因式分解的多种方法(初中版)

合集下载

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧初中数学因式分解的几种经典方法因式分解是初中数学的一个重点,涉及到分式方程和一元二次方程,因此学会一些基本的因式分解方法非常必要。

下面列举了九种方法,希望对大家的研究有所帮助。

1.提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有完全平方公式、平方差公式等。

例如,对于方程2x-3x=0,可以进行如下因式分解:x(2x-3)=0,得到x=0或x=3/2.一个规律是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式,这对我们后面的研究有帮助。

2.公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有完全平方公式、平方差公式等。

建议在使用公式法前先提取公因式。

例如,对于x^2-4,可以使用平方差公式得到(x+2)(x-2)。

3.十字相乘法是做竞赛题的基本方法,但掌握了这个方法后,做平时的题目也会很轻松。

关键是将二次项系数a分解成两个因数a1和a2的积a1.a2,将常数项c分解成两个因数c1和c2的积c1.c2,并使ac正好是一次项b,那么可以直接写成结果。

例如,对于2x^2-7x+3,可以使用十字相乘法得到(x-3)(2x-1)。

总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1.a2,常数项c可以分解成两个因数之积,即c=c1.c2,那么可以使用十字相乘法进行因式分解。

文章中有一些格式错误,需要修正。

另外,第四段中的一些内容似乎有问题,建议删除。

改写后的文章如下:分解因式是数学中的一个重要概念,也是许多数学问题的基础。

在中学数学中,我们通常研究到七种分解因式的方法。

1.公因数法这种方法是最基础的方法之一,它的核心思想是找到表达式中的公因数。

例如,对于表达式6x+9y,我们可以找到它们的公因数3,然后将表达式简化为3(2x+3y)。

2.公式法公式法是通过运用数学公式来分解因式。

例如,对于二次三项式ax2+bx+c,我们可以使用求根公式来求出它的两个根,然后将表达式分解为(a(x-根1)(x-根2))的形式。

初中数学因式分解常见的6种方法和7种应用

初中数学因式分解常见的6种方法和7种应用

因式分解的六种方法及其应用因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.方法一提公因式法题型1 公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是()A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x【解析】B2.分解因式:2mx-6my=__________.【解析】2m(x-3y)3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.【解析】(1)原式=x(2x-y).(2)原式=-4m2n(m2-4m+7).题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.【解析】(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).方法二公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.【解析】(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2).(2)原式=(x 2+y 2+2xy )(x 2+y 2-2xy )=(x +y )2(x -y )2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.题型2 先提再套法6.把下列各式分解因式:(1)(x -1)+b 2(1-x );(2)-3x 7+24x 5-48x 3.【解析】(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b )(1-b ).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.题型3 先局部再整体法7.分解因式:(x +3)(x +4)+(x 2-9).【解析】原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1). 题型4 先展开再分解法8.把下列各式分解因式:(1)x (x +4)+4;(2)4x (y -x )-y 2.【解析】(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y )2.方法三 分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.【解析】(1)原式=(m 2-mn )+(mx -nx )=m (m -n )+x (m -n )=(m -n )(m +x ).(2)原式=4-(x 2-2xy +y 2)=22-(x -y )2=(2+x -y )(2-x +y ).方法四 拆、添项法10.分解因式:x 4+14. 【解析】原式=x 4+x 2+14-x 2=⎝⎛⎭⎫x 2+122-x 2=⎝⎛⎭⎫x 2+x +12(x 2-x +12). 方法五 整体法题型1 “提”整体11.分解因式:a (x +y -z )-b (z -x -y )-c (x -z +y ).【解析】原式=a (x +y -z )+b (x +y -z )-c (x +y -z )=(x +y -z )(a +b -c ).题型2 “当”整体12.分解因式:(x+y)2-4(x+y-1).【解析】原式=(x+y)2-4(x+y)+4=(x+y-2)2.题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).【解析】原式=abc2+abd2+cda2+cdb2=(abc2+cda2)+(abd2+cdb2)=ac(bc+ad)+bd(ad+bc)=(bc+ad)(ac+bd).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.【解析】原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).方法六换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.【解析】(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.因式分解的7种应用因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.应用一用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.【解析】23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.计算:2 0162-4 034×2 016+2 0172.【解析】2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.应用二用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.【解析】(1)∵x-2y=3,∴x2-4xy+4y2=9,∴(x2-2xy+4y2)-(x2-4xy+4y2)=11-9,即2xy=2,∴xy=1.(2)x2y-2xy2=xy(x-2y)=1×3=3.应用三用于判断整除4.随便写出一个十位数字与个位数字不相等两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?【解析】所得的差一定能被9整除.理由如下:不妨设该两位数个位上的数字是b,十位上的数字是a,且a>b,b不为0,则这个两位数是10a+b,将十位数字与个位数字对调后的数是10b+a,则这两个两位数中,较大的数减较小的数的差是(10a+b)-(10b+a)=9a-9b=9(a-b),所以所得的差一定能被9整除.应用四用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,判断△ABC形状.【解析】∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0.即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0.∴(a-b)2+(b-c)2+(a-c)2=0.又∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴a-b=0,b-c=0,a-c=0,即a=b=c,∴△ABC为等边三角形.应用五用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.【解析】B-A=a2+a-7-a-2=a2-9=(a+3)(a-3).因为a>2,所以a+3>0,从而当2<a<3时,a-3<0,所以A>B;当a=3时,a-3=0,所以A=B;当a>3时,a-3>0,所以A<B.应用六 用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm ,大正方形的面积比小正方形的面积多960 cm 2.请你求这两个正方形的边长.【解析】设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎪⎨⎪⎧4x -4y =96,①x 2-y 2=960,② 由①得x -y =24,③;由②得(x +y )(x -y )=960,④把③代入④得x +y =40,⑤;由③⑤得方程组⎩⎪⎨⎪⎧x -y =24,x +y =40,,解得⎩⎪⎨⎪⎧x =32,y =8. 故大正方形的边长为32 cm ,小正方形的边长为8 cm.应用七 用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,…. 你发现了什么规律?请用含有字母n (n 为正整数)的等式表示出来,并说明理由.【解析】规律:n 2+[n (n +1)]2+(n +1)2=[n (n +1)+1]2.理由如下:n 2+[n (n +1)]2+(n +1)2=[n (n +1)]2+2n 2+2n +1=[n (n +1)]2+2n (n +1)+1=[n (n +1)+1]2.。

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a -b =(a+b)(a-b)a +2ab+b =(a+b)a -2ab+b =(a-b)如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a -b =(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b) =a +2ab+b 和(a-b) =a -2ab+b 反过来,就可以得到: a +2ab+b =(a+b) 和a -2ab+b =(a-b) ,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a +2ab+b 和a -2ab+b 这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。

八年级因式分解法的四种方法

八年级因式分解法的四种方法

八年级因式分解法的四种方法在八年级数学课程中,因式分解是一个重要的内容。

下面我将介绍四种常见的因式分解方法,希望能够满足你的需求。

1. 公因式提取法:公因式提取法是最常见的因式分解方法之一。

它适用于多项式中存在公共因子的情况。

首先,找出多项式中的公因式,然后将这个公因式提取出来,剩下的部分进行简化。

例如,对于多项式2x^2 + 4x,可以提取公因式2x,得到2x(x + 2)。

2. 完全平方公式:完全平方公式是因式分解中常用的方法之一,适用于形如a^2 + 2ab + b^2或a^2 2ab + b^2的多项式。

利用完全平方公式,我们可以将这些多项式分解成两个平方的和或差。

例如,对于多项式x^2 + 6x + 9,可以将其分解为(x + 3)^2。

3. 分组分解法:分组分解法适用于四项式中存在两对互补的项的情况。

首先,将四项式中的项进行分组,然后在每个组内进行因式分解,最后再进行合并。

例如,对于多项式x^3 + 2x^2 + 3x + 6,可以将其分组为(x^3 + 2x^2) + (3x + 6),然后在每个组内进行因式分解,得到x^2(x + 2) + 3(x + 2),最后合并得到(x^2 + 3)(x + 2)。

4. 平方法:平方法适用于三项式中存在平方项和线性项的情况。

它的思路是将三项式中平方项的系数和线性项的系数相乘,然后找到一个数使得它的平方等于这个乘积,然后利用这个数进行分解。

例如,对于多项式x^2 + 5x + 6,我们可以将5乘以6得到30,找到一个数使得它的平方等于30,即5,然后将多项式分解为(x + 2)(x + 3)。

这些是八年级常见的因式分解方法,每种方法都适用于不同的多项式形式。

在实际应用中,可以根据多项式的特点选择合适的因式分解方法。

希望这些解释能够帮助你更好地理解因式分解的方法。

初中生因式分解

初中生因式分解

因式分解是将一个多项式表达为几个多项式的乘积的过程。

对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。

例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。

例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。

例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。

例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。

例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。

例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。

因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。

因式分解法的四种方法初中

因式分解法的四种方法初中

因式分解法的四种方法初中如下:
因式分解法的四种方法是:提公因式法、分组分解法、待定系数法、十字分解法。

1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。

3、待定系数法是初中数学的一个重要方法。

用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。

由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。

4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

其实就是运用乘法公式
(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

因式分解的多种方法(初中版)

因式分解的多种方法(初中版)

因式分解的方法(初中版)因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。

下面列举了九种方法,希望对大家的学习能有所帮助。

1】提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等例一:22x -3x=0解:x(2x-3)=01x =0,2x =3/2这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。

2】公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。

例二:2x -4分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2)3】十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c 分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果 例三: 把22x -7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1=51 3╳2 11×1+2×3=71 -1╳2 -31×(-3)+2×(-1)=-51 -3╳2 -11×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式2ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下:1a 1c╳2a 2c1221c a c a按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式2ax +bx+c 的一次项系数b ,即1221c a c a +=b ,那么二次三项式就可以分解为两个因式1a x+c1与22c x a +之积,即2ax +bx+c=(1a x+1c )(2a x+2c ).这种方法要多实验,多做,多练。

初中数学因式分解的方法

初中数学因式分解的方法

初中数学因式分解的方法
在初中数学中,因式分解是一项基本的技能和知识点。

因式分解就是将一个数或者一个多项式分解成几个因子的乘积的形式。

因式分解的方法有很多种,下面介绍一些常用的方法。

1. 公因数法
公因数法是最简单的因式分解方法,它是将多项式中的每一项提取一个公因数,然后将公因数提出来,剩下的部分就是括号中的另一个因子。

例如:4x+8y=4(x+2y)
2. 分组法
分组法是将多项式中的项按照某种规则进行分组,找出相同的因子,然后将相同的因子提取出来,形成括号。

例如:6x^2+11xy+4y^2=(2x+y)(3x+4y)
3. 公式法
公式法是将多项式利用数学公式进行因式分解,例如平方差公式、平方和公式、立方和公式等,将多项式化为已知公式的形式,然后对公式进行因式分解。

例如:x^2-y^2=(x+y)(x-y)
4. 代数方法
代数方法是通过代数运算,将多项式进行因式分解。

这种方法需要掌握一些代数知识,如二次方程的求解、多项式的展开等。

例如:x^2+2x+1=(x+1)^2
以上是初中数学因式分解的一些常用方法,掌握这些方法能够帮助学生更好的完成因式分解题目。

初中数学因式分解的常用方法总结

初中数学因式分解的常用方法总结

初中数学因式分解的常用方法总结因式分解是数学中重要的基本概念,它在初中阶段占据了重要的地位。

因式分解可以将多项式等式转化为因式的乘积形式,从而简化问题的求解过程。

在初中数学中,常见的因式分解方法包括公因式提取法、分组分解法、特殊因式分解法和差平方公式等。

下面将详细介绍这些常用的因式分解方法。

一、公因式提取法公因式提取法是因式分解中最基本的方法之一、它的基本思想是将多项式中的公因式提取出来,使多项式可以表示为公因式与剩余部分的乘积形式。

公因式提取法的步骤如下:Step 1:找出多项式中的公因式。

Step 2:将多项式中的每一项除以公因式。

Step 3:将结果相加,得到公因式和剩余部分的乘积形式。

例如,将多项式4x+8分解为公因式和剩余部分的乘积形式:Step 1:找出多项式中的公因式,即4Step 2:将多项式中的每一项除以公因式,得到x+2Step 3:将结果相加,得到公因式4和剩余部分(x+2)的乘积形式,即4(x+2)。

二、分组分解法分组分解法是一种常见的因式分解方法,它适用于多项式中存在相同的二次或高次项的情况。

分组分解法的基本思想是根据多项式的结构特点,将多项式按照其中一种方式进行分组,然后使用公式进行分解。

分组分解法的步骤如下:Step 1:将多项式按照其中一种方式进行分组。

Step 2:每一组中的项尽量找出公因式。

Step 3:将每一组中的项进行因式分解。

Step 4:将结果相加,得到多项式的因式分解形式。

例如,将多项式x^2+3x+2分解为因子的乘积形式:Step 1:将多项式按照其中一种方式进行分组,例如(x^2+2x)+(x+2)。

Step 2:每一组中的项尽量找出公因式,得到x(x+2)+1(x+2)。

Step 3:将每一组中的项进行因式分解,得到x(x+2)+1(x+2)=(x+1)(x+2)。

三、特殊因式分解法特殊因式分解法适用于一些特殊的因式分解问题,例如平方差、和差的平方等形式的分解。

完整)初中常用因式分解公式

完整)初中常用因式分解公式

完整)初中常用因式分解公式初中常用因式分解公式因式分解是将一个多项式化简为几个整式的乘积形式的过程。

因式分解方法有以下几种:1、___因法:如果一个多项式的各项都含有相同的因式,可以将这个相同因式提取出来,从而将多项式化简为两个因式的乘积形式。

例如,分解因式x^2-2x:解:x^2-2x = x(x-2)2、应用公式法:利用乘法公式的互逆关系,将某些多项式分解因式。

例如,分解因式a^2+4ab+4b:解:a^2+4ab+4b = (a+2b)(a+2b)(完全平方公式)最常用的公式有:1) (a+b)(a-b) = a^2-b^22) (a±b)^2 = a^2±2ab+b^23) (a+b)(a^2-ab+b^2) = a^3+b^34) (a-b)(a^2+ab+b^2) = a^3-b^35) a^2+b^2+c^2+2ab+2bc+2ca = (a+b+c)^26) a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)3、分组分解法:将多项式按照一定规则进行分组,并提取公因式,得到一个因式乘积的形式。

例如,分解因式m +5n-mn-5m:解:m +5n-mn-5m = m -5m -mn+5nm -5m )+(-mn+5n)m(m-5)-n(m-5)m-5)(m-n)注意,该方法的核心是能够分组并提取公因式。

4、十字相乘法:对于形式为mx +px+q的多项式,如果a×b=m,c×d=q,且ac+bd=p,则可以将多项式分解为(ax+d)(bx+c)。

例如,分解因式7x^2-19x-6:分析:1-372交差相乘再相加2-21=-19解:7x^2-19x-6 = (7x+2)(x-3)5、配凑法:对于无法利用公式法的多项式,可以将其配成我们已经熟悉的分式分解方法,然后进行因式分解。

例如,分解因式x^3-3x^2+4解:剔除格式错误和明显有问题的段落,改写每段话如下:解原式= x^3 - 3x^2 - 4x + 4x + 4x(x^2 - 3x - 4) + (4x + 4)x(x + 1)(x - 4) + 4(x + 1)到这儿我们可以提公因式了x + 1)(x^2 - 4x + 4)x + 1)(x - 2)^26、拆、添项法可以把多项式拆成若干部分,再进行因式分解。

初中八年级因式分解常用方法

初中八年级因式分解常用方法

初中八年级因式分解常用方法因式分解是初中数学中的一个重要概念,对于解决一些数学问题非常有帮助。

以下是初中八年级因式分解的一些常用方法:1. 提公因式法:如果一个多项式的各项都含有公因式,那么可以把这个公因式提出来,从而将多项式化成积的形式。

例如:$3x^2 - 6x = 3x(x - 2)$2. 公式法:利用平方差公式 $a^2 - b^2 = (a + b)(a - b)$ 和完全平方公式$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$ 进行因式分解。

例如:$a^2 - b^2 = (a + b)(a - b)$3. 十字相乘法:对于形如 $ax^2 + bx + c = 0$ 的二次方程,如果 $ac <0$,则该方程有两个不相等的实根。

此时,可以将二次项和常数项的乘积与一次项的系数进行十字相乘,从而得到两个一次因式的乘积。

例如:$x^2 + 5x - 6 = (x + 6)(x - 1)$4. 分组分解法:对于一些比较复杂的多项式,可以先分组,然后分别提取各组中的公因式。

例如:$x^2 + 5x + 6 = (x + 2)(x + 3)$5. 双十字相乘法:对于形如 $ax^4 + bx^2 + c = 0$ 的四次方程,如果$ac < 0$,则该方程有两个不相等的实根。

此时,可以将四次项和常数项的乘积与二次项的系数进行双十字相乘,从而得到两个二次因式的乘积。

例如:$x^4 + x^2 - 6 = (x^2 - 3)(x^2 + 2)$以上是初中八年级因式分解的一些常用方法。

通过这些方法,可以有效地将多项式化简,从而更好地解决一些数学问题。

八年级上册分解因式

八年级上册分解因式

八年级上册分解因式
在八年级上册,分解因式是一个重要的数学概念。

在这个阶段,你将开始学习如何将多项式进行因式分解。

下面是一些常见的分解因式的方法和示例:
1.公因式提取法:
当一个多项式中的每一项都有一个公共因子时,可以使用公因式提取法来分解因式。

例如:
将多项式2x+4分解为公因式2和多项式x+2:2(x+2)。

将多项式3x^2+6x分解为公因式3x和多项式x+2:3x(x+2)。

2.二次因式分解法:
当一个二次多项式可以被分解为两个一次因式的乘积时,可以使用二次因式分解法来分解因式。

例如:
将多项式x^2+5x+6分解为两个一次因式的乘积:(x+2)(x+3)。

将多项式x^24x5分解为两个一次因式的乘积:(x5)(x+1)。

3.特殊因式分解法:
在特定情况下,我们可以使用特殊因式分解法来分解因式。

例如:
将差平方公式应用于多项式x^24:(x2)(x+2)。

将平方差公式应用于多项式x^2y^2:(xy)(x+y)。

这些是分解因式的一些常见方法。

在八年级上册,你将继续学习更多的分解因式的技巧和方法。

记住,在处理多项式时要仔细观察其中的模式和规律,以便找到
正确的分解因式的方法。

初二数学因式分解的八种常见方法

初二数学因式分解的八种常见方法

初二数学因式分解的八种常见方法一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(x+3)的四次方(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x 一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x 一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a ²+2a十1)²=(a+1)的四次方七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或(a+b)x对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.m+n=42m+n=5mn=3∴m=1,n=3∴原式=(x+y+1)(x+2y+3)。

初中因式分解方法总结完整版

初中因式分解方法总结完整版

初中因式分解方法总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、分解因式x-2x-x(2003淮安市中考题) x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a+4ab+4b(2003南通市中考题)a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5mm+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-197x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x-x-6x-x+22x-x-6x-x+2=2(x+1)-x(x+1)-6x=x[2(x+)-(x+)-6令y=x+,x[2(x+)-(x+)-6=x[2(y-2)-y-6]=x(2y-y-10)=x(y+2)(2y-5)=x(x++2)(2x+-5)=(x+2x+1)(2x-5x+2)=(x+1)(2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x,x,x,……x,则多项式可因式分解为f(x)=(x-x)(x-x)(x-x)……(x-x)例8、分解因式2x+7x-2x-13x+6令f(x)=2x+7x-2x-13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x+7x-2x-13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x,x,x,……x,则多项式可因式分解为f(x)=f(x)=(x-x)(x-x)(x-x)……(x-x)例9、因式分解x+2x-5x-6令y=x+2x-5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x+2x-5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a(b-c)+b(c-a)+c(a-b)分析:此题可选定a为主元,将其按次数从高到低排列a(b-c)+b(c-a)+c(a-b)=a(b-c)-a(b-c)+(bc-cb)=(b-c)[a-a(b+c)+bc]=(b-c)(a-b)(a-c)11、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x+9x+23x+15令x=2,则x+9x+23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x+9x+23x+15=(x+1)(x+3)(x+5)12、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x-x-5x-6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式. 设x-x-5x-6x-4=(x+ax+b)(x+cx+d)=x+(a+c)x+(ac+b+d)x+(ad+bc)x+bd所以解得则x-x-5x-6x-4=(x+x+1)(x-2x-4)。

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。

因式分解的9种方法

因式分解的9种方法

因式分解的多种方法----知识延伸,向竞赛过度1. 提取公因式:这种方法比较常规、简单,必须掌握。

常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。

总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。

2. 公式法常用的公式:完全平方公式、平方差公式。

注意:使用公式法前,部分题目先提取公因式。

例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b ,即a 1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。

八年级数学上册_因式分解的方法汇总

八年级数学上册_因式分解的方法汇总

x 7 x 10
2
x x6
2
x 2x 3
2
x 7 x 10
2
方法四、换元法
对结构比较复杂的多项式,若把其中某 些部分看成一个整体,用新字母代替 (即换元),则能使复杂问题简单化、 明朗化,在减少多项式项数,降低多项 式结构复杂程度等方面有独到作用。
例题:(分解因式)(第12届“五羊杯”竞赛 题)
例题1(上海市竞赛题)多项式
x2 y y 2 z z 2 x x2 z y 2 x z 2 y 2xyz
因式分解后的结果是 解:将原式重新整理成关于x的二次三 项式,则 原式= ( y z ) x ( y z 2 yz) x ( zy z y )
(3)原式=
9x2 6x 1 y2 4 y 4 (3 x 1) 2 ( y 2) 2 (3 x y 1)(3 x y 1)
3 3 3 3 ( x 2 ) ( y 2 ) [( x 2 ) ( y 2 ) ] (4)原式= 3( x y)(x 2)( y 2)
例题:分解因式: 解法一:将常数项8拆成-1+9 原式= x 3 9 x 1 9
( x 3 1) 9( x 1)
x 9x 8
3
( x 1)(x 2 x 1) 9( x 1) ( x 1)(x 2 x 8)
解法二:将一次项-9x拆成-x-8x 解法三:将三次项 x 3 拆成 9 x 3 8 x 3 解法四:添加两项
2 2 2 2 2
( y z )[x 2 ( y z ) x yz] ( y z )(x y )(x z )

初中数学-分解因式

初中数学-分解因式

初中数学-分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.练习:把下列各式分解因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________ (6)22273x xy y -+= .(7)21x ax a -+-= .(8)222(4)(4)20a a a a +-+-= .2.运用公式法:平方差公式:))((22b a b a b a -+=-立方和(差)公式:))(())((22332233b ab a b a b a b ab a b a b a ++-=-+-+=+例2.分解因式(1)338q p - (2)3381x + (3)43813b b a - (4) 67ab a -练习:把下列各式分解因式:(1)___________________________84=-y y(2)____________________________812533=+n m(3)____________________________)12(33=-+x x(4)_______________________________8736=-+x x3.提取公因式法与分组分解法例3. 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-.4.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例4. 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习1.分解因式:(1)x 2+6x +8=________________(2)8a 3-b 3=________________(3)x 2-2x -1=________________(4)4(1)(2)x y y y x -++-=________________(5)22126x xy y +-=________________(6)()()3211262+---p q q p =_______________ 2、()() 3 42++=+-x x x x 3、若()()422-+=++x x b ax x 则 =a , =b .习题1.分解因式:(1) 31a +=________________(2)424139x x -+=________________(3)222222a b c ab ac bc +++++=________________(4)2235294x xy y x y +-++-=________________2.在实数范围内因式分解:(1)253x x -+ =________________(2)23x --=________________(3)2234x xy y +-=________________(4)222(2)7(2)12x x x x ---+=________________3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x 2+x -(a 2-a ).。

因式分解的多种方法

因式分解的多种方法

因式分解的多种方法因式分解是数学中的一个重要概念,它可以使我们把一个数、一个多项式或一个代数式分解为乘积形式,从而更好地理解和处理问题。

初中阶段主要涉及到两种因式分解的方法:公因式法和配方法。

一、公因式法:公因式法就是利用一个或几个公因式把一个多项式分解为乘积形式,其中公因式是指能够整除多项式中每一项的因子。

具体方法如下:1.找出多项式中的公因式:多项式分解时,首先要找出多项式中的公因式。

一般来说,公因式通常是多项式中各项的最高次幂的因子。

例如,多项式2x^2+4x,最高次项是2x^2,其因式2x即为公因式。

2.将多项式中的公因式提取出来:将公因式提取出来后,将多项式中的每一项都除以公因式。

例如:多项式2x^2+4x,提取公因式2x后,得到2x(x+2)。

这样就将多项式成功分解为2个因子2x和(x+2)的乘积形式。

二、配方法:配方法是指通过调整和组合多项式的各项,使要分解的多项式能够重新组合成含有公因式的两个乘积。

具体方法如下:1.观察多项式的形式:观察多项式的形式,判断是否存在可配的形式。

例如,多项式a^2-b^2,可以看出它的形式与(a+b)(a-b)相似,因此可以进行配方法分解。

2.进行合理的变形和配对:根据多项式的形式,进行合理的变形和配对,使原多项式能够按照(a+b)(a-b)的形式进行分解。

例如,多项式a^2-b^2,可以通过变形将其变为(a+b)(a-b)的形式,进而进行分解。

三、小结:公因式法和配方法是初中阶段因式分解的两种常见方法。

通过学习这两种方法,可以帮助我们更好地理解因式分解的概念和方法,从而能够更好地应用于解决实际问题。

在实际应用中,要根据具体情况灵活选择使用公因式法还是配方法进行因式分解,加深理解,并熟练掌握相关技巧。

因式分解常用方法

因式分解常用方法

初中阶段因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用,)(2),)((22222b a b ab a b a b a b a ±=+±-+=-三、分组分解法.(一)分组后能直接提公因式(此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

)例1、分解因式:bn bm an am +++ 例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式(注意这两个例题的区别!)例3、分解因式:ay ax y x ++-22 例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---四、十字相乘法.(一)二次项系数为1的二次三项式(用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

)直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

例5、分解因式:652++x x 例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(二)二次项系数不为1的二次三项式——c bx ax ++2例7、分解因式:101132+-x x 317102+-x x练习6、(1)6752-+x x (2)2732+-x x (3)101162++-y y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的方法(初中版)
因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。

下面列举了九种方法,希望对大家的学习能有所帮助。

1】提取公因式
这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等
例一:2
2x -3x=0
解:x(2x-3)=0
1x =0,2x =3/2
这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。

2】公式法
将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等
注意:使用公式法前,建议先提取公因式。

例二:2x -4分解因式
分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2)
3】十字相乘法
是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c 分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果 例三: 把22x -7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 原式=(x-3)(2x-1).
总结:对于二次三项式2
ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下:
1a 1c

2a 2c
1221c a c a
按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式2ax +bx+c 的一次项系数b ,即1221c a c a +=b ,那么二次三项式就可以分解为两个因式1a x+c1与22c x a +之积,即
2ax +bx+c=(1a x+1c )(2a x+2c ).
这种方法要多实验,多做,多练。

它可以包括前两者方法。

4】分组分解法
也是比较常规的方法。

一般是把式子里的各个部分分开分解,再合起来
需要可持续性!
例四:2244y x x -++
可以看出,前面三项可以组成平方,结合后面的负平方,可以用平方差公式 解:原式=22)2(y x -+
=(x+2+y)(x+2-y)
总结:分组分解法需要前面的方法作基础,可见前面方法的重要性。

5】换元法
整体代入,免去繁琐的麻烦,亦是建立的之前的基础上
例五:1)(2)(2++-+y x y x 分解因式
考虑到x+y 是以整体出现,展开是十分繁琐的,用a 代替x+y
那么原式=2
a -2a+1
=2)1(-a
回代
原式=2)1(-+y x
6】主元法
这种方法要难一些,多练即可
即把一个字母作为主要的未知数,另一个作为常数
例六:4
222)1()1(216x y y x y -+++
分析:本题尚且属于简单例用,只是稍加难度,以y 为主元会使原式极其烦琐,
而以x 为主元的话,原式的难度就大大降低了。

原式=y x y x y 16)1(2)1(2242+++----------------------【主元法】
=)2)(82(22222+++-x y x y x y x ---------------------【十字相乘法】
可见,十字相乘十分重要。

7】双十字相乘法
难度较之前的方法要提升许多。

是用来分解形如f ey dx cy bxy ax +++++22的二次六项式
在草稿纸上,将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq +np =b ,pk +qj =e ,mk +nj =d ,即第1,2列和第2,3列都满足十字相乘规则。

则原式=(mx +py +j )(nx +qy +k )
要诀:把缺少的一项当作系数为0,0乘任何数得0,
例七:22
--++b a b ab 分解因式
解:原式=0×1×2a +ab +2b +a -b -2
=(0×a +b +1)(a +b -2)
=(b +1)(a +b -2)
8】待定系数法
将式子看成方程,将方程的解代入
这时就要用到1】中提到的知识点了
当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式
例八:2
x +x-2
该题可以用十字相乘来做,这里介绍一种待定系数法
我们可以把它当方程做,2x +x-2=0
一眼看出,该方程有一根为x=1
那么必有一因式为(x-1)
结合多项式展开原理,另一因式的常数必为2(因为乘-1要为-2)
一次项系数必为1(因为与1相乘要为1)
所以另一因式为(x+2)
分解为(x-1)(x+2)
9】列竖式
让人拍案叫绝的方法。

原理和小学的除法差不多。

要建立在待定系数法的方程法上
不足的项要用0补
除的时候,一定要让第一项抵消
例九:25323-+x x 分解因式
提示:x=-1可以使该式=0,有因式(x+1)
3x+2x-2)
那么该式分解为(x+1)(2
因式分解还有许多方法,只是不太常见,就不在此列举了。

考虑到每种方法只有一个例题,下面提供一些题目,供大家练习。

2)
2
-
+
b
ab+
)
a
(b
(
2)
2
2
2
a-
x
-
ax
-
4
x
)
(
(a
2
39
2
2
2
3
2
c
b
a
-
a+
6
b
3c
ab
c
xy+6-2x-3y
2)
2
b
a+
a
b
-
-
a
-
+
+
3(b
)
(4
3
b
3
)(
)
a
3(4
(x+2)(x-3)+(x+2)(x+4)
12x^2-29x+15
x(y+2)-x-y-1
3244422---++y x y xy x
21120132234++++x x x x
3355227222-+---y x y xy x
22384n mn m ++
15442-+n n
5ax+5bx+3ay+3by
12a 2b(x -y)-4ab(y -x)
(x -1)2(3x -2)+(2-3x)
x 2-11x +24
y 2-12y -28
x 2+4x -5
y 4-3y 3-28y 2
蚊子与牛一样重
从前有一只骄傲的蚊子,总认为自己的体重和牛是一样重。

有一天,它找到了牛,并说出了体重一样的理由。

它认为,可以设自己的体重为a,牛的体重为b ,则有:
a 2-2a
b +b 2=b 2-2ab +a 2
左右两边分别因式分解为:(a -b)2=(b -a)2
从而就有:a -b=b -a
移项,得:2a=2b,
即a=b
蚊子骄傲地把自己的理由说完,牛睁大了眼睛,听傻了!
①请同学们想一想,牛和蚊子的体重真的会一样吗?若不一样,那么蚊子的证明究竟错在哪里呢?
②讲这个例子的目的何在?。

相关文档
最新文档