泰州中学附中2015-2016学年七年级下期末数学试卷含答案解析

合集下载

15-16第二学期期末七年级数学答案

15-16第二学期期末七年级数学答案

2015-2016学年第二学期期末七年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)16.6 17.105° (17小题有无度数均不扣分)18.14 19.4 20.(14,2) 注:不加括号不能得分三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分) 解:(1)①6 ②﹣2 (①②两个小题,结果不正确不能得分) (2)解:由②得y=6﹣x ,代入①得2x ﹣3(6﹣x )=2,解得x=4.------------------2分 把x=4代入②,得y=2. ∴原方程组的解为.-------------------------------------------------------------4分(3)解:,由①得:x >﹣2,-----------------------------------------------------1分 由②得:x ≤3,---------------------------------------------------------2分 ∴不等式组的解集是:﹣2<x ≤3.-----------------------------4分 (其他解法参照此评分标准酌情给分) 22.(本题满分8分) 解:(1)如图所示;------------------------3分(2)由图可知,A ′(2,3)、B ′(1,0)、C ′(5,1);--6分(3)S △A ′B ′C ′=3×4﹣×1×3﹣×1×4﹣×2×3 =12﹣﹣2﹣3=.---------------------------------8分23.(本题满分8分)解:∵AB ⊥BF ,CD ⊥BF , ∴∠B=∠CDF=90°,∴AB ∥CD ,---------------------------------3分 ∵∠1=∠2,∴AB ∥EF ,----------------------------------6分 ∴CD ∥EF .----------------------------------8分 (其他解法参照此评分标准酌情给分)(第22题图)(第23题图)2015-2016学年第二学期期末七年级数学答案 第2页(共2页)24.(本题满分8分) 解:(1)4,6;------------------------2分(2)24, ------------------------------------3分120°,-----------------------------------4分 补图----------------------------------------6分 (3)32÷80×1000=400答:今年参加航模比赛的获奖人数约是400人. -------------------------------------------------8分25.(本题满分10分)解:设后半小时速度为xkm/h ,根据题意得:--------------------------------1分50+0.5x ≥120, --------------------------------------------------------6分解得:x ≥140.---------------------------------------------------------------------- 9分 答:后半小时速度至少为140km/h 才能保证按时到达.----------------- 10分 (其他解法参照此评分标准酌情给分。

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=06.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .7.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______13.等式01a =成立的条件是________.14.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.15.如果9-mx +x 2是一个完全平方式,则m 的值为__________.16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.17.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.20.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 三、解答题21.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.24.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.25.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.解下列方程组:(1)32316x yx y-=⎧⎨+=⎩(2)234229x y zx y z⎧==⎪⎨⎪-+=-⎩28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.16.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 18.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.20.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a -b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2.三、解答题21.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.22.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB ,过点C 作AB 延长线的垂线段;(3)过点A 作BC 的平行线,这条平行线上的格点数(异于点A )即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A 类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B 类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B 种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。

泰州中学附中2016年七年级下第一次月考数学试卷含答案解析

泰州中学附中2016年七年级下第一次月考数学试卷含答案解析

2015-2016学年江苏省泰州中学附中七年级(下)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列说法中,不正确的是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线被第三条直线所截,同旁内角互补D.同旁内角互补,两直线平行2.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.a<b<d<c3.多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定4.下列各组长度的3条线段,不能构成三角形的是()A.6cm、5cm、10cm B.5cm、4cm、9cm C.4cm、6cm、9cm D.2cm、3cm、4cm 5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠26.下列各式(1)b5•b5=2b5(2)(﹣2a2)2=﹣4a4(3)(a n﹣1)3=a3n﹣1(4)2m+3n=6m+n(5)(a﹣b)5(b﹣a)4=(a﹣b)20(6)﹣a3•(﹣a)5=a8其中计算错误的有()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题3分,共30分)7.一个多边形的每一个内角都是140°,则这个多边形是边形.8.已知a m=2,a n=5,则a m+n=.9.若27x=312,则x=.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是毫米.11.三角形的三边长为3,a,7,如果这个三角形中有两条边相等,那么它的周长是.12.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC 的面积为20cm2,则△BEF的面积是cm2.13.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.14.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=56°,则∠2﹣∠1=.15.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是.三、解答题(本大题共10小题,共102分)17.计算题:(1)(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)()2008×()2009.18.先化简,再求值:a 3•(﹣b 3)+(﹣ab 2)3,其中a=,b=4.19.已知:5a =4,5b =6,5c =9,(1)求52a+c ﹣b 的值;(2)试说明:2b=a+c .20.如图,平行光线AB 与DE 射向同一平面镜后被反射,此时∠1=∠2,∠3=∠4,那么反射光线BC 与EF 平行吗?说明理由.21.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.试根据以上材料探索使等式(2x+3)x+2015=1成立的x 的值.22.如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.求证: (1)AB ∥CD ;(2)∠2+∠3=90°.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.(1)在给定方格纸中画出平移后的△A ′B ′C ′;(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)线段AA ′与线段BB ′的关系是: ;(4)求△A ′B ′C ′的面积.24.四边形ABCD 中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C ,试求出∠C 的度数;(2)如图2,若∠ABC 的角平分线BE 交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图3,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.25.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.26.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.2015-2016学年江苏省泰州中学附中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.下列说法中,不正确的是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线被第三条直线所截,同旁内角互补D.同旁内角互补,两直线平行【考点】平行线的判定与性质.【分析】利用平行线的判定与性质判断,即可得到不正确的选项.【解答】解:A、同位角相等,两直线平行,本选项正确;B、两直线平行,内错角相等,本选项正确;C、两条平行线被第三条直线所截,同旁内角互补,本选项错误;D、同旁内角互补,两直线平行,本选项正确,故选C2.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.a<b<d<c【考点】实数大小比较;零指数幂;负整数指数幂.【分析】首先根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.【解答】解:∵a=﹣0.09,b=﹣,c=9,d=1,∴c>d>a>b,故选B.3.多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定【考点】多边形内角与外角.【分析】任意多边形的外角和都是360度,依此可得答案.【解答】解:多边形的边数增加1,它的外角和还是360°.故选:A.4.下列各组长度的3条线段,不能构成三角形的是()A.6cm、5cm、10cm B.5cm、4cm、9cm C.4cm、6cm、9cm D.2cm、3cm、4cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:A、6+5>10,则能构成三角形;B、5+4=9,则不能构成三角形;C、4+6>9,则能构成三角形;D、2+3>4,则能构成三角形;故选:B.5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠2【考点】平行线的判定.【分析】根据内错角相等,两直线平行可分析出∠1=∠2可判定AB∥CD.【解答】解:A、∠3=∠4可判定BD∥AC,故此选项不合题意;B、∠D=∠DCE可判定BD∥AC,故此选项不合题意;C、∠1=∠2可判定AB∥CD,故此选项符合题意;D、∠B=∠2不能判定直线平行,故此选项不合题意;故选:C.6.下列各式(1)b5•b5=2b5(2)(﹣2a2)2=﹣4a4(3)(a n﹣1)3=a3n﹣1(4)2m+3n=6m+n(5)(a﹣b)5(b﹣a)4=(a﹣b)20(6)﹣a3•(﹣a)5=a8其中计算错误的有()A.3个B.4个C.5个D.6个【考点】整式的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)b5•b5=b10,错误;(2)(﹣2a2)2=﹣4a4,正确;(3)(a n﹣1)3=a3n﹣3,错误;(4)2m+3n为最简结果,错误;(5)(a﹣b)5(b﹣a)4=(a﹣b)9,错误;(6)﹣a3•(﹣a)5=a8,正确,则其中计算错误的有4个.故选B二、填空题(本大题共10小题,每小题3分,共30分)7.一个多边形的每一个内角都是140°,则这个多边形是九边形.【考点】多边形内角与外角.【分析】首先求得这个多边形的一个外角的度数,用360°除一个外角的度数即可求得多边形的边数.【解答】解:180°﹣140°=40°,360°÷40°=9.故答案为:九.8.已知a m=2,a n=5,则a m+n=10.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=5×2=10,故答案为:10.9.若27x=312,则x=4.【考点】幂的乘方与积的乘方.【分析】转化为同底数幂,即可解答.【解答】解:27x=(33)x=33x=312,∴3x=12,∴x=4,故答案为:4.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是 2.5×10﹣3毫米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1毫米=1000微米,∴2.5微米=0.0025毫米=2.5×10﹣3毫米.故答案为:2.5×10﹣3.11.三角形的三边长为3,a,7,如果这个三角形中有两条边相等,那么它的周长是17.【考点】三角形三边关系.【分析】根据已知的两边,则第三边可能是3或7;再根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【解答】解:根据题意,得第三边可能是3或7.根据三角形的三边关系,得当三边是3,3,7时,则3+3<7,不能构成三角形,应舍去.当三边是3,7,7时,则3+7>7,能构成三角形.那么它的周长是:3+7+7=17,故答案为:17.12.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC 的面积为20cm2,则△BEF的面积是5cm2.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×20=10cm2,∴S△BCE=S△ABC=×20=10cm2,∵点F是CE的中点,∴S△BEF=S△BCE=×10=5cm2.故答案为:5.13.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需7个五边形.【考点】正多边形和圆.【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【解答】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故答案为:7.14.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=56°,则∠2﹣∠1=44°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据AD∥BC、折叠可知,∠EFG=∠DEF=∠D′EF=56°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【解答】解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=56°,∴∠DEF=56°;又∵∠DEF=∠D′EF,∴∠D′EF=56°;∴∠1=180°﹣56°﹣56°=68°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°﹣∠1=180°﹣68°=112°,∴∠2﹣∠1=44°.故答案为:44°.15.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是40°.【考点】三角形内角和定理;平行线的性质.【分析】根据DE∥AB可求得∠ADE=∠BAD,根据三角形内角和为180°和角平分线平分角的性质可求得∠BAD的值,即可解题.【解答】解:∵DE∥AB,∴∠ADE=∠BAD,∵∠B=46°,∠C=54°,∴∠BAD=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=40°,∴∠ADE=40°,故答案为40°.16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是8.【考点】尾数特征.【分析】根据2的1次幂的尾数为2,2的2次幂的尾数为4,2的3次幂的尾数为8,2的4次幂的尾数为6,2的5次幂的尾数为2,2的6次幂的尾数为4,可以发现规律为2的正整数次幂的尾数为4次一个循环,据此可以解答.【解答】解:∵2的1次幂的尾数为2,2的2次幂的尾数为4,2的3次幂的尾数为8,2的4次幂的尾数为6,2的5次幂的尾数为2,2的6次幂的尾数为4,∴可以发现规律为2的中正整数次幂的尾数为4次一个循环,尾数依次为2,4,8,6∵89=227=27÷4=6…3,∴89的尾数为8.故答案为8.三、解答题(本大题共10小题,共102分)17.计算题:(1)(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)()2008×()2009.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的运算、零指数幂的运算进行计算即可,(2)根据幂的乘方、同底数幂的乘法进行计算即可;(3)根据积的乘方、同底数幂的乘法的逆运算进行计算即可.【解答】解:(1)原式=﹣1+4﹣1=4;(2)原式=4x6•(﹣x2)÷x6=﹣4x12;(3)原式=()2008××()2008=(×)2008×=.18.先化简,再求值:a3•(﹣b3)+(﹣ab2)3,其中a=,b=4.【考点】整式的混合运算—化简求值.【分析】先算乘法和乘方,再代入求出即可.【解答】解:a3•(﹣b3)+(﹣ab2)3=﹣a3b3﹣a3b6,当a=,b=4时,原式=﹣()3×43﹣×()3×46=﹣1﹣×64=﹣9.19.已知:5a=4,5b=6,5c=9,(1)求52a+c﹣b的值;(2)试说明:2b=a+c.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据根据幂的乘方,可得答案;(2)根据同底数幂的乘法、幂的乘方,可得答案.【解答】解:(1)5 2a+b=52a×5c÷5b=(5a)2×5c÷5b=42×9÷6=24;(2)∵5a+c=5a×5c=4×9=3652b=62=36,∴5a+c=52b,∴a+c=2b.20.如图,平行光线AB与DE射向同一平面镜后被反射,此时∠1=∠2,∠3=∠4,那么反射光线BC与EF平行吗?说明理由.【考点】平行线的判定.【分析】由AB与DE平行,利用两直线平行同位角相等即可得到∠1=∠3,再由∠1=∠2,∠3=∠4,等量代换即可得到∠2=∠4,利用同位角相等两直线平行,即可得到BC与EF平行.【解答】解:平行,理由如下:∵AB∥DE,∴∠1=∠3,又∵∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF.21.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.试根据以上材料探索使等式(2x+3)x+2015=1成立的x的值.【考点】零指数幂;有理数的乘方.【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【解答】解:①当2x+3=1时,x=﹣1;②当2x+3=﹣1时,x=﹣2,但是指数x+2015=2013为奇数,所以舍去;③当x+2015=0时,x=﹣2015,且2×(﹣2015)+3≠0,所以符合题意;综上所述:x的值为﹣1或﹣2015.22.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.【考点】平行线的判定与性质.【分析】(1)首先根据角平分线的定义可得∠ABD=2∠1,∠BDC=2∠2,根据等量代换可得∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2),进而得到∠ABD+∠BDC=180°,然后根据同旁内角互补两直线平行可得答案;(2)先根据三角形内角和定理得出∠BED=90°,再根据三角形外角的性质得出∠EDF+∠3=90°,由角平分线的定义可知∠2=∠EDF,代入得到∠2+∠3=90°.【解答】证明:(1)∵DE平分∠BDC(已知),∴∠ABD=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠BDC=2∠2(角的平分线的定义).∴∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等式的性质).∴AB∥CD(同旁内角互补两直线平行).(2)∵∠1+∠2=90°,∴∠BED=180°﹣(∠1+∠2)=90°,∴∠BED=∠EDF+∠3=90°,∵∠2=∠EDF,∴∠2+∠3=90°.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:平行且相等;(4)求△A′B′C′的面积.【考点】作图-平移变换.【分析】(1)直接利用平移的性质得出各对应点位置进而得出答案;(2)利用三角形中线的定义以及高线的定义分别得出答案;(3)利用平移的性质得出对应点连线的关系;(4)利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:中线CD和BC边上的高线AE即为所求;(3)线段AA′与线段BB′的关系是:平行且相等;故答案为:平行且相等;(4)△A′B′C′的面积与△ABC的面积相等为:×4×4=8.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.【考点】多边形内角与外角;三角形内角和定理.【分析】(1)根据四边形的内角和即可得到结论;(2)根据平行线的性质得到∠ABE=35°,∠BED=105°,由∠ABC的角平分线BE交DC于点E,得到∠CBE=∠ABE=35°,根据三角形的外角的性质即可得到结论;(3)根据四边形的性质得到∠ABC+∠BCD=140°,根据三角形的内角和即可得到结论.【解答】解:(1)∵∠A=145°,∠D=75°,∴∠B=∠C==70°;(2)∵BE∥AD,∠A=145°,∠D=75°,∴∠ABE=180°﹣∠A=35°,∠BED=180°﹣∠D=105°,∵∠ABC的角平分线BE交DC于点E,∴∠CBE=∠ABE=35°,∴∠C=∠BED﹣∠EBC=40°;(3)∵∠A=145°,∠D=75°,∴∠ABC+∠BCD=360°﹣∠A﹣∠C=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=(∠ABC+∠DCB)=70°,∴∠BEC=110°.25.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.【考点】三角形内角和定理;直角三角形的性质.【分析】(1)由角平分线得出∠EBC,得出∠BAD=26°,再求出∠C,即可得出∠CAD=52°;(2)分两种情况:①当∠EFC=90°时;②当∠FEC=90°时;由角的互余关系和三角形的外角性质即可求出∠BEF的度数.【解答】(1)证明:∵BE平分∠ABC,∴∠ABC=2∠EBC=64°,∴∠EBC=32°,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°﹣64°=26°,∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,∴∠CAD=90°﹣38°=52°;(2)解:分两种情况:①当∠EFC=90°时,如图1所示:则∠BFE=90°,∴∠BEF=90°﹣∠EBC=90°﹣32°=58°;②当∠FEC=90°时,如图2所示:则∠EFC=90°﹣38°=52°,∴∠BEF=∠EFC﹣∠EBC=52°﹣32°=20°;综上所述:∠BEF的度数为58°或20°.26.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.2016年4月14日。

江苏省泰州中学附中七年级(下)期末数学试卷含答案

江苏省泰州中学附中七年级(下)期末数学试卷含答案

江苏省泰州中学附中七年级(下)期末数学试卷含答案一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x63.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为.8.若一个多边形的内角和等于720°,则这个多边形是边形.9.若a>0,且a x=2,a y=3,则a x﹣2y=.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为.11.已知:,则用x的代数式表示y为.12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱元.14.若不等式组有解,则a的取值范围是.15.3108与2144的大小关系是.16.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1﹣S2=.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.19.解方程(不等式)组(1)(2).20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)用含t的代数式表示以点Q、P、A为顶点的三角形的面积S,并指出相应t 的取值范围;(4)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,故选:B.2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘法法则;单项式除法法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、2x2与3x3不是同类项,不能合并,故本选项错误;B、应为2x3•3x2=6x5,故本选项错误;C、2x3÷x2=2x,正确;D、应为(2x2)3=8x6,故本选项错误.故选C.3.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形【考点】多边形内角与外角.【分析】本题需先求出每个外角都等于40°的正多边形为正九边形,即可得出满足条件且边数最少的多边形为正九边形,即可得出答案.【解答】解:∵360÷40=9∴每个外角都等于40°的正多边形为正九边形,∴若存在正n边形的每一个外角都不大于40°,则满足条件且边数最少的多边形为正九边形.故选:C.5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形判定定理AAS、SAS、ASA、SSS对△MOC和△NOC进行分析,即可作出正确选择.【解答】解:∵OM=ON,CM=CN,OC为公共边,∴△MOC≌△NOC(SSS).故选D.6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关【考点】正方形的性质;勾股定理.【分析】由题意,正方形ABCD和CEFG的边长分别为m、n,先根据正方形的性质求出△AEG的面积,然后再判断△AEG的面积的值与m、n的关系.【解答】解:△GCE的面积是•CG•CE=n2.四边形ABCG是直角梯形,面积是(AB+CG)•BC=(m+n)•m;△ABE的面积是:BE•AB=(m+n)•m=S△CGE+S梯形ABCG﹣S△ABE=n2.∴S△AEG故△AEG的面积的值只与n的大小有关.故选D.二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为3.2×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00032=3.2×10﹣4故答案为:3.2×10﹣4.8.若一个多边形的内角和等于720°,则这个多边形是6边形.【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:180°•(n﹣2)=720,解得n=6.9.若a>0,且a x=2,a y=3,则a x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答】解:a x﹣2y=a x÷(a y)2=2÷9=.故答案为:.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为y=2.【考点】解一元一次不等式;解一元一次方程.【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【解答】解:∵不等式ax﹣2>0,即ax>2的解集为x<﹣2,∴a=﹣1,代入方程得:﹣y+2=0,解得:y=2.故答案为:y=2.11.已知:,则用x的代数式表示y为y=.【考点】解二元一次方程组.【分析】方程组消元t得到y与x的方程,把x看做已知数求出y即可.【解答】解:,①+②×3得:x+3y=14,解得:y=,故答案为:y=12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出a的值即可.【解答】解:原式=x2﹣2x+ax﹣2a=x2+(a﹣2)x﹣2a,由结果不含x的一次项,得到a﹣2=0,解得:a=2.故答案为:2.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱55元.【考点】三元一次方程组的应用.【分析】设一件甲商品x元,乙y元,丙z元,根据“购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱”列出方程组,用含y的代数式分别表示出x、z,再将x、y、z三者相加即可得出结论.【解答】解:设一件甲商品x元,乙y元,丙z元.根据题意得:,解得:.∴2x+2y+2z=150﹣3y+2y+y﹣40=110,∴x+y+z=55.故答案为:55.14.若不等式组有解,则a的取值范围是a<3.【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.15.3108与2144的大小关系是3108>2144.【考点】幂的乘方与积的乘方.【分析】把3108和2144化为指数相同的形式,然后比较底数的大小即可.【解答】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.16.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1﹣S 2= 6 .【考点】三角形的面积.【分析】S △ADF ﹣S △BEF =S △ABD ﹣S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1﹣S 2的值.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =36,∴S △ABD =S △ABC =×36=18.∵EC=2BE ,S △ABC =36,∴S △ABE =S △ABC =×36=12,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =18﹣12=6,即S 1﹣S 2=6.故答案为:6.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)【考点】平方差公式;多项式乘多项式;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用多项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=1﹣9+4=﹣4;(2)原式=4(a2+3a+2)﹣7(a2﹣9)=4a2+12a+8﹣7a2+63=﹣3a2+12a+71.18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式﹣2,进而利用完全平方公式分解因式即可;(2)首先利用平方差公式分解因式,进而利用完全平方公式分解因式.【解答】解:(1))﹣2x2+4x﹣2=﹣2(x2﹣2x+1)=﹣2(x﹣1)2;(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.19.解方程(不等式)组(1)(2).【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)整理后①﹣②得出2x=﹣6,求出x,把x的值代入②得出﹣6﹣3y=1,求出y即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)整理得:①﹣②得:2x=﹣6,解得:x=﹣3,把x=﹣3代入②得:﹣6﹣3y=1,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<2,解不等式②得:x>﹣,∴原不等式组的解集为﹣<x<2.20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.【考点】解一元一次不等式;二元一次方程组的解.【分析】将原方程组中两个方程相减可得x﹣y=﹣3m+6,由x﹣y>﹣3知﹣3m+6>﹣3,解该不等式求得m的范围,即可得满足条件的m的所有非负整数解.【解答】解:在关于x、y的二元一次方程组中,①﹣②,得:x﹣y=﹣3m+6,∵x﹣y>﹣3,∴﹣3m+6>﹣3,解得:m<3,∴满足条件的m的所有非负整数解有0,1,2.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.【解答】解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE=∠CAE=×50°=25°,∴∠ADE=65°.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【解答】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.【考点】完全平方公式.【分析】(1)判断两式大小,利用完全平方公式验证即可;(2)已知等式两边平方,利用完全平方公式化简,整理求出所求式子的值即可;(3)利用得出的规律确定出代数式的最小值即可.【解答】解:(1)猜想a2+b2≥2ab,理由为:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;(2)把x﹣=5两边平方得:(x﹣)2=x2+﹣2=25,则x2+=27;(3)x2+≥2,即最小值为2.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为30x﹣5(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【考点】一元一次不等式的应用;二元一次方程的应用.【分析】(1)若只租用30座客车x辆,还差5人才能坐满,说明了人数与客车数的关系.人数=客车数的30倍﹣5;(2)若只租用50座客车,比只租用30座客车少用2辆,据此列出不等式,求出x的最小值,继而求得师生的最少人数;(3)设租用30座客车a辆,50座客车b辆,根据总费用为2200元,求出a和b的值,找出费用最低的租车方案,然后求出师生总人数.【解答】解:(1)由题意得,该校参加此次活动的师生人数为:30x﹣5,故答案为:30x﹣5;(2)由题意得,50(x﹣2)≥30x﹣5,解得:x≥,∵当x越小时,参加活动的师生就越少,且x为整数,∴当x=5时,参加的师生最少,为30×5﹣5=145人;(3)设租用30座客车a辆,50座客车b辆,则400a+600b=2200,∵a、b为整数,∴或,当时,能乘坐的最多人数为180人,当时,能乘坐的人数为170人,∵参加此次活动的师生人数为30x﹣5,且x为整数,∴当x<6时,与“根据师生人数选择租车方案”不符合,当x=6时,参加的师生为175人,符合题意,当x>6时,人数超过180人,不符合题意.答:参加此次活动的师生人数为175人.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【考点】三角形综合题.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°,(2)β﹣α=90°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD ﹣DC ﹣CB 方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当AP ∥CQ 时,求线段DQ 的长度;(3)用含t 的代数式表示以点Q 、P 、A 为顶点的三角形的面积S ,并指出相应t 的取值范围;(4)连接PA ,当以点Q 及正方形的某两个顶点组成的三角形和△PAB 全等时,求t 的值.【考点】三角形综合题;四边形综合题.【分析】(1)设t 秒后P 、Q 相遇.列出方程即可解决问题.(2)如图1中,AP ∥QC 时,由AQ ∥PC ,推出四边形APCQ 是平行四边形,根据AQ=PC ,列出方程即可解决问题.(3)分三种情形①如图2中,当0<t ≤1,点Q 在AD 上时.②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC .③如图4中,当2<t ≤,点Q 在BC 时时.分别求解即可.(4)分四种情形求解①当DQ 1=BP 时,△CDQ 1≌△ABP .②当DQ 2=BP 时,△ADQ 2≌△ABP .③当CQ 3=BP 时,△BCQ 3≌△ABP .④当BQ 4=BP 时,△ABQ 4≌△ABP ,此时P 与Q 重合.【解答】解:(1)设t 秒后P 、Q 相遇.由题意(4+1)t=12,∴t=秒,∴秒后P 、Q 相遇.故答案为.(2)如图1中,由图象可知,AP ∥QC 时,∵AQ ∥PC ,∴四边形APCQ 是平行四边形,∴AQ=PC ,∴4t=4﹣t ,∴t=,此时DQ=AD ﹣AQ=4﹣×4=.(3)①如图2中,当0<t ≤1,点Q 在AD 上时,S=×4t ×4=8t .②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC =16﹣×4×(4t ﹣4)﹣×4×t ﹣×(4﹣t )(8﹣4t )=﹣2t 2+2t +8.③如图4中,当2<t≤,点Q在BC时时,S=×[4﹣t﹣(4t﹣8)]•4=﹣10t+24.综上所述,S=.(4)如图5中,①当DQ1=BP时,△CDQ1≌△ABP,此时4﹣4t=t,t=s.②当DQ2=BP时,△ADQ2≌△ABP,此时4t﹣4=t,t=s.③当CQ3=BP时,△BCQ3≌△ABP,此时8﹣4t=t,t=s.④当BQ4=BP时,△ABQ4≌△ABP,此时P与Q重合,t=s综上所述,t为s或s或s或s时,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等.2017年3月4日。

泰州市七年级下学期期末数学试题题及答案

泰州市七年级下学期期末数学试题题及答案

泰州市七年级下学期期末数学试题题及答案一、选择题1.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a2.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为()A.65°B.70°C.75°D.80°3.x2•x3=()A.x5B.x6C.x8D.x94.不等式3+2x>x+1的解集在数轴上表示正确的是()A.B.C.D.5.点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M 的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)6.如图,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB)的个数为()A.3 B.4 C.5 D.6 7.下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a68.将一副三角板如图放置,作CF//AB,则∠EFC的度数是()A.90°B.100°C.105°D.110°9.下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm 10.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题11.34xy=⎧⎨=-⎩是方程3x+ay=1的一个解,则a的值是__________.12.若x+3y-4=0,则2x•8y=_________.13.若关于x、的方程()2233b aax b y-+++=是二元一次方程,则b a=_______ 14.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A的个位数字是__________.15.已知30m-=,7m n+=,则2m mn+=___________.16.因式分解:224x x-=_________.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 20.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.三、解答题21.因式分解:(1)249x - (2) 22344ab a b b --22.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 23.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .24.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.计算(1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.27.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.28.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b ,5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.3.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.4.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.7.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的8.C解析:C【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可.【详解】解:∵△ACB 是等腰直角三角形,∴∠BAC =45°,∵CF //AB ,∴∠ACF =∠BAC =45°,∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°,故选:C .【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.9.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值. 12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.14.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.15.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 16.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x -【分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.17.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM再转动t秒时,射线AM、射线BQ互相平行,如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18°×5=90°,分两种情况:①当9<t<18时,如图,∠QBQ'=t°,∠M'AM"=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=5t-45°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.20.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.三、解答题21.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.22.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+-213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键. 24.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299 ab⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.73x+;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511x x x x x222445521x x x x x73x当2x=-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.(1)2-;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443xx x x x x x x xx x⨯+-⎛⎫⋅+⋅-=-=-=-=⎪⎝⎭.【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.27.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.28.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。

2015—2016学年度第二学期期末考试七年级数学试题带答案

2015—2016学年度第二学期期末考试七年级数学试题带答案

2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。

【苏科版】2015—2016学年初一下数学期末考试试卷及答案

【苏科版】2015—2016学年初一下数学期末考试试卷及答案

第二学期期终教学质量调研测试初一 数学本试卷由填空题、选择题和解答题三大题组成 ,共29题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将由己的考试号、学校、姓名、班级用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对;2.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题纸上,保持答题纸清洁,不要折叠,不要弄破,答在试卷和草稿纸上无效。

一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上) 1.下列运算正确的是A. 326a a a ⋅=B. 224()a a ==C. 33(3)9a a -=-D. 459a a a +=2.不等式组24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为A B C D 3.下列算式能用平方差公式计算的是A .(2)(2b )a b a +- B. 11(1)(1)22x x +-- C. (3)(3)x y x y --+ D. ()()m n m n ---+4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cm B.4cm ,5cm ,1cm C.3cm ,4cm ,5cm D.2cm ,3cm ,6cm5. 若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( ) A. ac bc > B. ab cb >C. a c b c +>+D. a b c b +>+6.下列从左到右的变形,属于 分解因式的是A .2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+-C. 2(1)a a a a +=+D. 32x y x x y =⋅⋅7.一个多边形的内角和是1080°,这个多边形的边数是 A . 6 B. 7 C. 8 D. 9 8.如图,Rt △ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°,则∠A 的度数为A.35°B.45°C.55°D.65°9.下列命题:①同旁内角互补;②若21,10n n <-<则;③直角都相等; ④相等的角是对顶角.A .1个B .2个C .3个D .4个10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 A.4002cm B.5002cm C.6002cm D.3002cm二.填空题(本大题共8小题,每小题3分,共24分) 11.53x x ÷=________.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是__________克. 13.已知5,3,m n mn +==则22m n mn +=_________14.若三角形三条边长分别是1、a 、5(其中a 为整数),则a 的取值为________.15.如图,在△ABC 中,A ∠=60°,若剪去A ∠得到四边形BCDE ,则12______∠+∠=°16.已知2a b ab >=,且22+b =5a ,则______a b -=17.甲乙两队进行篮球对抗赛,比赛规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,得分不低于24分,甲队至少胜了_________场.18.现有若干张边长为a 的正方形A 型纸片,边长为b 的正方形B 型纸片,长宽为a 、b 的长方形C 型纸片,小明同学选取了2张A 型纸片,3张B 型纸片,7张C 型纸片拼成了一个长方形,则此长方形的周长为______.(用a 、b 代数式表示)三、解答题(本大题共10小题,满分76分,应写出必要的计算过程,推理步骤或文字说明) 19.(本题满分9分,每小题3分)将下列各式分解因式:(1)22363x xy y ++ (2)22()()a x y b x y ---(3)4234a a +-20.(本题满分5分)先化简,再求值:22(2)5()(3)a b a a b a b +++--,其中23,3a b ==-21.(本题满分8分,每小题4分)解下列方程组:(1)3423x y x y -=-⎧⎨-=-⎩ (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,(1)3分,(2)5分)解不等式(组):(1) 322;x x +≤- (2)2135342145x x x x --⎧>⎪⎪⎨+⎪->⎪⎩ 并把不等式组的解集在数轴上表示出来。

2015-2016学年度第二学期期末检测七年级数学试题及答案

2015-2016学年度第二学期期末检测七年级数学试题及答案

abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。

每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。

)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。

2015-2016学年江苏省泰州市姜堰市七年级(下)期末数学试卷

2015-2016学年江苏省泰州市姜堰市七年级(下)期末数学试卷

2015-2016学年江苏省泰州市姜堰市七年级(下)期末数学试卷一、选择题(每小题3分,共18分)1.(3分)4的算术平方根是()A.2 B.﹣2 C.±2 D.2.(3分)下列运算正确的是()A.a3•a2=a6 B.(a2)3=a6C.(﹣2a)3=﹣2a3D.a3+a3=2a63.(3分)若a>b,则下列各式中一定成立的是()A.a+2>b+2 B.ac<bc C.﹣2a>﹣2b D.3﹣a>3﹣b4.(3分)如图,给出下列条件:其中,能判断AB∥DC的是()①∠1=∠2②∠3=∠4③∠B=∠DCE④∠B=∠D.A.①或④B.②或③C.①或③D.②或④5.(3分)下列命题中,属于真命题的是()A.同位角互补B.多边形的外角和小于内角和C.平方根等于本身的数是1D.同一平面内,垂直于同一条直线的两条直线平行6.(3分)已知,不等式组只有3个整数解,则a的取值范围是()A.1<x<2 B.1≤x<2 C.1<x≤2 D.1≤x≤2二、填空题(每小题3分,共30分)7.(3分)比较两数的大小.8.(3分)﹣0.0000025用科学记数法表示为.9.(3分)已知a m=2,a n=3,则a m﹣2n.10.(3分)五边形的内角和比它的外角和多度.11.(3分)计算:已知:a+b=3,ab=1,则a2+b2=.12.(3分)若三角形三条边长分别是1,a,4(其中a为整数),则a的取值为.13.(3分)命题“对顶角相等”的逆命题是.14.(3分)已知是方程2x+ay=6的解,则a=.15.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.16.(3分)如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为.三、解答题(本大题共10小题,102分)17.(8分)计算:(1)a•a5+(﹣2a2)3(2).18.(8分)先化简,再求值:(2a+b)(2a﹣b)﹣a(4a﹣3b),其中a=﹣1,b=﹣2.19.(10分)因式分解:(1)a2b﹣abc(2)m4﹣2m2+1.20.(10分)解方程组:(1)(2).21.(8分)解不等式组,并把解集在数轴上表示出来.22.(10分)已知:如图,AD是△ABC的外角平分线,且AD∥BC,求证:∠EAC=2∠C.23.(10分)已知方程mx+ny=5的两个解是和(1)求m、n的值;(2)用含有x的代数式表示y;(3)若y是不小于﹣2的负数,求x的取值范围.24.(12分)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A'B'C';(2)运用网格画出AB边上的高CD所在的直线,标出垂足D;(3)线段BB'与CC'的关系是;(4)如果△ABC是按照先向上4格,再向右5格的方式平移到A′,那么线段AC 在运动过程中扫过的面积是.25.(12分)光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.26.(14分)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2,(n为正整数)(1)试说明a n是8的倍数;(2)若△ABC的三条边长分别为a k、a k+1、a k+2(k为正整数)①求k的取值范围.②是否存在这样的k,使得△ABC的周长为一个完全平方数?若存在,试举出一例,若不存在,说明理由.2015-2016学年江苏省泰州市姜堰市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)(2012•绵阳)4的算术平方根是()A.2 B.﹣2 C.±2 D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)(2016春•姜堰区期末)下列运算正确的是()A.a3•a2=a6 B.(a2)3=a6C.(﹣2a)3=﹣2a3D.a3+a3=2a6【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则、合并同类项法则分别化简求出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、(a2)3=a6,正确;C、(﹣2a)3=﹣8a3,故此选项错误;D、a3+a3=2a3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和积的乘方运算、合并同类项等知识,正确掌握相关运算法则是解题关键.3.(3分)(2016春•姜堰区期末)若a>b,则下列各式中一定成立的是()A.a+2>b+2 B.ac<bc C.﹣2a>﹣2b D.3﹣a>3﹣b【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a>b,则a+2>b+2,故原题正确;B、若a>b,当c>0时,ac>bc,当c<0时,ac<bc,故原题错误;C、若a>b,则﹣2a<﹣2b,故原题错误;D、若a>b,则﹣a<﹣b,则3﹣a<3﹣b,故原题错误;故选:A.【点评】此题主要考查了不等式的性质,关键是注意不等式的性质3.4.(3分)(2016春•姜堰区期末)如图,给出下列条件:其中,能判断AB∥DC 的是()①∠1=∠2②∠3=∠4③∠B=∠DCE④∠B=∠D.A.①或④B.②或③C.①或③D.②或④【分析】根据内错角相等,两直线平行;同位角相等,两直线平行分别对每一项进行分析,即可得出答案.【解答】解:①∵∠1=∠2,∴AB∥DC;②∵∠3=∠4,∴AD∥BC;③∵∠B=∠DCE,∴AB∥DC;④∠B=∠D,不能证明AB∥DC;则能判断AB∥DC的是①或③;故选C.【点评】本题考查的是平行线的判定,熟练掌握平行线的判定方法是解决本题的关键.5.(3分)(2016春•姜堰区期末)下列命题中,属于真命题的是()A.同位角互补B.多边形的外角和小于内角和C.平方根等于本身的数是1D.同一平面内,垂直于同一条直线的两条直线平行【分析】分别根据同位角的定义、多边形外角与内角的关系、平方根的定义及平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、同位角不能确定其关系,故是假命题;B、三角形的外角和大于内角和,故是假命题;C、平方根等于本身的数是0,故是假命题;D、同一平面内,垂直于同一条直线的两条直线平行,符合平行线的判定定理,故是真命题.故选D.【点评】本题考查的是命题与定理,熟知任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)(2016春•姜堰区期末)已知,不等式组只有3个整数解,则a的取值范围是()A.1<x<2 B.1≤x<2 C.1<x≤2 D.1≤x≤2【分析】先解每一个不等式,再根据不等式组有3个整数解,确定含a的式子的取值范围.【解答】解:,解不等式①,得x>a,解不等式②,得x<5,∵不等式组有3个整数解,即:4,3,2,∴1≤a<2,故选B.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.二、填空题(每小题3分,共30分)7.(3分)(2016春•姜堰区期末)比较两数的大小>.【分析】分析:比较两个无理数的大小,可以运用乘方法.如果两个数是正数,乘方结果大的数大;如果是两个负数,乘方结果大的反而【解答】解:∵,=22=4,5>4∴所以正确答案为:>【点评】比较两个无理数的大小可以比较两数的被开数或用乘方法比较;如果两个数是正数,乘方(或被开方数)大的,结果就大;如果两个数是负数则相反.8.(3分)(2016春•姜堰区期末)﹣0.0000025用科学记数法表示为﹣2.5×10﹣6.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.0000025=﹣2.5×10﹣6;故答案为:﹣2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)(2016春•姜堰区期末)已知a m=2,a n=3,则a m﹣2n=.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【解答】解:a m﹣2n=a m÷a2n=a m÷(a n)2=2÷9=.故答案为:=.【点评】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.10.(3分)(2016春•姜堰区期末)五边形的内角和比它的外角和多180度.【分析】利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.【解答】解:五边形的内角和是180×(5﹣2)=540度;任意正多边形的外角和都是360度;所以五边形的内角和比它的外角和多540°﹣360°=180°,故答案为:180.【点评】本题考查了多边形的内角和外角的知识,利用多边形的内角和公式及多边形的外角和即可解决问题.11.(3分)(2016•贵港一模)计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.12.(3分)(2016春•姜堰区期末)若三角形三条边长分别是1,a,4(其中a为整数),则a的取值为4.【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵三角形的两边长分别为1和4,∴第三边长x的取值范围是:4﹣1<a<4+1,即:3<a<5,∴a的值为4,故答案为:4.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.13.(3分)(2016•姜堰区一模)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.14.(3分)(2016春•姜堰区期末)已知是方程2x+ay=6的解,则a=2.【分析】根据方程解的定义把x、y的值代入方程可得到关于a的方程,可求得a的值.【解答】解:∵是方程2x+ay=6的解,∴代入方程可得4+a=6,解得a=2,故答案为:2.【点评】本题主要考查二元一次方程解的定义,掌握方程的解满足方程是解题的关键.15.(3分)(2016春•姜堰区期末)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【分析】设1元和5元的纸币各x 张、y 张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x 张、y 张,根据题意得:x +5y=20,整理得:x=20﹣5y ,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.16.(3分)(2016春•姜堰区期末)如图,△ABC 的两条中线AM 、BN 相交于点O ,已知△ABC 的面积为12,△BOM 的面积为2,则四边形MCNO 的面积为 4 .【分析】根据“三角形的中线将三角形分为面积相等的两个三角形”得到S △ABM =S △ABN =S △ABC =6,然后结合图形来求四边形MCNO 的面积.【解答】解:如图,∵△ABC 的两条中线AM 、BN 相交于点O ,已知△ABC 的面积为12,∴S △ABM =S △ABN =S △ABC =6.又∵S △ABM ﹣S △BOM =S △AOB ,△BOM 的面积为2,∴S △AOB =2,∴S 四边形MCNO =S △ABC ﹣S △ABN ﹣S △AOB =12﹣6﹣2=4.故答案是:4.【点评】本题考查了三角形的面积.解答该题时,需要利用“数形结合”是数学思想.三、解答题(本大题共10小题,102分)17.(8分)(2016春•姜堰区期末)计算:(1)a•a5+(﹣2a2)3(2).【分析】根据幂的乘方与积的乘方、同底数幂的乘法、负整数指数幂和零指数幂等概念的运算法则进行解答即可.【解答】解:(1)原式=a6+(﹣2)3•a6=a6﹣8a6=﹣7a6(2)原式=22+(3﹣)+1=4+3﹣+1=8﹣.【点评】本题考查了幂的乘方与积的乘方、同底数幂的乘法、负整数指数幂和零指数幂等知识,解答本题的关键在于熟练掌握各知识点的运算法则.18.(8分)(2016春•姜堰区期末)先化简,再求值:(2a+b)(2a﹣b)﹣a(4a ﹣3b),其中a=﹣1,b=﹣2.【分析】先根据整式的乘法法则算乘法,再合并同类项,最后代入求出即可.【解答】解:(2a+b)(2a﹣b)﹣a(4a﹣3b)=4a2﹣b2﹣4a2+3ab,其中a=﹣1,b=﹣2=3ab﹣b2,当a=﹣1,b=﹣2时,原式=2.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.(10分)(2016春•姜堰区期末)因式分解:(1)a2b﹣abc(2)m4﹣2m2+1.【分析】(1)直接提公因式ab即可;(2)首先利用完全平方进行分解,再利用平方差进行二次分解即可.【解答】解:(1)原式=ab(a﹣c);(2)原式=(m2﹣1)2=(m+1)2(m﹣1)2.【点评】此题主要考查了公式法和提公因式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.20.(10分)(2016春•姜堰区期末)解方程组:(1)(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:3y=6,即y=2,把y=2代入①得:x=0,则方程组的解为;(2)方程组整理得:,①+②得:6x=18,即x=3,把x=3代入①得:y=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2003•盐城)解不等式组,并把解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.22.(10分)(2016春•姜堰区期末)已知:如图,AD是△ABC的外角平分线,且AD∥BC,求证:∠EAC=2∠C.【分析】由AD∥BC可得出∠EAD=∠B,根据角平分线的性质可得出∠EAC=2∠EAD=2∠B,再结合三角形外角的性质即可得出∠B=∠C,∠EAC=2∠C,此题得证.【解答】证明:∵AD∥BC,∴∠EAD=∠B,∵AD平分∠EAC,∴∠EAC=2∠EAD=2∠B.∵∠EAC=∠B+∠C,∴∠B=∠C,∠EAC=2∠C.【点评】本题考查了平行线的性质以及三角形外角的性质,解题的关键是求出∠EAC=2∠B=2∠C.本题属于基础题,难度不大,解决该题型题目时,由两直线平行找出相等(或互补)的角是关键.23.(10分)(2016春•姜堰区期末)已知方程mx+ny=5的两个解是和(1)求m、n的值;(2)用含有x的代数式表示y;(3)若y是不小于﹣2的负数,求x的取值范围.【分析】(1)将方程得解代入得到关于m、n的方程组可求得m、n的值;(2)将x看作是已知数,求得y的值即可;(3)由y是不小于﹣2的负数列出关于x的不等式组,从而可求得x的范围.【解答】解:(1)将和代入得,①×2得:2m+2n=10③.③﹣②得:﹣n=5,解得n=﹣5.∴m=5﹣n=10.∴m=10,n=﹣5.(2)将m=10,n=﹣5代入得10x﹣5y=5,移项得5y=10x﹣5,系数化为1得:y=2x﹣1.(3)∵y是不小于﹣2的负数,∴.解不等式①得:x≥﹣0.5,解不等式②得:x<.∴x的取值范围是﹣≤x<.【点评】本题主要考查的是二元一次方程组的解得定义、解二元一次方程组、解一元一次不等式组,熟练掌握相关知识是解题的关键.24.(12分)(2016春•姜堰区期末)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A'B'C';(2)运用网格画出AB边上的高CD所在的直线,标出垂足D;(3)线段BB'与CC'的关系是平行且相等;(4)如果△ABC是按照先向上4格,再向右5格的方式平移到A′,那么线段AC 在运动过程中扫过的面积是14.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格得出互相垂直的直线,进而得出答案;(3)利用平移的性质得出答案;(4)利用平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:EC⊥AB,则D点即为所求;(3)线段BB'与CC'的关系是:平行且相等;故答案为:平行且相等;(4)线段AC在运动过程中扫过的面积是:S平行四边形DCB″A″+S平行四边形A″B″C′A′=4×1+5×2=14.故答案为:14.【点评】此题主要考查了平移变换以及平行四边形的面积求法,正确掌握平移的性质是解题关键.25.(12分)(2016春•姜堰区期末)光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.【分析】(1)设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y 辆,由题意可得等量关系:①卡车共15辆;②一次能运输128吨货物,根据等量关系列出方程组,再解即可;(2)设增购8吨的卡车有a辆,则增购10吨的卡车有(5﹣a)辆,由题意可得不等关系:8吨的卡车(11+a)辆运输的货物+10吨的卡车(9﹣a)辆运输的货物>170吨,根据不等关系列出不等式,再解即可.【解答】解:(1)设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y辆,由题意得:,解得:,答:8吨的有11辆,10吨的有4辆;(2)设增购8吨的卡车有a辆,则增购10吨的卡车有(5﹣a)辆,由题意得:(11+a)×8+10(5﹣a+4)>170,解得:a<4,∵a为正整数,∴a=1,2,3,购车方案:8吨1辆10吨4辆或者8吨2辆10吨3辆或者8吨3辆10吨2辆.【点评】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,列出方程组和不等式.26.(14分)(2016春•姜堰区期末)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2,(n为正整数)(1)试说明a n是8的倍数;(2)若△ABC的三条边长分别为a k、a k+1、a k+2(k为正整数)①求k的取值范围.②是否存在这样的k,使得△ABC的周长为一个完全平方数?若存在,试举出一例,若不存在,说明理由.【分析】(1)根据题意可以对a n进行化简,从而可以解答本题;(2)①根据(1)中的结果,可以得到a k、a k+1、a k+2的值,从而可以得到k的取值范围;②根据①中a k、a k+1、a k+2的值,可以求得△ABC的周长,从而可以解答本题.【解答】解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=[(2n+1)﹣(2n﹣1)][(2n+1)+(2n﹣1)]=2×4n=8n,∵8n能被8整除,∴a n是8的倍数;(2)①由(1)可得,a k=8k,a k+1=8(k+1),a k+2=8(k+2),∴8k+8(k+1)>8(k+2),解得,k>1,即k的取值范围是:k>1;②存在这样的k,使得△ABC的周长为一个完全平方数,理由:∵△ABC的周长是:8k+8(k+1)+8(k+2)=24k+24=24(k+1)=4×6×(k+1),∴△ABC的周长为一个完全平方数,则k+1=6得k=5即可,即当k=5时,△ABC的周长为一个完全平方数.【点评】本题考查整式的混合运算,三角形三边的关系,解题的关键是明确题意,找出所求问题需要的条件.参与本试卷答题和审题的老师有:马兴田;gbl210;sd2011;lantin;ZJX;守拙;侯庆和;wkd;caicl;sjzx;sks;gsls;Ldt;dbz1018;zjx111;lanyan;137﹣hui;曹先生;梁宝华;zgm666(排名不分先后)菁优网2017年5月4日。

泰州市七年级下学期期末数学试卷

泰州市七年级下学期期末数学试卷

泰州市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·江南期中) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A . 21B . 24C . 27D . 302. (2分) (2016七下·谯城期末) 下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2016七下·谯城期末) 下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A .B .C .D .4. (2分) (2016七下·谯城期末) 若m>n>0,则下列不等式一定成立的是()A . >1B . m﹣n<0C . ﹣m<﹣n5. (2分) (2016七下·谯城期末) (x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A . 5,﹣3B . ﹣5,3C . ﹣5,﹣3D . 5,36. (2分) (2016七下·谯城期末) 如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A . 30°B . 45°C . 60°D . 75°7. (2分) (2016七下·谯城期末) 如图,以下条件能判定GE∥CH的是()A . ∠FEB=∠ECDB . ∠AEG=∠DCHC . ∠GEC=∠HCFD . ∠HCE=∠AEG8. (2分) (2016七下·谯城期末) 分式方程 =2的解为()A . x=4B . x=3C . x=0D . 无解9. (2分) (2016七下·谯城期末) 将分式方程1﹣ = 去分母,整理后得()A . 8x+1=0C . x2﹣7x+2=0D . x2﹣7x﹣2=010. (2分) (2016七下·谯城期末) 为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A . ﹣ =4B . ﹣ =4C . ﹣ =4D . ﹣ =4二、填空题 (共5题;共5分)11. (1分)(2016·大兴模拟) 若(m+2)2+ =0,则m﹣n=________.12. (1分) (2018七上·铁岭月考) 关于x的方程是一元一次方程,则代数式的值为________.13. (1分) (2018八上·双城期末) 若分式的值为正数,则x的取值范围________.14. (1分)若|x+2|+|y﹣3|=0,则x﹣y的值为________15. (1分) (2019八上·简阳期末) 已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则 =________.三、解答题 (共7题;共66分)16. (15分) (2017八上·大石桥期中) 计算:(1) 5(a3)4﹣13(a6)2(2)7x4•x5•(﹣x)7+5(x4)4﹣(x8)2(3) [(x+y)3]6+[(x+y)9]2 .17. (15分) (2015八上·南山期末) 计算(1)计算:(2)计算:(3)解方程组:.18. (5分) (2016七下·谯城期末) 解不等式组,并求出不等式组的非负整数解.19. (5分) (2016七下·谯城期末) 先化简再求值÷(x+3)• ,其中x=3.20. (5分) (2016七下·谯城期末) 如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21. (10分) (2016七下·谯城期末) 李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22. (11分) (2016七下·谯城期末) 观察下列各式:= =1﹣, = = ﹣, = = ﹣, = = ﹣,…(1)由此可推导出 =________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算 + +…+ 的结果.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共66分)16-1、16-2、16-3、17-1、17-2、17-3、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、。

泰州市七年级下学期期末数学试题题及答案

泰州市七年级下学期期末数学试题题及答案

泰州市七年级下学期期末数学试题题及答案一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30° D .∠A=12∠B=13∠C 3.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 8.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a -9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.12.计算(﹣2xy )2的结果是_____.13.已知30m -=,7m n +=,则2m mn +=___________.14.已知一个多边形的每个外角都是24°,此多边形是_________边形.15.已知2x =3,2y =5,则22x+y-1=_____.16.计算:5-2=(____________)17.已知2x +3y -5=0,则9x •27y 的值为______.18.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.19.计算212⎛⎫= ⎪⎝⎭______. 20.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______. 三、解答题21.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.22.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.23.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D . ①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.25.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.26.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?27.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ; (2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .28.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确. D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A .【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A .原式=x 2﹣2x +1,B .原式=﹣(x ﹣1)2=﹣x 2+2x ﹣1;C .(x +1)(x ﹣1)=x 2﹣1;D .原式=x 2+2x ﹣x ﹣2=x 2+x ﹣2;∴计算结果为x 2﹣1的是C .故选:C .【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.8.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.9.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B .【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 12.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x 2y 2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.13.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 14.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.15.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x )2×2y÷2=9×5÷2=故答案为 解析:452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 18.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.19.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为 .【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】 解:222111==224⎛⎫ ⎪⎝⎭. 故答案为14. 【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 20.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.三、解答题21.(1)见详解;(2)50°.【分析】(1)由//AB DC ,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平行即可得证;(2)由EF 与OC 平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B 的度数.【详解】(1)证明:∵AB ∥CD ,∴∠A=∠C ,又∵∠1=∠A ,∴∠C=∠1,∴FE ∥OC ;(2)解:∵FE ∥OC ,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A =60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)6;(2)8.【分析】(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b )2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b)2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.23.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB ,∵∠BDC=180︒-12(∠ACB+∠ABC )=180︒-12(180︒-α)=90︒+1α2, ∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α, 同①,说明MN 在旋转过程中∠NDC-∠MDB 的度数只与∠A 有关系,而∠A 始终不变, 故:MN 在旋转过程中∠NDC-∠MDB 的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC ,由②知∠BDC=90︒+1α2, ∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2. 故∠NDC 与∠MDB 的关系是∠NDC+∠MDB=90︒-1α2. 【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)16;4;(2)m=3n;【分析】(1)利用a m+n=a m⋅a n和a m-n=a m÷a n进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n=4; (2)∵, ∴∴【点睛】 本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.26.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.27.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.28.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;''的面(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C积,=⨯=.由图可得,线段AC扫过的面积4728故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案

泰州市初一下学期数学期末试卷带答案一、选择题1.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1 C.11y x += D .xy ﹣1=02.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 3.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 4.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或15 5.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩ C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩ D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩6.如图,△A BC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 7.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 8.下列方程组中,是二元一次方程组的为( )A .1512n m m n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩ 9.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题11.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 12.若x +3y -4=0,则2x •8y =_________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.17.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.18.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 19.分解因式:m 2﹣9=_____. 20.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.23.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).25.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 26.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?28.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A .x-y 2=1不是二元一次方程;B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程;故选B .【点睛】 本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.2.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.3.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.5.C解析:C【分析】本题有两个相等关系:现有女生人数x+现有男生人数y=现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x和男生y,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.6.A解析:A【解析】试题分析:∵点D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,∴AD 是△ABC 的中线,BE 是△ABD 的中线,CF 是△ACD 的中线,AF 是△ABE 的中线,AG 是△ACE 的中线,∴△AEF 的面积=×△ABE 的面积=×△ABD 的面积=×△ABC 的面积=, 同理可得△AEG 的面积=, △BCE 的面积=×△ABC 的面积=6,又∵FG 是△BCE 的中位线,∴△EFG 的面积=×△BCE 的面积=,∴△AFG 的面积是×3=, 故选A .考点:三角形中位线定理;三角形的面积. 7.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11故选D .【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.8.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.9.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.10.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①② 解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题11.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值. 12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°,∴∠BAD =60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.18.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 19.(m+3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.20.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12. 【点睛】 此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.三、解答题21.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.22.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.23.(1)∠APB =∠NAP +∠HBP ;(2)见解析;(3)∠HBP =∠NAP +∠APB【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(2)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ =∠NAP ,∠BPQ =∠HBP ,∵∠APB =∠APQ +∠BPQ ,∴∠APB =∠NAP +∠HBP ,故答案为:∠APB =∠NAP+∠HBP ;(2)如图②,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ +∠NAP =180°,∠BPQ +∠HBP =180°,∵∠APB =∠APQ +∠BPQ ,∴∠APB =(180°﹣∠NAP )+(180°﹣∠HBP )=360°﹣(∠NAP +∠HBP );(3)如备用图,∵MN ∥GH ,∴∠PEN =∠HBP ,∵∠PEN =∠NAP +∠APB ,∴∠HBP =∠NAP +∠APB.故答案为:∠HBP =∠NAP +∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.24.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB ,∵∠BDC=180︒-12(∠ACB+∠ABC )=180︒-12(180︒-α)=90︒+1α2, ∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α, 同①,说明MN 在旋转过程中∠NDC-∠MDB 的度数只与∠A 有关系,而∠A 始终不变, 故:MN 在旋转过程中∠NDC-∠MDB 的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC ,由②知∠BDC=90︒+1α2, ∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2. 故∠NDC 与∠MDB 的关系是∠NDC+∠MDB=90︒-1α2. 【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.25.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩;(2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.26.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A 和∠P 之间的数量关系是:∠P =∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC 度数,进而求得∠ACB 度数;(2)已知∠A 度数,即可求得∠ABC+∠ACB 度数,进而求得∠DBC+∠ECB 度数. 拓展延伸:(1)连接AP ,根据三角形外角性质,∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC , 得到∠DBP+∠ECP =∠BAC+∠BPC ,已知∠BAC =70°,∠BPC =150°,即可求得∠DBP+∠ECP 度数;(2)如图⑤,设∠DBO =x ,∠OCE =y ,则∠OBP =∠DBO =x ,∠PCO =∠OCE =y , 由(1)同理得:x+y =∠A+∠O ,2x+2y =∠A+∠P ,即可求出∠A 和∠P 之间的数量关系; (3)如图,延长BP 交CN 于点Q ,根据角平分线定义,∠DBP =2∠MBP ,∠ECP =2∠NCP ,且∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,得到∠BPC =∠MBP+∠NCP ,因为∠BPC =∠PQC+∠NCP ,证得∠MBP =∠PQC ,进而得到BM ∥CN .【详解】知识回顾:∵∠ACD+∠ACB =180°,∠A+∠B+∠ACB =180°,∴∠ACD =∠A+∠B ;故答案为:∠A+∠B ;初步运用:(1)∵∠DBC =∠A+∠ACB ,∠A =70°,∠DBC =150°,∴∠ACB =∠DBC ﹣∠A =150°﹣70°=80°;故答案为:80;(2)∵∠A =70°,∴∠ABC+∠ACB =110°,∴∠DBC+∠ECB =360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.27.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.28.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。

2015-2016(下)七年级数学期末试题及答案

2015-2016(下)七年级数学期末试题及答案

2015-2016学年度七年级(下)期末教学质量监测数 学 试 卷(满分150分,考试时间120分钟)题号 一 二 三 四 五 总分 得分得分 评卷人 一、选择题:(本大题12个小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项符合题意. 1. 在6,4,0,3-这四个数中,最大的数是( )A .3-B .0C .4D .6 2. 下面各图中∠1和∠2是对顶角的是( )A .B .C .D .3. 下列图形中,由如图经过一次平移得到的图形是( )A .B .C .D .4. 下列各组数中是方程组⎩⎨⎧=+=-104332y x y x 的解为 ( )A. 21x y =⎧⎨=⎩B.27x y =-⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 33x y =⎧⎨=⎩5. 在平面直角坐标系中,将点P )1,2(-向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,3-)D .(5-,5)第3题图6. 下列调查中,须用普查的是( )A .了解某市学生的视力情况B .了解某市中学生课外阅读的情况C .了解某班学生“50米跑”的成绩D .了解某市老年人参加晨练的情况 7.不等式102<x 的解集在数轴上表示正确的是( )A .B .C .D . 8. 如图是某班学生参加兴趣小组的人数占总人数比例的统计图, 则参加人数最多的课外兴趣小组是( ) A .棋类组 B .演唱组 C .书法组 D .美术组9. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A .40°B .35°C .50°D .45° 10. 如图,数轴上A 、B 两点表示的数分别为2和1.5,则A 、B 两点之间表示整数的点共有( ) A .6个 B .5个 C .4个 D .3个11. 把一根长7m 的钢管截成2m 和1m 长两种规格的钢管,怎样截不造成浪费?你有几种不同的截法( )A .5种B .4种C .3种D .2种12. 把一些书分给几位同学,如果每人3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?设有学生x 人,所列不等式组为( )A . ⎩⎨⎧++<-+≥-3)1(583)1(583x x x xB .⎩⎨⎧+-<+->+3)1(583)1(583x x x xC .⎩⎨⎧+->+-≤+3)1(583)1(583x x x x D .⎩⎨⎧+-<+-≥+3)1(583)1(583x x x x 得分 评卷人 二、填空题:(本大题6个小题,每小题4分,共24分)13. 实数4的平方根是 .14. 如图,直线a 和直线b 相交于点O ,∠1=50°,则∠2 = .15. 不等式组⎩⎨⎧<-≥-02401x x 的最小整数解是 .第9题图 第14题图第8题图 第10题图16. 如图,△DEF 是由△ABC 通过平移得到,且点B 、E 、C 、F 在同一条直线上.若BF=14,EC=6. 则BE 的长度是17. 张老师想了解本校“生活中的数学知识”大赛的成绩 分布情况,随机抽取了100份试卷的成绩(满分为 120分,成绩为整数),绘制成如图所示的统计图. 由图可知,成绩不低于90分的共有 人.18. 如图,在平面直角坐标系中,A (1,1)、B (1-,1)、C (1-,2-)、D (1,2-).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A-B-C-D-A-…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 .19. 计算:24234183--+--得分 评卷人三、解答题:(本大题2个小题,每小题7分,共14分)解答时每 小题必须写出必要的演算过程.第16题图第17题图第18题图20. 如图,把△ABC 向上平移4个单位长度,再向右平移2个单位长度得△A ′B ′C ′,解答下列 问题:(1)在图上画出△A′B′C′(2)写出点A′、B′、C′的坐标得分 评卷人 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程. 21.(1)解方程组356415x z x z -=⎧⎨+=-⎩ ①②(2)解不等式组⎪⎩⎪⎨⎧-≥+>+3148)2(3x x x x ,并将解集在数轴上表示出来.● ●●A BC22. 完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD. 求证:∠EGF=90°证明:∵HG ∥AB (已知)∴∠ =∠3( ) ∵HG ∥CD (已知) ∴∠2=∠ 又∵AB ∥CD (已知)∴ + =180°( ) 又∵EG 平分∠BEF (已知)∴∠1=21∠ 又∵FG 平分∠EFD (已知)∴∠2=21∠ ∴∠1+∠2= 21( )∴∠1+∠2=90° ∴∠3+∠4=90° ( ) 即∠EGF=90°.23. 初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?第22题图24. 某中学七年级学生在社会实践中,调查了500位市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.(1)请你将图①这个统计图改成用折线统计图表示的形式;(2)请根据此项调查,对城市交通给政府提出一条建议.图①图②五、解答题:(本大题2个小题,第25小题12分,第26小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程.25. 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家商场购物花费少?26. 如图1,在平面直角坐标系中,A (0,a ),C (b ,4),且满足()0322=-+-b a ,过C 作CB ⊥x 轴于B .(1)求a ,b 的值;(2)如果在第二象限内有一点P (m ,21),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.第26题图2015-2016年度七年级(下)期末教学质量监测数学试卷答案一、选择题:1、C2、B3、D4、A5、B6、C7、D8、B9、A 10、C 11、C 12、D 二、填空题:13、2± 14、50° 15、3 16、4 17、27 18、(-1,-1) 三、解答题: 19、解:24234183--+--=)22(23212--+-- ………………… 4分 =2223212+-+-- ………………… 5分=24214+- ………………… 7分20、解:(1)…………………………… 4分(2) A′(0 , 6 ); B′(-1 , 2 );C′(5 , 2 ) …………………………… 7分四、解答题21 、(1)解:由②得154x z =-- ③,……………… 1分把③代入①,得3(154)56z z ---= 3=-∴z ……………… 3分把z=-3代入③得:x=-3 ……………… 4分∴原方程组的解为:33x z =-⎧⎨=-⎩……………… 5分 ● ● ● A BC ● ● ● A ′B ′C ′(2)解:,由①得:x >1 ……………… 1分由②得:x≤4 ………………2分 所以这个不等式的解集是1<x≤4,……………… 4分 将解集在数轴表示为.……………… 5分 22、 ∠1, 两直线平行、内错角相等, ∠4, ∠BEF , ∠EFD ,两直线平行、同旁内角互补, ∠BEF , ∠EFD , ∠BEF+∠EFD , 等量代换(每空1分)23、解:设小亮的英语成绩为x 分,数学成绩为y 分,……………… 1分由题意得,⎩⎨⎧=++++=++368)101(1812333812300y x y x ……………… 6分解得:⎩⎨⎧==12095y x ……………… 9分答:小亮质检英语成绩为95分,数学成绩为120分.……………… 10分 24、解:(1)步行人数:30650000=⨯ (人) ……………… 1分骑自行车的人数:1002050000=⨯(人) ……………… 2分 骑电动车的人数:601250000=⨯(人) ……………… 3分 乘公交车的人数:2805650000=⨯(人) ……………… 4分 乘私家车的人数:30650000=⨯(人) ……………… 5分折线统计图如右:word 格式-可编辑-感谢下载支持…………… 9分(2)如实行公交优先;或宣传步行有利健康等等都可以.……………… 10分五、解答题25、解:设顾客累计花费x 元,……………… 1分根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;……………… 3分(2)若100<x≤200,去乙商场享受优惠,花费少;……………… 5分(3)若x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),……………… 7分在乙商场花费100+(x-100)×95%=0.95x+5(元),……………… 9分① 到甲商场花费少,则0.9x+20<0.95x+5,解得x >300;……… 10分② 到乙商场花费少,则0.9x+20>0.95x+5,x <300;……………… 11分③ 到两家商场花费一样多,则0.9x+20=0.95x+5,x=300. (12)分0 50 100 150 200 250 300 步行 自行车 电动车 公交车 私家车交通工具 人数 500位市民出行的交通工具折线统计图。

2015年江苏省泰州市泰兴市七年级(下)期末数学试卷与参考答案PDF

2015年江苏省泰州市泰兴市七年级(下)期末数学试卷与参考答案PDF

2014-2015学年江苏省泰州市泰兴市七年级(下)期末数学试卷一、选择题:(本大题共有6小题,每小题2分,共12分,以下各题都有四个选项,其中只有一个是正确的)1.(2分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B.C.D.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6 D.(a3)2=a63.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.(2分)把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>05.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个 B.3个 C.2个 D.1个6.(2分)已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个 B.9个 C.10个D.11个二、填空题:(本大题共10小题,每小题2分,共20分)7.(2分)一个n边形的内角和是540°,那么n=.8.(2分)命题“若a>0,b>0,则a+b>0”这个命题是命题(填“真”或“假”).9.(2分)已知二元一次方程x﹣y=1,若y的值大于﹣1,则x的取值范围是.10.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为.11.(2分)已知m x=1,m y=2,则m x+2y=.12.(2分)关于x、y的方程组,则x+y的值为.13.(2分)如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=°.14.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组是.15.(2分)若关于x的不等式组的解集是x>m,则m的取值范围是.16.(2分)我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是.三、解答题(本大题共10小题,共68分,应写出必要的计算过程、推理步骤或文字说明)17.(8分)计算(1)(2x+3y)(4x+7y);(2)(﹣3a+2b)(﹣3a﹣2b);(3)(﹣3x+2)2;(4)﹣3101×(﹣)100﹣(π﹣3)0+(﹣)﹣2.18.(6分)因式分解(1)16﹣4x2;(2)4ab2﹣4a2b﹣b3.19.(6分)解二元一次方程组(1);(2).20.(6分)解不等式(组)(1)8x﹣5≥x+16;(2).21.(6分)如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.22.(6分)2014年巴西世界杯正如火如荼的进行着,带给了全世界的球迷25个不眠之夜,足球比赛规则规定:每队胜一场得3分,平一场得1分,负一场得0分.(1)若夺冠热门巴西队如愿登顶,手捧大力神杯,在本届世界杯上巴西队共比赛7场,并且保持不败,共得分17分,求巴西队赢了几场比赛?(2)若A、B两队一共比赛了10场,A队保持不败且得分超过22分,A队至少胜多少场?23.(6分)求证:平行于同一条直线的两条直线平行.24.(8分)已知,关于x,y的方程组的解满足x>y>0.(1)求a的取值范围;(2)化简|a|﹣|2﹣a|.25.(6分)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.26.(10分)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C 作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA 的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.2014-2015学年江苏省泰州市泰兴市七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有6小题,每小题2分,共12分,以下各题都有四个选项,其中只有一个是正确的)1.(2分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B.C.D.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6 D.(a3)2=a6【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.3.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.4.(2分)把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0【解答】解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选:A.5.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.6.(2分)已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个 B.9个 C.10个D.11个【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.二、填空题:(本大题共10小题,每小题2分,共20分)7.(2分)一个n边形的内角和是540°,那么n=5.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.8.(2分)命题“若a>0,b>0,则a+b>0”这个命题是真命题(填“真”或“假”).【解答】解:若a>0,b>0,则a+b>0”,这个命题是真命题.故答案为:真.9.(2分)已知二元一次方程x﹣y=1,若y的值大于﹣1,则x的取值范围是x >0.【解答】解:由题意得,y=x﹣1,∵y>﹣1,∴x﹣1>﹣1,解得:x>0.故答案为:x>0.10.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为2.【解答】解:(x+k)(x﹣2),=x2﹣2x+kx﹣﹣k,=x2+(k﹣2)x﹣2k,∵不含有x的一次项,∴k﹣2=0,解得k=2.故答案为:2.11.(2分)已知m x=1,m y=2,则m x+2y=4.【解答】解:∵m y=2,∴(m y)2=22=4,∵m x=1,∴m x+2y=m x•(m y)2=1×4=4故答案为:4.12.(2分)关于x、y的方程组,则x+y的值为﹣1.【解答】解:,①+②得:3x+3y=﹣3,x+y=﹣1,故答案为:﹣1.13.(2分)如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=240°.【解答】解:∵∠1、∠2是△ADE的外角,∴∠1=∠ADE+∠A,∠2=∠AED+∠A,∴∠1+∠2=∠ADE+∠A+∠AED+∠A,又∵∠ADE+∠A+∠AED=180°,∴∠1+∠2=180°+60°=240°.故答案为:240.14.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组是.【解答】解:设乙的弹珠数为x颗,甲的弹珠数为y颗,由题意得:,故答案为:.15.(2分)若关于x的不等式组的解集是x>m,则m的取值范围是m ≥2.【解答】解:因为不等式组的解集是x>m,根据同大取较大原则可知:2<m,当m=2时,不等式组的解集也是x>m,所以m≥2.故答案为:m≥2.16.(2分)我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是1089.【解答】解:四位数×9还是四位数,说明有两种情况:“绿”=1,“山”=9或“绿”=0,“山”=0①“绿”=0,且“山”=0;不符合题意,②“绿”=1,且“山”=9三位数×9还是三位数,则说明“水”=0或1,代入可得1089为四位数.故答案为:1089.三、解答题(本大题共10小题,共68分,应写出必要的计算过程、推理步骤或文字说明)17.(8分)计算(1)(2x+3y)(4x+7y);(2)(﹣3a+2b)(﹣3a﹣2b);(3)(﹣3x+2)2;(4)﹣3101×(﹣)100﹣(π﹣3)0+(﹣)﹣2.【解答】解:(1)原式=8x2+14xy+12xy+21y2=8x2+26xy+21y2;(2)原式=9a2﹣4b2;(3)原式=9x2﹣12x+4;(4)原式=﹣3﹣1+4=0.18.(6分)因式分解(1)16﹣4x2;(2)4ab2﹣4a2b﹣b3.【解答】解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣2ab+4a2+b2)=﹣b(2a﹣b)2.19.(6分)解二元一次方程组(1);(2).【解答】解:(1),②﹣①×2得:x=6,将x=6代入①得:y=﹣3,则方程组的解为;(2)方程组整理得:,①﹣②得:y=0,将y=0代入①得:x=,则方程组的解为.20.(6分)解不等式(组)(1)8x﹣5≥x+16;(2).【解答】解:(1)移项,得8x﹣x≥16+5,合并同类项,得:7x≥21,系数化成1得:x≥3;(2),解①得:x<11,解②得:x>10,则不等式组的解集是:10<x<11.21.(6分)如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°,求△BDE各内角的度数.【解答】解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是∠ABC的角平分线,∴∠DBC=∠EBD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°;∴∠BED=180°﹣∠EBD﹣∠EDB=150°.22.(6分)2014年巴西世界杯正如火如荼的进行着,带给了全世界的球迷25个不眠之夜,足球比赛规则规定:每队胜一场得3分,平一场得1分,负一场得0分.(1)若夺冠热门巴西队如愿登顶,手捧大力神杯,在本届世界杯上巴西队共比赛7场,并且保持不败,共得分17分,求巴西队赢了几场比赛?(2)若A、B两队一共比赛了10场,A队保持不败且得分超过22分,A队至少胜多少场?【解答】解:(1)设巴西队赢了x场比赛,则平了(7﹣x)场,根据题意可得:3x+7﹣x=17解得:x=5,答:巴西队赢了5场比赛;(2)设A队胜y场,根据题意可得:3y+(10﹣y)>22,解得:y>6,答:A队至少胜7场比赛.23.(6分)求证:平行于同一条直线的两条直线平行.【解答】已知:a∥c,b∥c.求证:a∥b.证明:作直线AB交a于A点,交b于B点,交c于C点,如图,∵a∥c,∴∠1=∠2,∵b∥c,∴∠2=∠3,∴∠1=∠3,∴a∥b.24.(8分)已知,关于x,y的方程组的解满足x>y>0.(1)求a的取值范围;(2)化简|a|﹣|2﹣a|.【解答】解:(1)解不等式得:,∵x>y>0,∴,解得:a>2;(2)|a|﹣|2﹣a|=a﹣(a﹣2)=2.25.(6分)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【解答】解:(1)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,即a2b4项的系数是15,故答案为:15;(2)27=128,故答案为:128;(3)11,121=11×11,1331=121×11,14641=1331×11,15101051=14641×11,故答案为:11;(4)115=(10+1)5=105+5×104×1+10×103×12+10×102×13+5×10×14+15=161051,故答案为:161051;(5)第9行可写出118,118=(10+1)8=108+8×107×1+28×106×12+56×105×13+70×104×14+56×103×15+28×102×16+8×10×17+18=214358881,故答案为:9,214358881.26.(10分)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C 作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA 的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.=CD•OC=×3×2=3.【解答】解:(1)S△BCD(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A 、B 、C 、D 是⊙O 上的四个点.(1)如图1,若∠ADC =∠BCD =90°,AD =CD ,求证AC ⊥BD ; (2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x63.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为.8.若一个多边形的内角和等于720°,则这个多边形是边形.9.若a>0,且a x=2,a y=3,则a x﹣2y=.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为.11.已知:,则用x的代数式表示y为.12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱元.14.若不等式组有解,则a的取值范围是.15.3108与2144的大小关系是.16.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1﹣S2=.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.19.解方程(不等式)组(1)(2).20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)用含t的代数式表示以点Q、P、A为顶点的三角形的面积S,并指出相应t 的取值范围;(4)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.2015-2016学年江苏省泰州中学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.2﹣1等于()A.2 B.C.﹣2 D.﹣【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,故选:B.2.下列计算中,结果正确的是()A.2x2+3x3=5x5B.2x3•3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘法法则;单项式除法法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、2x2与3x3不是同类项,不能合并,故本选项错误;B、应为2x3•3x2=6x5,故本选项错误;C、2x3÷x2=2x,正确;D、应为(2x2)3=8x6,故本选项错误.故选C.3.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.4.正n边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形【考点】多边形内角与外角.【分析】本题需先求出每个外角都等于40°的正多边形为正九边形,即可得出满足条件且边数最少的多边形为正九边形,即可得出答案.【解答】解:∵360÷40=9∴每个外角都等于40°的正多边形为正九边形,∴若存在正n边形的每一个外角都不大于40°,则满足条件且边数最少的多边形为正九边形.故选:C.5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形判定定理AAS、SAS、ASA、SSS对△MOC和△NOC进行分析,即可作出正确选择.【解答】解:∵OM=ON,CM=CN,OC为公共边,∴△MOC≌△NOC(SSS).故选D.6.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关【考点】正方形的性质;勾股定理.【分析】由题意,正方形ABCD和CEFG的边长分别为m、n,先根据正方形的性质求出△AEG的面积,然后再判断△AEG的面积的值与m、n的关系.【解答】解:△GCE的面积是•CG•CE=n2.四边形ABCG是直角梯形,面积是(AB+CG)•BC=(m+n)•m;△ABE的面积是:BE•AB=(m+n)•m=S△CGE+S梯形ABCG﹣S△ABE=n2.∴S△AEG故△AEG的面积的值只与n的大小有关.故选D.二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm,将数据0.00032用科学记数法表示为3.2×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00032=3.2×10﹣4故答案为:3.2×10﹣4.8.若一个多边形的内角和等于720°,则这个多边形是6边形.【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:180°•(n﹣2)=720,解得n=6.9.若a>0,且a x=2,a y=3,则a x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答】解:a x﹣2y=a x÷(a y)2=2÷9=.故答案为:.10.若关于x的不等式ax﹣2>0的解集为x<﹣2,则关于y的方程ay+2=0的解为y=2.【考点】解一元一次不等式;解一元一次方程.【分析】根据已知不等式解集确定出a的值,代入方程计算即可求出y的值.【解答】解:∵不等式ax﹣2>0,即ax>2的解集为x<﹣2,∴a=﹣1,代入方程得:﹣y+2=0,解得:y=2.故答案为:y=2.11.已知:,则用x的代数式表示y为y=.【考点】解二元一次方程组.【分析】方程组消元t得到y与x的方程,把x看做已知数求出y即可.【解答】解:,①+②×3得:x+3y=14,解得:y=,故答案为:y=12.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出a的值即可.【解答】解:原式=x2﹣2x+ax﹣2a=x2+(a﹣2)x﹣2a,由结果不含x的一次项,得到a﹣2=0,解得:a=2.故答案为:2.13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱55元.【考点】三元一次方程组的应用.【分析】设一件甲商品x元,乙y元,丙z元,根据“购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱”列出方程组,用含y的代数式分别表示出x、z,再将x、y、z三者相加即可得出结论.【解答】解:设一件甲商品x元,乙y元,丙z元.根据题意得:,解得:.∴2x+2y+2z=150﹣3y+2y+y﹣40=110,∴x+y+z=55.故答案为:55.14.若不等式组有解,则a的取值范围是a<3.【考点】解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.15.3108与2144的大小关系是3108>2144.【考点】幂的乘方与积的乘方.【分析】把3108和2144化为指数相同的形式,然后比较底数的大小即可.【解答】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.16.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1﹣S 2= 6 .【考点】三角形的面积.【分析】S △ADF ﹣S △BEF =S △ABD ﹣S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1﹣S 2的值.【解答】解:∵点D 是AC 的中点,∴AD=AC ,∵S △ABC =36,∴S △ABD =S △ABC =×36=18.∵EC=2BE ,S △ABC =36,∴S △ABE =S △ABC =×36=12,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =18﹣12=6,即S 1﹣S 2=6.故答案为:6.三、解答题(本大题共10题,共102分)17.计算(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)4(a+2)(a+1)﹣7(a+3)(a﹣3)【考点】平方差公式;多项式乘多项式;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用多项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=1﹣9+4=﹣4;(2)原式=4(a2+3a+2)﹣7(a2﹣9)=4a2+12a+8﹣7a2+63=﹣3a2+12a+71.18.因式分解(1)﹣2x2+4x﹣2(2)(x2+4)2﹣16x2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式﹣2,进而利用完全平方公式分解因式即可;(2)首先利用平方差公式分解因式,进而利用完全平方公式分解因式.【解答】解:(1))﹣2x2+4x﹣2=﹣2(x2﹣2x+1)=﹣2(x﹣1)2;(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.19.解方程(不等式)组(1)(2).【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)整理后①﹣②得出2x=﹣6,求出x,把x的值代入②得出﹣6﹣3y=1,求出y即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)整理得:①﹣②得:2x=﹣6,解得:x=﹣3,把x=﹣3代入②得:﹣6﹣3y=1,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<2,解不等式②得:x>﹣,∴原不等式组的解集为﹣<x<2.20.若关于x、y的二元一次方程组的解满足x﹣y>﹣3,求出满足条件的m的所有非负整数解.【考点】解一元一次不等式;二元一次方程组的解.【分析】将原方程组中两个方程相减可得x﹣y=﹣3m+6,由x﹣y>﹣3知﹣3m+6>﹣3,解该不等式求得m的范围,即可得满足条件的m的所有非负整数解.【解答】解:在关于x、y的二元一次方程组中,①﹣②,得:x﹣y=﹣3m+6,∵x﹣y>﹣3,∴﹣3m+6>﹣3,解得:m<3,∴满足条件的m的所有非负整数解有0,1,2.21.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.【解答】解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE=∠CAE=×50°=25°,∴∠ADE=65°.22.如图所示,在△ABC中,AE⊥AB,AF⊥AC,AE=AB,AF=AC.试判断EC与BF的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【解答】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.23.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.【考点】完全平方公式.【分析】(1)判断两式大小,利用完全平方公式验证即可;(2)已知等式两边平方,利用完全平方公式化简,整理求出所求式子的值即可;(3)利用得出的规律确定出代数式的最小值即可.【解答】解:(1)猜想a2+b2≥2ab,理由为:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;(2)把x﹣=5两边平方得:(x﹣)2=x2+﹣2=25,则x2+=27;(3)x2+≥2,即最小值为2.24.第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为30x﹣5(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【考点】一元一次不等式的应用;二元一次方程的应用.【分析】(1)若只租用30座客车x辆,还差5人才能坐满,说明了人数与客车数的关系.人数=客车数的30倍﹣5;(2)若只租用50座客车,比只租用30座客车少用2辆,据此列出不等式,求出x的最小值,继而求得师生的最少人数;(3)设租用30座客车a辆,50座客车b辆,根据总费用为2200元,求出a和b的值,找出费用最低的租车方案,然后求出师生总人数.【解答】解:(1)由题意得,该校参加此次活动的师生人数为:30x﹣5,故答案为:30x﹣5;(2)由题意得,50(x﹣2)≥30x﹣5,解得:x≥,∵当x越小时,参加活动的师生就越少,且x为整数,∴当x=5时,参加的师生最少,为30×5﹣5=145人;(3)设租用30座客车a辆,50座客车b辆,则400a+600b=2200,∵a、b为整数,∴或,当时,能乘坐的最多人数为180人,当时,能乘坐的人数为170人,∵参加此次活动的师生人数为30x﹣5,且x为整数,∴当x<6时,与“根据师生人数选择租车方案”不符合,当x=6时,参加的师生为175人,符合题意,当x>6时,人数超过180人,不符合题意.答:参加此次活动的师生人数为175人.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【考点】三角形综合题.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°,(2)β﹣α=90°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.26.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD ﹣DC ﹣CB 方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当AP ∥CQ 时,求线段DQ 的长度;(3)用含t 的代数式表示以点Q 、P 、A 为顶点的三角形的面积S ,并指出相应t 的取值范围;(4)连接PA ,当以点Q 及正方形的某两个顶点组成的三角形和△PAB 全等时,求t 的值.【考点】三角形综合题;四边形综合题.【分析】(1)设t 秒后P 、Q 相遇.列出方程即可解决问题.(2)如图1中,AP ∥QC 时,由AQ ∥PC ,推出四边形APCQ 是平行四边形,根据AQ=PC ,列出方程即可解决问题.(3)分三种情形①如图2中,当0<t ≤1,点Q 在AD 上时.②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC .③如图4中,当2<t ≤,点Q 在BC 时时.分别求解即可.(4)分四种情形求解①当DQ 1=BP 时,△CDQ 1≌△ABP .②当DQ 2=BP 时,△ADQ 2≌△ABP .③当CQ 3=BP 时,△BCQ 3≌△ABP .④当BQ 4=BP 时,△ABQ 4≌△ABP ,此时P 与Q 重合.【解答】解:(1)设t 秒后P 、Q 相遇.由题意(4+1)t=12,∴t=秒,∴秒后P 、Q 相遇.故答案为.(2)如图1中,由图象可知,AP ∥QC 时,∵AQ ∥PC ,∴四边形APCQ 是平行四边形,∴AQ=PC ,∴4t=4﹣t ,∴t=,此时DQ=AD ﹣AQ=4﹣×4=.(3)①如图2中,当0<t ≤1,点Q 在AD 上时,S=×4t ×4=8t .②如图3中,当1<t ≤2,点Q 在CD 上时,S=S 正方形ABCD ﹣S △ADQ ﹣S △ABP ﹣S △PQC =16﹣×4×(4t ﹣4)﹣×4×t ﹣×(4﹣t )(8﹣4t )=﹣2t 2+2t +8.③如图4中,当2<t≤,点Q在BC时时,S=×[4﹣t﹣(4t﹣8)]•4=﹣10t+24.综上所述,S=.(4)如图5中,①当DQ1=BP时,△CDQ1≌△ABP,此时4﹣4t=t,t=s.②当DQ2=BP时,△ADQ2≌△ABP,此时4t﹣4=t,t=s.③当CQ3=BP时,△BCQ3≌△ABP,此时8﹣4t=t,t=s.④当BQ4=BP时,△ABQ4≌△ABP,此时P与Q重合,t=s综上所述,t为s或s或s或s时,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等.2017年3月4日。

相关文档
最新文档