接圆与外心,三角形的内接圆与内心,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.21.(1)∠CBE=86°;(2)证明见解析.【详解】试题分析:(1)根据圆内接四边形的性质计算即可;(2)证明△ADC≌△EBC即可.试题解析:(1)∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°.又∵∠ADC= 86°,∴∠ABC= 94°,∴∠CBE=180° - 94°=86°.(2)∵ AC=EC,∴∠E=∠CAE ,∵ AC平分∠BAD,∴∠DAC=∠CAB ,∴∠DAC= ∠E.∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°,又∵∠CBE+∠ABC = 180°, ,∴∠ADC= ∠CBE,∴△ADC ≌△EBC ,∴ AD=BE .22.(1)45°;(2)π-2.【分析】(1)根据含30°角的直角三角形性质求出∠CAB,即可得出答案;(2)连接OD,求出∠DOA,分别求出扇形AOD和△AOD面积,即可得出答案.【详解】(1)解:∵AB 是直径∴∠ACB=90°,又∵BC=2,AB=4,∴ BC= 12 AB,∴∠BAC=30°,∴∠DAB=∠DAC+∠BAC=15°+30°=45°;(2)解:连接OD,∵直径AB=4,∴半径OD=OA=2,∵OA=OD,∠DAB=45°,∴∠ADO=∠DAB=45°,∴∠AOD=90°,∴阴影部分的面积S=S扇形AOD-S△AOD=290213622022ππ⨯⨯-⨯⨯=-.【点睛】考查了含30°角的直角三角形性质,扇形的面积计算,圆周角定理等知识点,能求出∠CAB=30°和∠AOD=90°是解此题的关键.23.证明见解析.【解析】【分析】由AB是⊙O的直径,CD⊥AB,根据垂径定理的即可求得弧BC=弧BD=12弧CD,从而求得2∠BAC=2∠BAD=∠DAC,由圆周角定理易证得:∠DGC=2∠BAC;【详解】证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC =2∠BAC .【点睛】此题考查垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.24.(1)证明见解析;(2)6π-【分析】(1)连接BO 并延长交⊙O 于点E ,连接DE .由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC 是⊙O 的切线;(2)分别求出等边三角形DOB 的面积和扇形DOB 的面积,即可求出答案.【详解】(1)证明:连接BO 并延长交⊙O 于点E ,连接DE,∵BE 是直径,∴∠EDB =90°,∴∠E +∠EBD =90°∵=,∴∠E =∠A又∵∠DBC =∠BAC ,∴∠DBC =∠E∴∠DBC +∠EBD =90°,∴∠EBC =90°,∴BC ⊥EB.又∵OB 是半径(B 在⊙O 上),∴BC 与⊙O 相切.(2)∵=,∴∠BOD =2∠A =60°S 阴影= S 扇形OBD -S △OBD =π36×60360-6π-【点睛】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB 和三角形DOB 的面积.25.(1)45°;(2)26°.【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

九年级数学上册第24章单元测试卷(有解析新人教版)

九年级数学上册第24章单元测试卷(有解析新人教版)

第24章 单元检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.若⊙O 的半径为5 cm ,点A 到圆心O 的距离为4 cm ,那么点A 与⊙O 的位置关系是( C ) A .点A 在圆外 B .点A 在圆上 C .点A 在圆内 D .不能确定2.(2018·武汉元调)圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么直线和圆的位置关系是( D )A .相离B .相切C .相交D .相交或相切3.如图,在⊙O 中,点A ,B ,C 均在圆上,∠AOB =80°,则∠AC B 等于( B ) A .130° B .140° C .145° D .150°4.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,∠A =22.5°,OC =4,则CD 的长为( D )A .2 2B .4C .8D .4 2,第3题图) ,第4题图) ,第5题图) ,第7题图)5.如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,∠BAC =20°,AD ︵=CD ︵,则∠DAC 等于( C )A .70°B .45°C .35°D .25°6.已知圆锥的底面直径为6 cm ,母线长为4 cm ,那么圆锥的侧面积为( A )A .12π cm 2B .24π cm 2C .36π cm 2D .48π cm 27.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC 等于( A ) A .130° B .100° C .50° D .65° 8.如图,△ABC 为等腰直角三角形,∠A =90°,AB =AC =2,⊙A 与BC 相切,则图中阴影部分的面积为( C )A .1-π2B .1-π3C .1-π4D .1-π5,第8题图) ,第9题图),第10题图)9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( A )A.133 B.92 C.4313 D .22 5 10.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,AB 是⊙O 的直径.点M ,N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( B )A .MN =433B .若MN 与⊙O 相切,则AM = 3C .若∠MON=90°,则MN 与⊙O 相切D .l 1和l 2的距离为2 二、填空题(每小题3分,共18分)11.如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°__.12.小明制作一个圆锥模型,这个圆锥的侧面是一个半径为9 cm ,圆心角为120°的扇形铁皮制作的,再用一块圆形铁皮做底面,则这块圆形铁皮的半径为__3__ cm.13.如图,将正六边形ABCDEF 放在平面直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点C 的坐标为____________.,第11题图) ,第13题图) ,第14题图) ,第15题图) ,第16题图)14.如图,在矩形ABCD 中,AB =8,AD =12,过A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为__6.25__.15.如图,⊙O 的半径为3 cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为__1或5__ s 时,BP 与⊙O 相切.16.如图,在平面直角坐标系中,已知点A ,B 的坐标分别为A(6,0),B(0,2),以AB为斜边在右上方作Rt △ABC.连接OC ,则OC 的最大值为.三、解答题(共72分)17.(8分)如图,在⊙O 中,AB 为⊙O 的弦,C ,D 是直线AB 上两点,且AC =BD , 求证:△OCD 为等腰三角形.【解析】如图,过点O 点作OM⊥AB ,垂足为M.∵OM⊥AB ,∴AM =BM.∵AC =BD ,∴CM =DM.又∵OM⊥AB ,∴OC =OD.∴△OCD 为等腰三角形.18.(8分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC =∠B =60°.(1)求∠ADC 的度数;(2)求证:AE 是⊙O 的切线.【解析】(1)∵∠ABC 与∠ADC 都是AC ︵所对的圆周角,∴∠ADC =∠B =60°.(2)∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠BAC =30°.∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即 BA⊥AE.∴AE 是⊙O 的切线.19.(8分)如图,在△ABC 中,∠C =90°,AC +BC =8,点O 是斜边AB 上一点,以O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E.(1)当AC =2时,求⊙O 的半径;(2)设AC =x ,⊙O 的半径为y ,求y 与x 的函数关系式.【解析】(1)连接OE ,OD ,OC.在△ABC 中,∠C =90°,AC +BC =8,∵AC =2,∴BC =6.∵以O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E ,设OD =OE =r ,则12×2·r +12×6·r=12×2×6,解得r =32,∴圆的半径为32.(2)∵AC =x ,BC =8-x ,由12x ·y +12(8-x )·y =12x (8-x ),得y =-18x 2+x.20.(8分)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC =6 cm ,AC =8 cm ,∠ABD =45°.(1)求BD 的长;(2)求图中阴影部分的面积.【解析】(1)如图,连接OD.∵AB 为⊙O 的直径,∴∠ACB =90°.∵BC =6 cm ,AC =8 cm ,∴AB =10 cm.∴OB =5 cm.∵OD =OB ,∴∠ODB =∠ABD =45°.∴∠BOD =90°.∴BD =OB 2+OD 2=5 2 cm.(2)S 阴影=S 扇形DOB -S △OBD =90360π·52-12×5×5=25π-504cm 2.21.(8分)如图,四边形ABCD 内接于⊙O,点E 在对角线AC 上,EC =BC =DC. (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【解析】(1)∵BC =DC ,∴∠CBD =∠CDB =39°.∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°.(2)∵EC =BC ,∴∠CEB =∠CBE.∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD.∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.22.(10分)如图,点I 是△ABC 的内心,AI 的延长线交边BC 于点D ,交△ABC 外接⊙O 于点E ,连接BE ,CE.(1)若点I ,O 重合,AD =6,求CD 的长;(2)求证:C ,I 两个点在以点E 为圆心,EB 为半径的圆上.【解析】(1)∵I ,O 重合,∴点I 是△ABC 的外心.∵点I 是△ABC 的内心,∴△ABC 是等边三角形,设AB =BC =2CD =2x ,则AD =3x =6,∴CD =x =2 3.(2)如图,连接IB.∵点I 是△ABC 的内心,∴∠BAD =∠CAD ,∠ABI =∠CBI.∴BE ︵=CE ︵.则BE =CE.∴∠BIE =∠BAD +∠ABI =∠IBD +∠CAD =∠IBD +∠CBE =∠IBE.∴IE =BE =CE ,即C ,I 两个点在以点E 为圆心,EB 为半径的圆上.23.(10分)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE⊥AC 于点E ,作射线DE 交BC 的延长线于点F ,连接PF.(1)若∠POC=60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线.【解析】(1)∵AC =12,∴CO =6.∴PC ︵=60·π·6180=2π.(2)∵PE⊥AC ,OD ⊥AB ,∴∠PEA =90°,∠ADO =90°.在△ADO 和△PEO 中,⎩⎪⎨⎪⎧∠ADO =∠PEO ,∠AOD =∠POE ,OA =OP ,∴△POE ≌△AOD (AAS ).∴OD =OE. (3)设⊙O 的半径为r.∵OD⊥AB ,∠ABC =90°,∴OD∥BF.∴∠ODE =∠CFE.又OD =OE ,∴∠CEF =∠CFE.∴FC =EC =r -OE =r -OD =r -12BC.∴BF =BC +FC =r +12BC.∵PD =r +OD =r +12BC ,∴PD =BF.又∵PD∥BF ,且∠DBF =90°,∴四边形DBFP 是矩形.∴∠OPF =90°,OP ⊥PF.∴PF 是⊙O 的切线.24.(12分)如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点.(1)若AB 是⊙O 的切线,求∠BMC;(2)在(1)的条件下,若E ,F 分别是边AB ,AC 上的两个动点,且∠EDF=120°,⊙O 的半径为2,试问BE +CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.【解析】(1)如图①,连接OB ,OD ,OC.∵AB 是⊙O 的切线,∴∠ABO =90°.∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°.∴∠OCB =∠OBC =30°.∴∠BOC =120°.∴∠BMC =12∠BOC =60°.(2)BE +CF 的值为定值.理由:如图②,过点D 作DH⊥AB 于点H ,DN ⊥AC 于点N ,连接AD ,如图②.∵△ABC 为正三角形,D 为BC 的中点,∴AD 平分∠BAC ,∠BAC =60°.∴DH =DN ,∠HDN =120°,∵∠EDF =120°,∴∠HDE =∠NDF.在△DHE 和△DNF 中,⎩⎪⎨⎪⎧∠DHE =∠DNF ,DH =DN ,∠HDE =∠NDF ,∴△DHE ≌△DNF.∴HE =NF.∴BE +CF =BH -EH +CN +NF =BH +CN.在Rt △DHB 中,∵∠DBH =60°,∴BH =12BD.同理可得CN =12DC.∴BE +CF =12BD +12DC =12BC =BD.∵∠BOC =120°,D 为BC 中点,⊙O 半径为2,∴OD ⊥BC ,∠BOD =60°.∴BD =3.∴BE+CF 的值是定值,定值为 3.。

人教版九年级上册数学第24章测试题附答案

人教版九年级上册数学第24章测试题附答案

人教版九年级上册数学第24章测试题附答案(时间:120分钟 满分:120分)姓名:______ 班级:______ 分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.过圆上一点可以作出圆的最长弦的条数是 ( A )A .1条B .2条C .3条D .无数条2.如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是 ( B )A .130°B .140°C .150°D .160°第2题图 第4题图 第5题图3.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过 ( A )A .12 mmB .12 3 mmC .6 mmD .6 3 mm4.如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是( A )A .AP =2OPB .CD =2OPC .OB ⊥ACD .AC 平分OB5.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是 ( C )A .12π+18 3B .12π+363C .6π+18 3D .6π+3636.如图,C 是以AB 为直径的半圆O 上一点,连接AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG .DE ,FG ,AC ︵,BC ︵的中点分别是M ,N ,P ,Q .若MP +NQ =14,AC +BC =18,则AB 的长为 ( C )A .9 2 B.907 C .13 D .16第6题图 第7题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.如图,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB =__36°__.8.如图,在⊙O 中,弦AB ⊥AC ,OD ⊥AB 于点D ,OE ⊥AC 于点E .若AB =8 cm ,AC =6 cm ,则⊙O 的半径OA 的长为__5__cm.9.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何?”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是__6__步.10.如图是一个圆环形黄花梨木摆件的残片的示意图,为求其外圆的半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15 cm ,AB =60 cm ,则这个摆件的外圆半径是__37.5__ cm.第10题图 第11题图 第12题图11.如图,⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则劣弧BD ︵所对的圆心角∠BOD 的大小为__144__度.12.如图,⊙O 的半径为2,圆心O 到直线l 的距离为4,有一内角为60°的菱形,当菱形的一边在直线l 上,另有两边所在的直线恰好与⊙O相切,此时菱形的边长为33. 三、(本大题共5小题,每小题6分,共30分)13.(1)在平面直角坐标系中,以原点O 为圆心,5为半径作⊙O ,已知A ,B ,C 三点的坐标分别为(3,4),(-3,-3),(4,-10),试判断A ,B ,C 三点与⊙O 的位置关系;解:∵由勾股定理,得OA =32+42=5,OB =(-3)2+(-3)2=32<5,OC =42+(-10)2=26>5,∴点A 在⊙O 上,点B 在⊙O 内,点C 在⊙O 外.(2)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5 cm ,弧长是6π cm ,求这个圆锥的高.解:圆锥底面半径为6π÷π÷2=3 cm.∴圆锥的高为52-32=4 cm.答:圆锥的高为4 cm.14.如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺,光盘和三角板如图放置于桌面上,并量出AB=3 cm,求此光盘的直径.解:设光盘的圆心为O,三角板的另外两顶点为C,D,连接OB,OA.∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∠ABO=90°,∴∠OAB=12∠CAB=60°,∴∠AOB=30°,∵AB=3 cm,∴OA=6 cm,由勾股定理得OB=33cm,∴光盘的直径为6 3 cm.15.按要求画图:①仅用无刻度的直尺;②保留必要的画图痕迹.(1)如图甲,画出⊙O的一个内接矩形;(2)如图乙,AB是⊙O的直径,CD是⊙O的弦,且CD∥AB,画出⊙O的一个内接正方形.甲 乙解:(1)如图甲所示;(2)如图乙所示.16.如图,三角形ABC 中,AB =AC ,BD 是∠ABC 的平分线,过A ,B ,D 三点的圆与BC 相交于点E ,你认为AD =CE 吗?如果不能,请举反例;如果AD =CE ,请说明理由.解:AD =CE ,理由:连接DE.∵BD 平分∠ABC ,∴∠ABD =∠CBD.∴AD ︵=DE ︵,∴AD =DE.∵四边形ABED 是圆内接四边形,∴∠ABC +∠ADE =180°.又∵∠EDC +∠ADE =180°,∴∠ABC =∠EDC.又∵AB =AC ,∴∠ABC =∠C ,∴∠EDC =∠C ,∴CE =DE.∵AD =DE ,CE =DE ,∴AD =CE.17.如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.(1)解:∵BC =DC ,∴BC ︵=DC ︵,∴∠BAC =∠CDB =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°.(2)证明:∵EC =BC ,∴∠CEB =∠CBE .∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD .∵∠BAE =∠CBD ,∴∠1=∠2.四、(本大题共3小题,每小题8分,共24分)18.如图,四边形ABCD 是矩形,以AD 为直径的⊙O 交BC 边于点E ,F ,AB =4,AD =12.求线段EF 的长.解:作OM ⊥BC 于M ,连接OE.∴ME=MF=12EF.∵AD=12,∴OE=6.在矩形ABCD中,OM⊥BC,∴OM=AB=4.在△OEM中,∠OME=90 °,∴ME=OE2-OM2=62-42=2 5.∴EF=2ME=45.19.如图①,OA,OB是⊙O的两条半径,且OA⊥OB,C是OB延长线上一点,过C点作CD切⊙O于点D,连接AD交OC于点E.(1)试探究线段CD与CE的数量关系,并予以证明;(2)若将图①中的半径OB所在直线向上平移到⊙O外的直线CF的位置,点E是DA延长线与CF的交点(如图②),其他条件不变,试判断①中结论是否仍然成立,并予以证明.解:(1)CD=CE.证明:连接OD.∵CD是⊙O的切线,∴∠ODA+∠ADC=90°.∵OA⊥OB,∴∠A+∠OEA=90°.又∵OA=OD,∴∠A=∠ODE,∴∠AEO=∠CDE.又∵∠AEO=∠CED,∴∠CDE=∠CED,∴EC=CD.(2)(1)中结论仍然成立,证明略.分别20.如图,在△ABC 中,以AB 为直径的⊙OD 作与BC ,AC 相交于D ,E ,BD =CD ,过点⊙O 的切线交边AC 于点F.(1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长(结果保留π).(1)证明:连接OD ,∵DF 是⊙O 的切线,D 为切点,∴OD ⊥DF ,∴∠ODF =90°.∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC .(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°.∵OB =OD ,∴△OBD 是等边三角形,∴∠BOD =60°,∴lBD ︵=n πR 180=60π× 5180=53π.五、(本大题共2小题,每小题9分,共18分)21.如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 相交于点M ,N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON,则OC=ON,∴∠DCB=∠ONC.∵在Rt△ABC中,D为斜边AB的中点,∴CD=DB,∴∠DCB=∠B,∴∠ONC=∠B,∴ON∥AB.∵NE是⊙O的切线,∴NE⊥ON,∴NE⊥AB.(2)连接ND.∵∠ACB=90°=∠CMD=∠CND,∴四边形CMDN是矩形,∴MD=CN.由(1)知,CD=BD,∵DN⊥BC,∴CN=NB,∴MD=NB.22.如图,AB是圆O的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD,延长PD交圆的切线BE于点E.(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O 上,如图②,求证:四边形DFBE为菱形.(1)解:直线PD为⊙O的切线.证明:连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°.∵PD为⊙O的切线,∴∠PDO=90°.在Rt△PDO中,∠P=30°,PD=3,解得OD=1.∴PO=PD2+OD2=2,∴PA=PO-AO=2-1=1.(3)证明:如图②,依题意得∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF,∴AD=AF,BF∥PD,∴DF⊥PB,∵BE为切线,∴BE⊥PB,∴DF∥BE.∴四边形DFBE为平行四边形,∵PE,BE为切线,∴BE=DE,∴四边形DFBE为菱形.六、(本大题共12分)23.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C,D两点,直径AB⊥CD,点M是直线CD上异于点C,O,D的一个动点,AM所在的直线交⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图①,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图②,其他条件不变时,(1)中的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图③,∠AMO=15°,求图中阴影部分的面积.解:(1)PN与⊙O相切.证明:连接ON,则∠ONA=∠OAN.∵PM=PN,∴∠PNM=∠PMN.又∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠OAN=90°,即PN与⊙O相切.(2)成立.理由如下,连接ON,则∠ONA=∠OAN.∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∠OMA+∠OAM=90°.∴∠PNM+∠ONA=90°,∴∠PNO=180°-90°=90°.即PN与⊙O相切.(3)连接ON,由(2)可知∠PNO=90°,∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∴∠PON=60°,∠AON=30°.过点N作NE⊥OD,垂足为点E,则OE=12.∴NE=32.∴S阴影=S△AOC+S扇形AON-S△CON=12OC·OA+30360·π·12-12CO·NE=12×1×1+π12-12×1×32=12+π12-34,∴图中阴影部分的面积为12+π12-34.。

人教版九年级数学上册第24章达标测试卷附答案

人教版九年级数学上册第24章达标测试卷附答案

人教版九年级数学上册第二十四章达标测试卷一、选择题(每题3分,共30分)1.如图,AB 是⊙O 的直径,点C 在圆上,∠ABC =65°,那么∠OCA 的度数是( ) A .25°B .35°C .15°D .20°(第1题) (第2题) (第4题) (第5题)2.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )A .65°B .75°C .50°D .55°3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设( )A .有一个锐角小于45°B .每一个锐角都小于45°C .有一个锐角大于45°D .每一个锐角都大于45°4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD的长是( ) A.7B .27C .6D .85.如图,过⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,OP交⊙O 于点C ,点D 是优弧ABC 上不与点A ,C 重合的一个动点,连接AD ,CD .若∠APB =80°,则∠ADC 的度数是( ) A .15°B .20°C .25°D .30°6.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定...成立的是( ) A .OC ∥BDB .AD ⊥OCC .△CEF ≌△BEDD .AF =FD(第6题) (第8题) (第9题) (第10题)7.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面半径和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( ) A .60πB .65πC .78πD .120π8.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径为60 cm ,则这块扇形铁皮的半径是( ) A .40 cmB .50 cmC .60 cmD .80 cm9.如图,△ABC 的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且AB=5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( ) A .4B .6.25C .7.5D .910.如图,抛物线y =14x 2-4与x 轴交于A ,B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段P A 的中点,连接OQ ,则线段OQ 的最大值是( ) A .3B.412C.72D .4二、填空题(每题3分,共24分)11.已知圆的半径是22,则该圆的内接正方形的面积是________.12.如图,点A ,B ,C ,D 都在⊙O 上,∠ABC =90°,AD =3,CD =2,则⊙O的直径的长是________.(第12题) (第13题) (第14题)13.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则AB ︵的长为________(结果保留π).14.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=________.15.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD =6,则BC=________.(第15题)(第17题)(第18题)16.在矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD的长为半径的圆,那么点B在⊙P________,点C在⊙P________.(填“内”或“外”)17.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF的面积为3π,则菱形OABC的边长为________.18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB 于点D,连接CD,则图中阴影部分的面积为________(结果用含π的式子表示).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在Rt△ABC中,∠BAC=90°.(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,P A长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.20.如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH ⊥AC 于H .若OH =2,AB =12,BO =13.求: (1)⊙O 的半径; (2)AC 的长.21.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,AB =6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD . (1)求证:∠BAD =∠CBD ;(2)若∠AEB =125°,求BD ︵的长(结果保留π).22.已知P A ,PB 分别与⊙O 相切于点A ,B ,∠APB =80°,C 为优弧AB 上一点.(1)如图①,求∠ACB 的大小;(2)如图②,AE 为⊙O 的直径,AE 与BC 相交于点D .若AB =AD ,求∠EAC 的大小.23.如图,AB 为⊙O 的直径,且AB =43,点C 是AB ︵上的一动点(不与A ,B重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求阴影部分的面积.24.如图,⊙C经过原点且与两坐标轴分别交于点A(0,2)和点B(23,0).(1)求线段AB的长及∠ABO的大小.(2)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,求∠BOP的度数;若不存在,请说明理由.25.如图,在平面直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.答案一、1.A 2.A 3.D 4.B 5.C 6.C7.B8.A9.A【点拨】∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2.∴△ABC为直角三角形,且∠A=90°.∵AB,AC与⊙O分别相切于点F,E,∴OF⊥AB,OE⊥AC.易知四边形OF AE为正方形.设OE=r,则AE=AF=r.∵△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,∴BD=BF=5-r,CD=CE=12-r.∴5-r+12-r=13.∴r=5+12-132=2.∴阴影部分(即四边形AEOF)的面积是2×2=4. 10.C【点拨】如图,连接BP.当y=0时,14x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0).∵Q是线段P A的中点,∴OQ为△ABP的中位线.∴OQ=12BP.当BP最大时,OQ最大,即BP过圆心C时,BP最大.如图,点P运动到P′位置时,BP最大.∵BC=32+42=5,∴BP′=5+2=7.∴线段OQ的最大值是7 2.二、11.1612.1313.π314.125°15.616.内;外17.318.π-1三、19.解:(1)如图所示.(2)BC与⊙P相切.证明如下:如图,过P点作PD⊥BC,垂足为D.∵CP为∠ACB的平分线,且P A⊥AC,PD⊥CB,∴PD=P A.∵P A为⊙P的半径,∴PD为⊙P的半径.∴BC与⊙P相切.20.解:(1)连接OA.∵AB是⊙O的切线,A为切点,∴OA⊥AB.在Rt△AOB中,AO=OB2-AB2=132-122=5, ∴⊙O的半径为5.(2)∵OH⊥AC,∴在Rt△AOH中,AH=AO2-OH2=52-22=21.∴AC=2AH=221.21.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.(2)解:连接OD.∵∠AEB=125°,∴∠AEC=55°.∵AB为⊙O的直径,∴∠ACE =90°. ∴∠CAE =35°. ∴∠DAB =35°.则BD ︵所对圆心角∠DOB =70°. ∴BD ︵的长为70π×3180=76π. 22.解:(1)连接OA ,OB .∵P A ,PB 是⊙O 的切线, ∴∠OAP =∠OBP =90°.∴∠AOB =360°-90°-90°-80°=100°. ∴∠ACB =12∠AOB =50°. (2)连接CE .∵AE 为⊙O 的直径,∴∠ACE =90°. ∵∠ACB =50°,∴∠BCE =90°-50°=40°. ∴∠BAE =∠BCE =40°.∵AB =AD ,∴∠ABD =∠ADB =70°. ∴∠EAC =∠ADB -∠ACB =20°. 23.(1)证明:连接OC ,BC ,OE .∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠BCD =90°, ∵在Rt △BCD 中,点E 是BD 的中点, ∴CE =BE .又∵OB =OC ,OE =OE , ∴△OBE ≌△OCE . ∴∠OBE =∠OCE . ∵BD 是⊙O 的切线, ∴∠OBE =∠OCE =90°.∴EC是⊙O的切线.(2)解:∵∠D=30°,∠OBD=90°,∴∠A=60°.∴∠BOC=120°.∴∠BOE=60°.∴∠OEB=30°.∵AB=43,∴OB=2 3.∴OE=4 3.∴BE=6.∴S阴影=2×12×6×23-120×π×(23)2360=123-4π.24.解:(1)∵A(0,2),B(23,0),∴OA=2,OB=2 3.在Rt△AOB中,AB=OA2+OB2=22+(23)2=4.如图,连接OC.∵∠AOB=90°,∴AB为⊙C的直径,C为AB的中点.∴AC=OC=12AB=2=OA.∴△AOC是等边三角形.∴∠BAO=60°.∴∠ABO=30°.(2)存在.如图,作OB的垂直平分线MN,交⊙C于点M,N,交OB于点D,连接OM,BM,ON,BN.易得MN必过点C,即MN是⊙C的直径.∵MN垂直平分OB,∴△OBM,△OBN都是等腰三角形.∴M,N点均符合P点的要求.∵MN是⊙C的直径,∴∠MON=90°.∵∠BMO=∠BAO=60°,∴△OBM是等边三角形.∴∠BOM=60°.∴∠BON=∠MON-∠BOM=90°-60°=30°.故存在符合条件的P点,∠BOP的度数为60°或30°.25.(1)解:∵∠AOB=90°,∴AB是⊙O的直径.∵A(6,0),B(0,-2),∴OA=6,OB= 2.∴AB=6+2=2 2.∴⊙M的半径为 2.(2)证明:∵∠COD=∠CBO,∠COD=∠ABD,∴∠ABD=∠CBO.∴BD平分∠ABO.(3)解:∵AB为⊙M的直径,∴过点A作直线l⊥AB,直线l与BD的延长线的交点即是所求的点E,此时直线AE必为⊙M的切线(如图).易求得OC=63,∠ECA=∠EAC=60°,∴△ECA 为边长等于263的正三角形.设点E 的坐标为(x ,y ),易得x =63+263×12=263, y =263×32=2,∴点E 的坐标为⎝ ⎛⎭⎪⎫263,2.。

(人教版)初中数学九年级上册第二十四章综合测试03含答案解析

(人教版)初中数学九年级上册第二十四章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二十四章综合测试一、选择题(每小题4分,共40分)1.如图24-14,AB 是O 的直径,点C 在O 上,若40A ∠=︒,则B ∠的度数为( ) A .80︒B .60︒C .50︒D .40︒2.如图24-15,AB 是O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( ) A .CM DM =B . BCBD = C .ACD ADC ∠=∠ D .OM MD =3.如图24-16,ABC △内接于O ,OD BC ⊥于点D ,50A ∠=︒,则OCD ∠的度数是( ) A .40︒B .45︒C .50︒D .60︒4.如图24-17,AB 是O 的弦,BC 与O 相切于点B ,连接OA ,OB .若70ABC ∠=︒,则A ∠等于( ) A .15︒B .20︒C .30︒D .70︒5.如图24-18,半径为1的小圆在半径为9的大圆内沿大圆滚动,则小圆扫过的阴影部分的面( )A .17πB .32πC .49πD .80π6.如图24-19,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点0,3()B .点2,3()C .点5,1()D .点6,1()7.如图24-20,在边长为1的正方形组成的网格中,ABC △的顶点都在格点上,将ABC △绕点C 顺时针旋转60︒,则顶点A 所经过的路径长为( ) A .10πBCD .π8.如图24-21,在半径为R 的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依次作到第n 个内切圆,它的半径是( ) A.nR ⎝⎭B .12nR ⎛⎫⎪⎝⎭C .112n R -⎛⎫⎪⎝⎭D.1n R -⎝⎭9.小明用图24-22中所示的扇形纸片制作一个圆锥的侧面,已知扇形的半径为5 cm ,弧长是6π cm ,那么这个圆锥的高是( )A .4 cmB .6 cmC .8 cmD .2 cm10.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( )A .120︒B .180︒C .60︒D .90︒二、填空题(每小题4分,共16分)11.在圆中,30︒的圆周角所对的弦的长度为________.12.当宽为3 cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图24-23所示(单位:cm ),那么该圆的半径为________cm .13.如图24-24,Rt ABC △的边BC 位于直线l 上,AC =90ACB ∠=︒,30A ∠=︒,若Rt ABC△由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含的式子表示).14.(2013·江苏盐城)如图24-25,在ABC △中,90BAC ∠=︒, 5 cm AB =, 2 cm AC =,将ABC △绕顶点C 按顺时针方向旋转45︒至11A B C △的位置,则线段AB 扫过区域(图中的阴影部分)的面积为________2cm .三、解答题(共44分)15.(8分)如图24-26,在O 中,直径AB 与弦CD 相交于点P ,40CAB ∠=︒,65APD ∠=︒. (1)求B ∠的大小;(2)已知6AD =,求圆心O 到BD 的距离.16.(8分)如图24-27,在ABC △中,90C ∠=︒,8AC BC +=,点O 是斜边AB 上一点,以点O 为圆心的O 分别与AC ,BC 相切于点D ,E . (1)当2AC =时,求O 的半径;(2)设AC x =,O 的半径为y ,求y 与x 的函数关系式.17.(8分)如图24-28,P 的圆心为32P -(,),半径为3,直线MN 过点50M (,)且平行于y 轴,点N在点M 的上方.(1)在图中作出P 关于y 轴对称的'P ,根据作图直接写出'P 与直线MN 的位置关系; (2)若点N 在(1)中的'P 上,求PN 的长.18.(8分)如图24-29,在O 中,弦BC 垂直于半径OA ,垂足为点E ,D 是优弧BC 上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦6BC =,求图中阴影部分的面积.19.(12分)实践操作:如图24-30,ABC △是直角三角形,90ACB ∠=︒,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) (1)作BAC ∠的平分线,交BC 于点O ; (2)以点O 为圆心,OC 为半径作圆. 综合运用: 在你所作的图中,(1)判别AB 与O 的位置关系,并说明理由;(2)若5AC =,12BC =,求O 的半径.第二十四章综合测试答案解析1.【答案】C【解析】因为AB 为O 的直径,所以90C ∠=︒.因为40A ∠=︒,所以180904050B ∠=︒-︒-︒=︒. 2.【答案】D【解析】根据垂径定理,得CM DM =, BCBD =,AC AD =,由AC AD =,得ACD ADC ∠=∠,而OM MD =不一定成立. 3.【答案】A【解析】连接OB ,则OB OC =,因为OD BC ⊥,所以12COD BOC ∠=∠.因为BOC ∠与A ∠分别是 BC所对的圆心角和圆周角,所以0A B C ∠=∠.所以50COD A ∠=∠=︒. 所以90905040OCD COD ∠=︒-∠=︒-︒=︒.故选A . 4.【答案】B【解析】由同圆半径相等和切线的性质,得907020A ABO ∠=∠=︒-︒=︒.故选B. 5.【答案】B 【解析】22π9π(92)81π49π32πS =⋅-⋅-=-=阴影.6.【答案】C【解析】易知圆心坐标为()2,0,进而可知点()5,1符合要求.7.【答案】C【解析】ABC △绕点C 顺时针旋转60︒,顶点A 经过的路径是以点C为圆心,AC 为半径,圆心角为60︒的圆弧.结合图形,由勾股定理,得AC π180n R l =π. 8.【答案】AR,第二个内切圆的半径是2R ⎝⎭,所以第n个内切圆的半径是nR ⎝⎭. 9.【答案】A【解析】设圆锥的高、底面圆的半径分别为h ,r ,2π6πr =,所以3r =.因为圆的母线长为5,所以圆锥的高4(cm)h ==.10.【答案】A【解析】设母线长为l ,底面半径为r ,则底面周长为2πr ,底面积为2r π,侧面积为rl π.由题知侧面积是底面积的3倍,所以3l r =.设圆心角为n ︒,则π2π180n lr =,解得120n =.11.【答案】【解析】如答图24-1,因为30BAC ∠=︒,所以60BOC ∠=︒,所以BOC △是等边三角形,所以OB OC BC ===,即这个圆的半径为12.【答案】256【解析】如答图24-2,连接OA ,AB ,OC ,设OC 与AB 的交点为点D .在Rt OAD △中,4AD =,3OD R =-,OA R =.由勾股定理,得22234R R =-+().解得256R =,故该圆的半径为256.134π+【解析】斜边长度是2,第一次经过的路线长度是120π2180⨯120π2180⨯.第三次经过的路线长度与第二次经过的路线长度相同,120π2180⨯.所以当点A 第三次落在直线l 上时,经过的路线长度是120π2120π24π4π224π18018033⎫⨯⨯+⨯=+⨯+⎪⎪⎝⎭. 14.【答案】25π8【解析】在Rt ABC △中,BC ,扇形1CBB 的面积是29π8=,1115252CB A S =⨯⨯=△;1245π2π3602CAA S ⨯==扇形. 故111129ππ25π55828CB A ABC BCB CAA S S S S S =+--=+--=△△阴影部分扇形扇形. 15.【答案】解:(1)因为APD C CAB ∠=∠+∠, 所以654025C ∠=︒-︒=︒,所以25B C ∠=∠=︒.(2)如答图24-3,过点O 作OE BD ⊥于点E ,则DE BE =. 又因为AO BO =, 所以116322OE AD ==⨯=. 所以圆心O 到BD 的距离为3.16.【答案】解:如答图24-4,连接OD ,OE ,OC .因为点D ,E 为切点,所以OD AC ⊥,OE BC ⊥,OD OE =. 因为A BC AO C B CC S S S =+△△△,所以111222AC BC AC OD BC OE ⋅=⋅+⋅. (1)因为8AC BC +=,2AC =,所以6BC =. 所以1112626222OD OE ⨯⨯=⨯⨯+⨯⨯.而OD OE =,所以32OD =,即O 的半径为32.(2)因为8AC BC +=,AC x =,所以8BC x =-. 所以111(8)(8)222x x xy x y -=+-. 化简,得218y x x =-+. 17.【答案】解:(1)如答图24-5,点3,2P -()关于y 轴的对称点为'3,2P (),以点'P 为圆心,3为半径的圆即为所求, 'P 与直线MN 相交。

2022学年新人教版九年级数学上册24章《圆》单元综合测试卷及答案解析

2022学年新人教版九年级数学上册24章《圆》单元综合测试卷及答案解析

2022学年九年级数学上册24章《圆》单元综合测试卷(满分:120分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•邗江区校级月考)下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦2.(3分)(2022秋•拱墅区月考)如图,四边形ABCD 是⊙O 的内接四边形,连接OA ,OC .若∠ABC =108°,则∠AOC 的度数为( )A .72°B .108°C .144°D .150°3.(3分)(2022秋•青秀区校级月考)如图,在Rt △ABC 中,∠ACB =90°,⊙O 与BC ,AC 分别相切于点E ,F ,BO 平分∠ABC ,连接OA .若BE =AC =6,⊙O 的半径是2.则图中阴影部分的面积为( )A .10−32πB .10−34πC .8﹣πD .64.(3分)(2022•鼓楼区校级模拟)如图,AD 是⊙O 的直径,P A ,PB 分别切⊙O 于点A ,B ,若∠BCD =α,则∠P 的度数是( )A .90°﹣2αB .90°﹣αC .45°D .2α5.(3分)(2022•汉阳区校级模拟)如图,将两个正方形如图放置(B ,C ,E 共线,D ,C ,G 共线),若AB =3,EF =2,点O 在线段BC 上,以OF 为半径作⊙O ,点A ,点F 都在⊙O 上,则OD 的长是( )A.4B.√10C.√13D.√266.(3分)(2022•巴中)如图,AB为⊙O的直径,弦CD交AB于点E,BĈ=BD̂,∠CDB=30°,AC=2√3,则OE=()A.√32B.√3C.1D.27.(3分)(2022•镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6√3,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为()A.1B.2C.3D.48.(3分)(2022•路南区三模)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN 的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误9.(3分)(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=√3,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为()A.π3B.3π5C.2π3D.3π410.(3分)(2022•固安县模拟)如图,两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张保持不动,将上面一张纸片六边形A'B'C'D'E'F'沿水平方向向左平移a个单位长度,则上面正六边形纸片面积与折线A'﹣B'﹣C扫过的面积(阴影部分面积)之比是()A.3:1B.4:1C.5:2D.2:111.(3分)(2022•海沧区二模)如图,⊙O的直径AB=2,直线l与⊙O相切于点B,将线段AB绕点B顺时针旋转45°得线段BC,E是l上一点.连接CE,则CE的长可以是()A.1B.1.2C.1.4D.1.612.(3分)(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n=2022时,正六边形OA n B n∁n D n E n的顶点D n的坐标是()A.(−√3,﹣3)B.(﹣3,−√3)C.(3,−√3)D.(−√3,3)二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•云龙区校级月考)如图,圆O是△ABC的内切圆,若∠ABC=60°,∠ACB=50°,则∠BOC=°.14.(3分)(2022秋•鄞州区月考)如图,抛物线y=﹣x2+2x+3与x轴交于点A、B(点A在点B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.点D在抛物线的对称轴上,且∠BDC=90°,则点D的坐标是.15.(3分)(2022秋•上城区校级月考)如图,已知⊙O的半径是4,C,D是直径AB同侧圆周上的两点,弧AC的度数为96°,弧BD的度数为36°,动点P在AB上,则PC+PD的最小值为.16.(3分)(2022秋•沭阳县校级月考)如图,圆心B在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与OB相交于C、D两点,则弦CD长的所有可能的整数值是.̂的中点,OC与AB相交于点17.(3分)(2021秋•南宁期末)如图,在半径为6的⊙O中,点C是ABD,CD=3,图中阴影部分面积是.18.(3分)(2021秋•道里区校级期末)如图,一根圆柱形木料的底面半径是0.3米,长是2米,将它截成4段,这四段木料的表面积比原木料增加了平方米.三、解答题(共7小题,满分66分)19.(9分)(2022秋•滨江区校级月考)如图,已知AB是⊙O的直径,弦AC∥OD.(1)求证:弧BD=弧CD;̂的度数为58°,求∠AOD的度数.(2)若AC20.(9分)(2022秋•泰州月考)如图,O是△ABC的外心,I是△ABC的内心,连接AI并延长交BC 和⊙O于D,E.(1)求证:EB=EI;(2)若AB=8,AC=6,BE=4,求AI的长.21.(9分)(2022秋•南京月考)如图,⊙O的弦AB、CD的延长线相交于点P,且P A=PC.求证:AB=CD.22.(9分)(2022秋•仓山区校级月考)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点̂交O′A′于点C.O′处,得到扇形A′O′B′,若∠O=90°,OA=2,AB(1)连接OC,求∠AOC的度数;(2)请直接写出阴影部分S阴影与S扇形AOC、S△OCO′的数量关系;并求出阴影部分的面积.23.(10分)(2022•淮安)如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.(1)判断直线BD与⊙O的位置关系,并说明理由;(2)若AB=4√3,求图中阴影部分的面积.24.(10分)(2021秋•乐清市期末)如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以̂=EP̂,连接DE.BP为直径作⊙O交BC于点D,与AC的另一个交点E,且DP̂=140°,求∠C的度数.(1)若BD(2)求证AB=AP.25.(10分)(2022•五华区校级模拟)如图,AB为⊙O直径,C,D为⊙O上的两点,且∠ACD=2∠A,CE⊥DB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若DE=2CE,AC=4,求⊙O的半径.参考答案一、选择题(共12小题,满分36分,每小题3分)1.A2.C3.A4.D5.B6.C7.C8.D9.C10.A11.D12.A;二、填空题(共6小题,满分18分,每小题3分)13.125 14.(1,1)或(1,2)15.416.8,9,10 17.12π﹣918.1.6956;三、解答题(共7小题,满分66分)19.【解答】(1)证明:连接OC,∵OC=OA,∴∠C=∠A,∵OD∥AC,∴∠BOD=∠A,∠COD=∠C,∴∠COD=∠BOD,∴BD̂=CD̂;(2)解:∵AĈ的度数是58°,∴∠AOC=58°,∴∠BOC=180°﹣∠AOC=122°,∵∠BOD=∠COD,∴∠COD=∠BOD=12∠BOC=61°,∴∠AOD=∠AOC+∠COD=58°+61°=119°.20.【解答】(1)证明:∵I是△ABC的内心,∴AE平分∠CAB,BI平分∠ABC,∴∠BAE=∠CAE,∠ABI=∠CBI,∵∠BIE=∠BAE+∠ABI,∠IBE=∠IBD+∠EBD,∵∠CBE=∠CAE,∴∠BIE=∠EBI,∴EB=EI;(2)解:连接EC.∵∠BAE=∠CAE,∴BÊ=EĈ,∴BE=EC=4,∵∠ADB=∠CDE,∠BAD=∠DCE,∴△ADB∽△CDE,∴BDDE =ADDC=ABEC=84=2,设DE=m,CD=n,则BD=2m,AD=2n,同法可证:△ADC ∽△BDE ,∴AD BD =AC BE ,∴2n 2m =64,∴n :m =3:2,设n =3k ,m =2k ,∵∠CED =∠AEC ,∠ECD =∠BAE =∠CAE ,∴△ECD ∽△EAC ,∴EC 2=ED •EA ,∴8=m •(m +2n ),∴8=2k (2k +6k )∴k =1或﹣1(舍弃),∴DE =2,AD =6,∴AE =8,∵EI =BE =4,∴AI =AE ﹣EI =4.21.【解答】证明:连接AC ,∵P A =PC ,∴∠A =∠C ,∴BC ̂=AD ̂,∴BC ̂−BD ̂=AD ̂−BD ̂,∴CD ̂=AB ̂,∴AB =CD .22.【解答】解:(1)如图,∵OC =OB ,OO ′=O ′B ,∴OC =2OO ′,∵∠OO ′C =90°,∴∠O ′CO =30°,∠COO ′=60°,∵∠AOB =90°,∴∠AOC =90°﹣60°=30°;(2)S 阴=S 扇形O ′A ′B ′﹣(S 扇形OCB ﹣S △OCO ′)=S 扇形AOB ﹣S 扇形OCB +S △OCO ′=S 扇形AOC +S △OCO ′.∴S 阴=30π×22360+12×1×√3=π3+√32.23.【解答】解:(1)直线BD 与⊙O 相切,理由:连接BE ,∵∠ACB =60°,∴∠AEB =∠C =60°,连接OB ,∵OB =OC ,∴△OBE 是等边三角形,∴∠BOD =60°,∵∠ADB =30°,∴∠OBD =180°﹣60°﹣30°=90°∴OB ⊥BD ,∵OB 是⊙O 的半径,∴直线BD 与⊙O 相切;(2)∵AE 是⊙O 的直径,∴∠ABE =90°,∵AB =4√3,∴sin ∠AEB =sin60°=AB AE =4√3AE =√32,∴AE =8,∴OB =4,∴BD =√3OB =4√3,∴图中阴影部分的面积=S △OBD ﹣S 扇形BOE =12×4×4√3−60⋅π×42360=8√3−8π3.24.【解答】(1)解:连接BE ,如图,∵BP是直径,∴∠BEC=90°,∵BD̂=140°,∴DP̂=40°,∵DP̂=EP̂,∴DÊ=80°,∴∠CBE=40°,∴∠C=50°;②证明:∵DP̂=EP̂,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB.25.【解答】(1)证明:连接OC,∵CE⊥DE,∴∠E=90°,∵OA=OC,∴∠A=∠ACO,∵∠ACD=2∠A,∴∠ACD=2∠ACO,∴∠ACO=∠DCO,∴∠A=∠DCO,∵∠A=∠D,∴∠D=∠DCO,∴OC∥DE,∴∠E+∠OCE=180°,∴∠OCE=90°,∵OC是⊙O的半径,∴直线CE与⊙O相切;(2)解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵∠OCB+∠BCE=∠OCE=90°,∴∠ACO=∠BCE,∵∠D=∠A=∠ACO,∴∠D=∠BCE,又∠BEC=∠CED=90°,∴△BCE∽△CDE,∵CEBE =DECE=2,∴BC=√52CE,∵OC=OB,∴∠OCB=∠OBC,∵OC∥ED,∴∠OCB=∠CBE,∴∠CBE=∠OBC,∵∠E=∠ACB=90°,∴△BEC∽△BCA,∴CEBC =ACAB,∴√52CE=ACAB=2√55,∵AC=4,∴AB=2√5,∴OA=√5,即⊙O的半径为√5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档