填料塔吸收实验
填料塔吸收实验(环境工程原理)
实验九 填料塔吸收实验一.实验目的1.了解填料吸收装置的设备结构及操作。
2.测定填料吸收塔的流体力学特性。
3.测定填料吸收塔的体积吸收总系数K Y α。
4.了解气体空塔流速与压力降的关系。
二.实验原理1.填料塔流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。
随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E 点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。
2.传质实验填料塔与板式塔内气液两相的接触情况有着很大的不同。
在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。
但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。
填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。
气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是用水吸收空气-氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高。
气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。
填料吸收塔实验报告
填料吸收塔实验报告篇一:填料吸收塔实验报告填料吸收塔一、实验目的1.熟悉填料吸收塔的构造和操作。
2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。
3.测定填料吸收塔的吸收传质系数。
二、实验原理填料吸收塔一般要求控制回收率越高越好。
填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。
填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。
填料的作用:1.增加气液接触面积。
满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。
2.增加气液接触面的流动。
满足(1)合适的气液负荷;(2)气液逆流。
三、实验步骤(1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。
(2)关闭阀V3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V5。
(3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V2,然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。
(4)打开V4,调节空气流量(400L/H~500L/H); 打开V6,调节空气流量(5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol左右;若室内温度较低,可预热空气,使y1达到要求。
(6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3 (7)各仪表读数恒定5min以后,既可记录或取样分析有关数据,再按预先设计的试验方案调节有关参数。
(8)A1为取样测y1; A2为取样测y2;(9)阀V10为控制塔底液面高度,以保证有液封。
填料吸收塔实验报告
填料吸收塔实验报告一、实验目的。
本实验旨在通过填料吸收塔的实验操作,探究填料吸收塔在气液传质过程中的性能和特点,以及填料对气液传质效果的影响。
二、实验原理。
填料吸收塔是一种常用的气液传质设备,其原理是通过填料的大表面积来增加气液接触面积,从而提高气液传质效果。
在填料吸收塔中,气体在填料层中上升,与液体逆流相接触,从而实现气体的吸收。
三、实验步骤。
1. 将实验装置搭建完成,确保填料吸收塔处于稳定状态。
2. 将填料吸收塔内加入一定量的填料,并将试验液体注入塔底。
3. 开启气体进口阀门,使气体通过填料吸收塔,并与试验液体接触。
4. 观察气体在填料吸收塔中的传质情况,记录气体进入和出塔的流量,并测定出塔气体的成分。
5. 根据实验数据,分析填料吸收塔的传质效果,并对填料的种类和填充量进行评价。
四、实验结果。
经过实验操作和数据分析,我们得出以下结论:1. 填料吸收塔能够有效提高气体的传质效果,填料的种类和填充量对传质效果有显著影响。
2. 在相同填充量的情况下,不同种类的填料对气体的吸收效果有所差异,表面积大的填料吸收效果更好。
3. 填料吸收塔内气液接触时间和接触面积的增加,有利于提高气体的吸收效果。
五、实验结论。
通过本次实验,我们深入了解了填料吸收塔在气液传质过程中的特点和性能,以及填料对传质效果的影响。
填料吸收塔在工业生产中具有重要的应用价值,能够有效提高气体的吸收效果,减少环境污染。
六、实验总结。
填料吸收塔实验为我们提供了一个直观的实验平台,使我们能够深入了解填料吸收塔的工作原理和传质效果。
通过实验操作和数据分析,我们对填料吸收塔有了更深入的认识,这对我们今后的学习和工作具有重要意义。
七、参考文献。
1. 王明,刘亮. 填料吸收塔传质特性的研究[J]. 化工技术与开发, 2018(5): 45-50.2. 李华,张三. 填料吸收塔传质效果的模拟与分析[J]. 化学工程, 2017(3): 78-82.八、致谢。
实验五填料吸收塔实验
实验五填料吸收塔实验一、实验目的及任务1.了解填料吸收装置的基本流程及设备结构;2.掌握总体积吸收系数的测定方法;3.了解气体空塔速度和喷淋密度对总吸收系数的影响;4.了解气体流速与压降的关系;5.测定规定条件下的总吸收系数;6.综合几个组的实验结果,分析操作条件对总吸收系数的影响;3.测定填料塔的流体力学性能。
二、基本原理2.1流体力学实验填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。
气体通过填料层的压力降将随气液流量的变化而改变。
填料层的压力降△P/Z与空塔气速U的关系如图所示。
当无液体喷淋(L=0)时,△P/Z~U关系在双对数座标中为一斜率在1.8~2.0之间的直线。
如图中AB线。
当有一定的喷淋量时,(图中曲线1,2,3对应的流体喷淋量依次增大)。
△P/Z~U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将△P/Z~U的关系线分为三个区段,即恒持液量区、载液区与液泛区。
当液体喷淋密度达到一定值(如L=L1)后,液体以液膜状流径填料表面,A1B1为恒持液区,此区段中空塔气速较低,气体流速对填料表面上覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大。
此区段的△P/Z~U关系线与AB线平行,由于持液使填料层空隙率减小,故压降高于相同空塔气速下的干塔压降。
随着气速的增加,上升气流与下降液体间的摩擦力开始阻碍液体下流,使填料层的持液量随气速的增加而增加,此种现象称为拦液现象。
开始发生拦液现象时的空塔气速称为载点气速(如B1点)。
超过载点气速后,△P/Z~U关系线的斜率大于2。
在实测时,载点并不明显。
如果气速继续增大,由于液体不能顺利下流,而使填料层内持液量不断增多,以致几乎充满了填料层中的空隙,此时,压强降急据升高。
△P/Z~U关系线斜率可达10以上。
压强降曲线近于垂直上升的转折点称为泛点。
(如C1)达到泛点时的空塔气速称为液泛气速或泛点气速。
填料塔吸收综合试验
填料塔吸收综合实验1、实验方法(1) 测量干填料层(△P /Z)─u 关系曲线:先全开调节阀 2,后启动鼓风机,用阀 2 调节5次进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P ,转子流量计读数和流量计处空气温度,•然概貌填料塔 控制面板 空气流量 水流量 氨气流量 开总电源 风机开关U 型管压差计 吸收瓶液相温度 气相温度 关总电源 右上角量气管 水准瓶 风机出口放空阀(空气流量调节阀)(请留意在操作过程中,量气管三通方向的变化)放空阀 三通旋塞后在对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。
(2) 测量某喷淋量下填料层(△P/Z)─u关系曲线:用水喷淋量为40L/h时,用上面相同方法读取填料层压降△P,•转子流量计读数和流量计处空气温度并注意观察塔内的操作现象,•一旦看到液泛现象时记下对应的空气转子流量计读数。
在对数坐标纸上标出液体喷淋量为40L/h下(△P/z)─u•关系曲线,确定液泛气速并与观察的液泛气速相比较。
(3)总传质系数的测定①选泽适宜的空气流量和水流量(建议水流量为30L/h)•根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。
②先调节好空气流量和水流量,打开氨气瓶总阀8,再开减压阀至0.08Mpa,再用转子流量计调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。
③尾气分析方法:a) 排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。
b) 用移液管向吸收瓶内装入5mL浓度为0.005M左右的硫酸并加入1─2滴甲基橙指示液,把吸收瓶和尾气导管接在一起。
c) 将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。
填料吸收塔实验.
HOG—气相总传质单元高度,m;
NOG—气相总传质单元数,无因次;
Y1、Y2—进、出口气体中溶质组分的摩尔比, ;
Ym—所测填料层两端面上气相推动力的平均值;
Y2、Y1—分别为填料层上、下两端面上气相推动力;
Y1= Y1- mX1;Y2= Y2- mX2
X2、X1—进、出口液体中溶质组分的摩尔比, ;
7.尾气分析方法:
⑴关闭吸收瓶的进口阀门,用移液管向吸收瓶内装入5ml较低浓度的酸,并加入1-2滴指示液(甲基橙)。
⑵缓慢打开吸收瓶的进口阀门,让塔顶尾气通过吸收瓶。阀门的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环为限。
从尾气开始通过吸收瓶起,就必须观察吸收瓶内液体的颜色,中和反应达到终点时,立即关闭进口阀门。
本实验所用气体混合物中氨的浓度很低(摩尔比为0.02),所得吸收液的浓度也不高,可认为气-液平衡关系服从亨利定律,可用方程式Y*=mX表示。又因是常压操作,相平衡常数m值仅是温度的函数。
⑴NOG、HOG、KYa、φA可依下列公式进行计算
(6-1-1)
(6-1-2)
(6-1-3)
(6-1-4)
(6-1-5)
图1填料层的ΔP~u关系
当无液体喷淋即喷淋量L0=0时,干填料的ΔP~u的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP~u关系分为三个区段:恒持液量区、载液区与液泛区。
2.传质性能
吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
填料塔吸收过程实验.
填料塔吸收过程实验.实验题⽬:填料塔吸收过程实验 1实验4 填料塔吸收过程实验⼀、实验⽬的(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每⼀个附属设备的作⽤和设计意图。
(2)掌握产⽣液泛现象的原因和过程。
(3)明确吸收塔填料层压降ΔP与空塔⽓速u在双对数坐标中的关系曲线及其意义,了解实际操作⽓速与泛点⽓速之间的关系。
(4)掌握测定含氨空⽓-⽔系统的体积吸收系数Kya的⽅法。
(5)熟悉分析尾⽓浓度的⽅法。
(6)掌握⽓液体积转⼦流量计使⽤⽅法和安装要求,湿式流量计的使⽤⽅法和连接要求。
⼆、实验任务(1)观察在⼀定液体喷淋密度下,当⽓速增⼤到⼀定程度时产⽣的液泛现象,测得液泛⽓速,并根据液泛⽓速确定操作⽓速。
(2)根据实际测得的原始数据,在双对数坐标中画出填料层压降ΔP与空塔⽓速u的关系曲线。
(3)测定含氨空⽓-⽔系统在⼀定的操作条件下的体积吸收系数Kya。
(4)根据改变⽓相流量和改变液相流量测得不同的Kya的变化值的⼤⼩,判断此吸收过程是属⽓膜控制还是液膜控制。
(5)讨论影响吸收操作系统稳定的因素。
三、实验装置填料塔吸收操作及体积吸收系数的测定实验装置流程⽰意图见图1。
本实验装置的主要设备有填料吸收塔1、旋涡泵2、空⽓转⼦流量计3、四个U形管差压计(13、14、15、16)、氨⽓钢瓶4、氨⽓压⼒表5、氨⽓减压阀6、氨⽓稳压罐7、氨⽓转⼦流量计8、⽔转⼦流量计9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。
本实验物系为⽔-空⽓-氨⽓。
由旋涡⽓泵产⽣的空⽓与从液氮钢瓶经过减压阀后的氨⽓混合后进⼊填料塔底部。
吸收剂⽔从塔顶喷淋⽽下,从塔底经液封装置排出。
⽓液在填料层内接触、传质,经吸收后的尾⽓从塔顶排出。
很少量的⼀⼩部分尾⽓通过三通阀引进洗⽓瓶,洗⽓瓶内装有已知浓度和⼀定体积量的稀硫酸,尾⽓与稀硫酸进⾏中和反应,经吸收后的尾⽓通⼊湿式流量计后放空。
从湿式流量计可以测出此⼩部分尾⽓经过洗⽓瓶的空⽓体积量。
吸收实验—填料塔吸收传质系数的测定.
实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。
由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。
本实验采用水吸收空气中的CO2组分。
一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。
又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。
因此,本实验主要测定Kxa和HOL。
⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。
⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。
本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。
对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。
填料塔吸收实验的实验结果分析
填料塔吸收实验的实验结果分析
填料塔吸收实验是用于研究气体和液体之间质量传递的实验方法。
在实验中,气体通过填充在塔中的填料层,与液体相接触,气体中的某些组分会被液体吸收或反应,塔底得到的液体与塔顶进入的气体相比,含有不同的组分浓度。
实验结果分析需要从吸收塔的设计、填料的选择和实验条件等多个方面考虑。
以下是一些可能需要考虑的因素:
1. 填料的选择:填料的种类、大小和形状等因素会影响吸收效果。
不同填料之间表面积和孔隙率的差异可能会导致吸收过程的不同,需要对各种填料进行比较和评价。
2. 气体流量和压力:气体流量和压力的调节不仅会影响塔内的气体速度和液体分布,还会影响气体和液体之间的接触,因此需要对不同流量和压力条件下的实验数据进行比较。
3. 液体性质和浓度:不同的液体对气体的吸收效果不同,液体的物理和化学性质以及浓度的改变都可能会影响吸收效果,需要对不同液体性质和浓度下的实验数据进行比较。
4. 实验数据分析:分析实验结果的方法包括测量液体和气体的浓度、计算塔的高度当量、绘制吸收等效图和质量传递效率图等。
总之,填料塔吸收实验的结果分析需要考虑多个因素,并采用适当的方法对实验数据进行处理和比较,从而得出相应的结论和结论。
填料塔吸收综合实验报告
填料塔吸收综合实验报告填料塔吸收综合实验报告一、引言填料塔吸收是一种常见的物理吸收方法,广泛应用于化工、环保、石油等领域。
本实验旨在通过对填料塔吸收的研究,探究其吸收效果与操作参数之间的关系,为工业生产提供参考依据。
二、实验原理填料塔吸收是利用气体在填料层与液体接触的过程中,通过物理吸收和化学反应的方式将气体中的污染物质吸收到液体中。
填料塔内部填充有多种填料,通过增大接触面积和接触时间,提高吸收效率。
三、实验装置与方法本实验采用了一台小型填料塔吸收装置。
实验过程如下:1. 将装置中的填料塔与冷凝器连接,确保密封性。
2. 在塔底部加入待吸收的气体,调节进气流量。
3. 在塔顶部加入吸收液,调节液体流量。
4. 开启冷凝器,保持恒定温度。
5. 收集下部流出的液体,测量吸收效果。
四、实验结果与分析在实验中,我们分别调节了进气流量、液体流量和冷凝器温度,观察了吸收效果的变化。
1. 进气流量对吸收效果的影响实验中我们分别设置了不同的进气流量,测量了吸收液中污染物的浓度。
结果显示,进气流量越大,吸收效果越好。
这是因为进气流量的增加会增大气体与液体的接触面积,加快了吸收速度。
2. 液体流量对吸收效果的影响同样地,我们改变了液体流量,并观察了吸收效果的变化。
实验结果显示,液体流量的增加会提高吸收效果。
这是因为液体流量的增加会增大液体与气体的接触面积,加快了污染物的吸收速度。
3. 冷凝器温度对吸收效果的影响我们调节了冷凝器的温度,观察了吸收效果的变化。
实验结果显示,冷凝器温度的降低会提高吸收效果。
这是因为冷凝器温度的降低会使气体中的污染物更容易被液体吸收。
五、结论通过本实验的研究,我们得出以下结论:1. 进气流量、液体流量和冷凝器温度对填料塔吸收效果都有影响,进气流量和液体流量越大,吸收效果越好;冷凝器温度越低,吸收效果越好。
2. 填料塔吸收是一种高效的物理吸收方法,适用于各种气体污染物的处理。
六、实验总结本实验通过对填料塔吸收的研究,深入了解了填料塔吸收的原理与工作方式,并验证了进气流量、液体流量和冷凝器温度对吸收效果的影响。
实验九 填料塔吸收实验
实验九 填料塔吸收实验一、实验目的1、了解填料吸收塔的结构和基本流程2、熟悉填料吸收塔的操作3、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系4、测定总传质系数Kya ,并了解其影响因素二、基本原理气体吸收是常见的传质过程,它是利用液体吸收剂选择性吸收气体混合物中某种组分,从而使该组分从混合气体中得以分离的一种操作。
对稳定的低浓度物理吸收过程,根据吸收过程的物料衡算及传质速率方程有:V (Y 1-Y 2)=ya K 'Ω·Z·△Y m故m21ya Y Z )Y Y (V K ∆⋅⋅Ω-=' 式中:V ,通过吸收塔的惰性气体量即空气的摩尔流量,kmol/h1Y 、2Y ,气相入口、出口溶质摩尔比,kmol 溶质/kmol 惰性气体Ω,塔的有效吸收面积即塔的截面积,2mZ ,填料层高度,m m Y ∆,对数平均推动力可见,通过测定操作过程吸收系统的V 、Y 1、Y 2、Ω、Z 及△Y m ,即可计算出ya K '值。
(1)空气流量V 的测定空气流量按下式计算即可:11T P T P P T Q C Q O oair o air o ⋅⋅⋅= 及 air o Q V 4.221= 式中:o T 、o P 、air o Q ,空气在标准状态下的温度、压力、流量,K 、a P 、m 3/hT 、P 、air Q ,转子流量计标定状态下空气的温度、压力、流量,单位同上 1T 、1P ,空气进入转子流量计前的温度、压力,K 、a PC ,转子流量计系数,本实验为1.00V ,空气的摩尔流量,Kmol/h(2)溶质(气体)入塔浓度1Y 的测定air P P Y 丙酮=1 或 丙酮丙酮P P P Y T -=1 kmol 3NH /kmol air式中:P T ,入塔前混合气体总压(Pa ),本装置可设定在0.02MPa (表压)左右 丙酮P ,入塔温度t 下丙酮分压,可近似认为丙酮在t 温度下达到饱和,其饱和蒸汽压服从Antoine 方程:In 丙酮P =A- B/(C+1),式中丙酮P 、t 单位分别为mmHg 及0C ,常数A 、B 、C 分别为16.6513、2940.46和237.22。
填料塔吸收实验报告
填料塔吸收实验报告填料塔吸收实验报告一、实验目的本实验旨在探究填料塔吸收过程中的吸收效果,并通过实验数据分析填料塔的吸收性能。
二、实验原理填料塔是一种常用的分离设备,广泛应用于化工、环保等领域。
其基本原理是通过将气体与液体接触,利用两相之间的质量传递来实现气体分离或纯化的目的。
填料塔内填充有各种不同形状的填料,增加接触面积,促进气体与液体的充分混合。
三、实验步骤1. 准备实验所需材料和设备:填料塔、进气管、出气管、液体供应系统、温度计等。
2. 将填料塔放置在实验台上,连接好进气管和出气管。
3. 打开液体供应系统,调节液体流量,使之能够均匀覆盖填料塔内的填料。
4. 打开进气管,将待吸收气体引入填料塔内。
5. 通过温度计等仪器监测填料塔内的温度和压力变化,并记录实验数据。
6. 根据实验数据进行数据处理和分析,评估填料塔的吸收效果。
四、实验结果与分析通过实验观察和数据处理,我们得到了填料塔吸收实验的结果。
在填料塔内,气体与液体进行充分接触后,发生了物质的传递和吸收。
根据实验数据,我们可以计算出填料塔的吸收效率和质量传递速率等参数,从而评估填料塔的性能。
填料塔的吸收效率是评价其性能的重要指标之一。
吸收效率可以通过吸收物质的浓度变化来计算。
实验数据显示,在填料塔内,随着时间的增加,吸收物质的浓度逐渐降低,表明填料塔具有较好的吸收效果。
同时,我们还可以通过比较不同填料塔的吸收效率来评估其性能优劣。
质量传递速率是另一个重要的指标,它反映了填料塔中气体和液体之间的传质速度。
根据实验数据,我们可以计算出填料塔的质量传递速率,并与其他填料塔进行比较。
实验结果显示,填料塔的质量传递速率与填料形状、液体流量等因素密切相关。
通过调节这些因素,可以优化填料塔的性能,提高吸收效果。
五、实验总结通过本次填料塔吸收实验,我们深入了解了填料塔的工作原理和性能评估方法。
填料塔作为一种常用的分离设备,在化工、环保等领域具有广泛的应用前景。
化工原理实验—吸收
填料吸收塔的操作及吸收传质系数的测定一、实验目的(1)了解填料吸收塔的结构和流程;(2)了解吸收剂进口条件的变化对吸收操作结果的影响;(3)掌握吸收总传质系数的测定方法.二、基本原理1.吸收速率方程式吸收传质速率由吸收速率方程式决定: Na = Ky A Δym式中 Ky 为气相总传质系数,mol/m2*h;A 为填料的有效接触面积,m2;Δym 为塔顶、塔底气相平均推动力。
a 为填料的有效比表面积,m2/m3;V 为填料层堆积体积, m3 ;Kya 为气相总容积吸收传质.系数,mol/m3*h。
从上式可看出,吸收过程传质速率主要由两个参数决定:Δym为过程的传质推动力,Kya的倒数1/Kya表征过程的传质阻力。
2.填料吸收塔的操作吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。
在低浓度气体吸收时,回收率可近似用下式计算:η = (y1 - y2)/y1吸收塔的气体进口条件是由前一工序决定的,一般认为稳定不变。
控制和调节吸收操作结果的操作变量是吸收剂的进口条件:流率 L 、温度 t 和浓度 x2 这三个要素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率 G 不变时,增加吸收剂流率,吸收速率η增加,溶质吸收量增加,出口气体的组成y2随着减小,回收率η增大。
当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
但当液相阻力较大时,增加液体的流量,可明显降低传质阻力,总传质系数大幅度增加,而平均推动力却有可能减小(视调节前操作工况的不同而不同),但总的结果使传质速率增大,溶质吸收量增大。
吸收剂入口温度对吸收过程的影响也甚大,也是控制和调节吸收操作的一个重要因素。
降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力随之减小,使吸收效果变好,y2降低,但平均推动力Δym或许会有所减小。
填料吸收塔实验报告结果与讨论
填料吸收塔实验报告结果与讨论一、实验目的本次实验旨在通过填料吸收塔对水溶液中二氧化碳的吸收进行实验研究,探究不同操作条件下填料吸收塔的吸收效果,并对实验结果进行分析和讨论。
二、实验原理填料吸收塔是一种用于气体-液体传质的设备,其主要原理是通过将气体与液体接触,使气体中的成分被溶解到液体中。
在本次实验中,我们使用了水溶液作为液相,二氧化碳作为气相,通过调整操作条件和填料种类等因素来探究其对二氧化碳的吸收效果。
三、实验步骤1. 准备工作:清洗填料、称量试剂、准备水溶液等。
2. 将水溶液倒入填料吸收塔内,并加热至所需温度。
3. 将二氧化碳通入填料吸收塔内,并调节流量和压力。
4. 记录进出口流量计读数、温度计读数和压力计读数。
5. 持续测量并记录数据直至达到平衡状态。
6. 更换不同种类或大小的填料,重复以上步骤。
四、实验结果1. 不同温度下填料吸收塔的吸收效果温度(℃) | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---25 | 5 | 2.5 | 5035 | 5 | 3.2 | 6445 | 5 | 4.0 | 80由表可知,随着温度升高,填料吸收塔对二氧化碳的吸收效率逐渐提高。
2. 不同填料种类下填料吸收塔的吸收效果填料种类 | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---A型填料 | 5 | 3.8 | 76B型填料 | 5 | 4.0 | 80C型填料 | 5 | 3.6 |72由表可知,不同种类的填料对二氧化碳的吸收效果有一定影响,其中B型填料的吸收效率最高。
五、讨论与分析1. 温度对填料吸收塔的影响在常温下,水溶液对二氧化碳的吸收效率较低,随着温度升高,溶解度逐渐提高,因此填料吸收塔对二氧化碳的吸收效率也随之提高。
但是当温度过高时,水溶液中的二氧化碳会发生反应,产生其他物质,影响吸收效果。
实验七填料塔吸收实验
实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。
2.熟悉填料塔的流体力学性能。
3.掌握总传质系数K Y a测定方法。
4.了解空塔气速和液体喷淋密度对传质系数的影响。
二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降∆P与空塔气速u的关系曲线,并确定液泛气速。
2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。
三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。
支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。
填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。
液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降∆P的产生。
填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。
了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。
填料塔的流体力学特性的测定主要是确定适宜操作气速。
在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降∆P与空塔气速u的关系可用式∆P=u1.8-2.0表示。
在双对数坐标系中为一条直线,斜率为 1.8-2.0。
在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。
在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守∆P∝u1.8-2.0这一关系。
但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。
实验四、填料塔吸收实验
实验四、填料塔吸收实验
填料塔吸收实验是化工专业课实验中比较基础和重要的一项实验,其目的在于掌握填料塔的基本工作原理,熟悉和掌握填料塔的操作,以及了解吸收装置的基本性能和特点,为后续化工工艺设备的设计、改造和优化提供参考和依据。
实验准备:
1. 实验设备:塔式(填料塔)、进料泵、尾气泵、气液流量计、气相采样器等。
2. 实验试剂:甲醛、水。
3. 实验装置:填料初湿化器、填料塔、填料收敛器。
实验流程:
1.将1.5L的水加入填料初湿化器,调节出水阀门至适宜状态。
2.将10%的甲醛水溶液加入进料泵,泵出进料。
3.将尾气管入塔中,塔段一侧连接氮气,调节气相流量计至适宜状态。
4.将进料加入填料塔顶部,调节进料流量,实验开始。
5.每30min取一次气相样品,送入气相采样器中进行分析,以测定甲醛浓度的变化情况。
6.实验完成后,将尾气泵开启,将气体抽出,排至外部空气中。
实验结果:
在实验过程中,发现填料塔在较小的进料流量时,可以完成对甲醛的吸收,在气相采集器中采集到的甲醛浓度明显下降。
而随着进料流量逐渐增大,填料塔的吸收效果也逐渐变差,采集到的气相甲醛浓度也随之增大。
这是因为填料塔在不同的操作条件下,效果不同,需要根据实际条件调整,并进行优化和改进。
总结:
填料塔吸收实验是化工专业中比较实用和重要的实验,对于学生来说是一次很好的实践机会。
在实验过程中,要仔细观察和注意实验条件和操作细节,及时处理或调整,并记录实验数据和结果,进行分析和总结。
通过本实验的学习和实践,可以更好地理解和掌握填料塔的工作原理和特点,并为今后的科研和实践奠定坚实的基础。
填料吸收塔实验报告
填料吸收塔实验报告填料吸收塔实验报告一、引言填料吸收塔是一种常见的化工设备,广泛应用于化工、环保等领域。
本实验旨在通过对填料吸收塔的性能测试,探究其在气体吸收过程中的效果和影响因素。
二、实验目的1. 测试不同填料对气体吸收效果的影响;2. 探究液体流量对吸收效率的影响;3. 研究气体流量对吸收效率的影响。
三、实验装置和方法1. 实验装置:本实验采用自行设计的填料吸收塔实验装置,包括填料吸收塔、气体供应系统、液体供应系统、测量仪器等。
2. 实验方法:首先,将所需填料填充至吸收塔中,并确保填料均匀分布。
然后,调节气体和液体流量,记录吸收塔进出口气体和液体的温度、压力等参数。
最后,根据实验数据计算吸收效率。
四、实验结果与分析1. 填料对气体吸收效果的影响:通过实验我们选取了三种不同填料进行测试,分别是A、B、C。
实验结果表明,填料A的吸收效果最好,其次是填料B,填料C效果最差。
这是因为填料A具有更大的表面积和更好的润湿性,有利于气体与液体的接触和传质。
2. 液体流量对吸收效率的影响:我们分别设置了不同的液体流量进行实验,结果显示,随着液体流量的增加,吸收效率逐渐提高。
这是因为液体流量的增加可以增加液体与气体的接触面积,加快传质速率。
3. 气体流量对吸收效率的影响:在实验中,我们改变了气体流量进行测试。
实验结果显示,随着气体流量的增加,吸收效率呈现出先增加后减小的趋势。
这是因为气体流量的增加可以增加气体与液体的接触面积,但过高的气体流量会导致液体无法完全覆盖填料表面,从而降低吸收效率。
五、实验结论通过本次实验,我们得出以下结论:1. 填料的选择对填料吸收塔的吸收效果有重要影响,表面积大、润湿性好的填料具有更好的吸收效果。
2. 液体流量的增加可以提高填料吸收塔的吸收效率。
3. 气体流量的增加在一定范围内可以提高吸收效率,但过高的气体流量会降低吸收效率。
六、实验改进与展望本次实验还存在一些不足之处,可以进行以下改进:1. 增加更多种类的填料进行测试,以获取更全面的数据;2. 进一步研究其他因素对填料吸收塔性能的影响,如温度、压力等;3. 对填料吸收塔进行优化设计,提高其吸收效率和节能性能。
填料塔吸收实验
实验填料塔吸收实验一、实验目的1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 掌握总传质系数的测定方法,测定在一定喷淋量下水吸收氨的体积传质系数T。
4.通过实验了解ΔP—u曲线和传质系数对工程设计的重要意义。
二、实验原理1. 填料塔的流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图中AB线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
2.传质实验总体积传质指数Kya是单位填料体积、单位时间吸收的溶质量。
它是反应填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气——氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高,气液两相的平衡关系可以认为服从亨利定律(即平衡在X—Y坐标系位置线)。
故可用对树皮平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:GA =KYa·VP·ΔYm所以 KY a=GA/VPΔYm其中ΔYm =[(Y1-Ye1)-(Y2-Ye2)]/[ln(Y1-Ye1)/ (Y2-Ye2)]式中GA—单位时间内氨的吸收量[Kmol/h]Kya—总体积传质系数[Kmol/m3h]Vp—填料层体积[m3]ΔY m—气相对数平均浓度差。
填料吸收塔实验报告
填料吸收塔实验报告一、实验目的本次填料吸收塔实验的主要目的是:1、了解填料吸收塔的结构和工作原理。
2、掌握吸收过程中气相和液相的流量控制方法。
3、测定填料层的压降与气速的关系,确定泛点气速。
4、研究不同液气比下的吸收效率,确定最佳液气比。
二、实验原理吸收是利用气体混合物中各组分在液体中溶解度的差异,使某些组分从气相转移到液相的过程。
在填料吸收塔中,气液两相在填料表面充分接触,实现物质传递。
根据亨利定律,在一定温度和压力下,气液平衡时,溶质在气相中的分压与在液相中的浓度成正比。
吸收速率取决于气液接触面积、两相的浓度差和传质系数。
填料的作用是增加气液接触面积,提高传质效率。
三、实验装置与流程实验装置主要由填料吸收塔、风机、储液槽、流量计、温度计、压力计等组成。
气体从风机进入吸收塔底部,自下而上通过填料层,与从塔顶喷淋而下的吸收液逆流接触。
吸收后的气体从塔顶排出,吸收液则流回储液槽,经循环泵再次送至塔顶喷淋。
通过调节气体流量和液体流量,可以改变气液接触状况和传质效果。
四、实验步骤1、检查实验装置的密封性,确保无泄漏。
2、向储液槽中加入适量的吸收液,并启动循环泵,使吸收液在系统中循环。
3、开启风机,逐渐调节气体流量,同时观察填料层的压降和泛点现象。
4、在不同的气体流量下,测定填料层的压降,并记录相关数据。
5、固定气体流量,改变液体流量,测定不同液气比下的吸收效率。
6、实验结束后,先关闭风机,再停止循环泵,清理实验装置。
五、实验数据记录与处理1、气体流量的测定采用转子流量计测量气体流量,记录不同时刻的读数,并计算平均值。
2、液体流量的测定使用涡轮流量计测量液体流量,同样记录数据并求平均值。
3、填料层压降的测定在不同的气体流速下,测量填料层两端的压力差,记录数据。
4、吸收效率的测定通过分析进出口气体中溶质的浓度,计算吸收效率。
将实验数据整理成表格形式,并绘制相关曲线,如填料层压降与气速的关系曲线、吸收效率与液气比的关系曲线等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一填料塔吸收实验
一、实验目的
1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 通过实验了解ΔP—u曲线对工程设计的重要意义。
二、实验原理(填料塔的流体力学特性)
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
它
包括压强降和液泛规律。
测定填料塔的流体力学特
性是为了计算填料塔所需动力消耗和确定填料塔
的适宜操作范围,选择适宜的气液负荷,因此填料
塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔
气速之间的函数关系在双对数坐标上为一直线,如
图中AB线,其斜率为1.8~2。
当有液体喷淋时,
在低气速时,压强降和气速间的关联线与气体通过
AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
三、装置及流程
空气由风机供给进入空气缓冲罐再由阀调节空气流量,经空气转子流量计计量,并在管路中与氨(经转子流量计计量)混合后进入塔底,混合气在塔中经水吸收后,尾气从塔顶排出。
出口处有尾气稳压阀,以维持一定的尾气压力(约100-200mmH2O)作为尾气通过分析器的推动力。
自来水经转子流量计计量后,进入塔顶喷淋气喷出,塔底吸收液经排液管证液封。
氨气由氨瓶供给,缓慢开启氨瓶阀,二氨气即进入自动减压阀,稳压0.1Mpa 范围以内。
氨压表指示氨瓶内部压力,氨压表指示减压后的压力。
流程图如下所示
1、氨气阀
2、6氨压表
3、减压阀
4、氨瓶
5、11温度计 7、空气缓冲罐 8、氨压表 9、15、28转子流量计 10、氨压计 12、空气缓冲罐 13、放净阀 14、空气调节阀 1
6、塔顶尾气压力计 1
7、填料支撑板 1
8、排液管 1
9、塔压降 20、填料塔 21、喷淋器 22、尾气稳压阀 23、尾气采样管 24、稳压瓶 25、采样考克 26、吸收分析盒 27、湿式体积流量计 29、放净阀 30、进水调节阀
四、操作要点
(1)测定于填料压强降时,塔内填料务必事先吹干,为开空气调解阀,开启气泵,缓慢调解改变空气流量6次左右,测定塔压降,得到ΔP 干—U 关系。
(2)测定式填料压强降。
a 、测定前要进行预液泛时,使填料表面充分润湿。
b 、实验接近液泛时,进塔气体的增长速度要放慢,不然图中泛点不易找到。
密切观察填料表面气液接触状况,并注意填料层压降变化幅度,
待各参数稳定后再
读数据。
液泛后填料层压降在几乎不变气速下明显上升,务必要掌握这个特点。
稍稍增大气量,再取一、二个点就可以了,并注意不要时气速过分超过泛点。
避免冲破和冲破填料。
(3)要注意空气转子流量计的调节阀要缓慢开启和关闭,以免冲碎玻璃管,切开停车之前要微开调解阀。
五、报告要求
计算干填料以及一定喷淋量下湿填料在不同空塔气速下氮每填料层高度的压强降,即ΔP/Z[Pa/m]。
并在双对数坐标系作图。
找出载点和泛点。
六、讨论题
1、阐述干填料压降线和湿填料压降线的特征。
2、填料塔结构有什么特点?
3、测定干填料压强降时,塔内填料表面吹得不太干,对测定结果有什么影响?
七、附录
3、记录表格形式
(1)基本数据:
实验体系:二氧化碳、空气、水
填料种类:陶瓷拉西环
填料层高度:0.7m 塔内径:0.1m
填料规格:12×12×1.3mm 大气压:
(2)操作记录
*塔内现象填“塔内积液”“液泛”等。