概率论与数据统计总习题例题及答案
概率论和数理统计考试试题和答案解析
一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计课后习题参考答案
习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。
2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。
3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。
概率论与数理统计练习题集及答案
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。
概率论与数理统计习题(含解答,答案)
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论和数理统计试题及答案
概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。
解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计练习题(含答案)
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计总习题及答案
试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。
从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。
求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。
概率论与数理统计试题与答案完整版
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计试题及答案
概率论与数理统计试题及答案概率论与数理统计是应用广泛的数学学科,用于研究随机现象的规律与统计推断。
下面为您提供一系列概率论与数理统计试题及答案,希望能对您的学习和理解有所帮助。
题目一:某超市近一周每天销售的商品数量数据如下:23、45、17、34、26、37、19。
1. 请计算这组数据的平均值、中位数和众数。
2. 计算数据的方差和标准差。
答案一:1. 平均值 = (23 + 45 + 17 + 34 + 26 + 37 + 19) / 7 = 26中位数 = 排序后的中间值 = 26众数 = 无,因为没有重复的值2. 计算方差:方差 = [(23-26)² + (45-26)² + (17-26)² + (34-26)² + (26-26)² + (37-26)²+ (19-26)²] / 7= (9 + 361 + 81 + 64 + 0 + 121 + 49) / 7= 140 / 7= 20题目二:一辆汽车在高速公路上行驶,每小时的速度数据如下:100、90、110、80、120。
请计算这组数据的以下统计量:1. 平均速度2. 速度的中位数3. 速度的众数4. 方差和标准差答案二:1. 平均速度 = (100 + 90 + 110 + 80 + 120) / 5 = 1002. 排序后的速度数据为:80、90、100、110、120。
中位数 = 1003. 众数 = 无,因为没有重复的值4. 计算方差:方差 = [(100-100)² + (90-100)² + (110-100)² + (80-100)² + (120-100)²] / 5= (0 + 100 + 100 + 400 + 400) / 5= 200题目三:甲乙两枚硬币独立抛掷一次,甲的硬币正面向上的概率为0.4,乙的硬币正面向上的概率为0.6。
概率论与数理统计习题及答案
练习题一1. 写出下列随机试验的样本空间:(1)一个正方体各面分别涂以红、黄、蓝、白、黑、绿六种颜色,任意抛掷一次,观察其朝上一面的颜色;(2)讨论某电话交换台在单位时间内收到的呼叫次数,并设={收到的呼叫次数};(3)测量某地区河水温度,并设t={测得水的温度};(4)同时掷三枚均匀的硬币,观察其正面向上的情况.2.向指定目标射击三枪,分别用A1、A2、A3表示第一、第二、第三枪击中目标,试用A1、A2、A3表示以下事件:(1)只有第一枪击中;(2)至少有一枪击中;(3)至少有两枪击中;(4)三枪都未击中.3. 已知A,B是样本空间Ω中的两个事件,且Ω={a, b, c, d, e, f, g, h},A={b, d, f, h},B={b, c, d, e, f, g},试求:(1);(2)+B;(3)A-B;(4).4. 已知A,B是样本空间Ω中的两个事件,且Ω={x | 1 <x < 9},A={x | 4≤x < 6},B={x | 3 <x ≤7},试求:(1);(2)+B;(3)A-B;(4).5.一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.6.一批产品由95件正品和5件次品组成,连续从中抽取两件,第一次取出后不再放回,问:1)第一次抽得正品且第二次抽得次品的概率多大.2)抽得一件为正品,一件为次品的概率.7. 从0,1,2,3,4,5这六个数中任取三个数进行排列,问取得的三个数字能排成三位数且是偶数的概率有多大.8. 已知某城市中有50%的用户订日报,65%的用户订晚,85%用户至少这两种报中的一种,问同时订两种报的用户占百分之几.9. 设某种动物由出生算起活到20岁以上的概率为0.8,活到25岁以上的概率为0.4. 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少.10. 在100件产品中有5件是次品,从中连续无放回地抽取3次,问第三次才取得次品的概率.11. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.12. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.13. 用三个机床加工同一种零件,零件由各机床加工的概率分别为0.5、0.3、0.2,各机床加工的零件为合格品的概率分别为0.94、0.90、0.95,求全部产品的合格率.14. 一批产品中有20%的次品,现进行重复抽样,共抽取5件样品,分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.15. 自某工厂产品中进行重复抽样检查,共取200件样品,检查结果发现其中有4件是废品,问能否相信该厂产品废品率不超过0.005.16. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.17. (1)已知P(A)=0.4,P(B)=0.3,P(AB)=0.18,试求P(A|B),P(A+B),P(B),P(),P(+B);(2)已知P(A)=0.4,P(B)=0.3,且A、B相互独立,试求P(A|B),P(A+B),P(B),P(),P(+B);(3)已知P(A)=0.4,P(B)=0.3,且A、B互不相容,试求P(A|B),P(A+B),P(B),P(),P(+B).18.面对试卷上的10道4选1的选择题,某考生心存侥幸,试图用抽签的方法答题. 试求下列事件的概率:(1)恰好有2题回答正确;(2)至少有2题回答正确;(3)无一题回答正确;(4)全部回答正确.19. 许多体育比赛采用五战三胜制,甲方在每一场比赛中胜乙方的概率是0.6(没有和局),求甲方最后取胜的概率.练习题二一、一维随机变量1. 在10件产品中有3件次品,从中任取2件,用随机变量表示取到的次品数,试写出的分布列.2. 设随机变量的分布列为P(=k)=(k=1,2,3),试求P(>2);P(≤3);P (1.5≤≤5);P(>).3. 设随机变量的分布列为,试求:(1)常数a;(2)P();(3)P(>1).4. 有1000件产品,其中900件是正品,其余是次品. 现从中每次任取1件,有放回地取5件,试求这5件所含次品数的分布列.5. 在一个繁忙的交通路口,单独一辆汽车发生意外事故的概率是很小的,设p=0.0001. 如果某段时间内有1000辆汽车通过这个路口,问这段时间内,该路口至少发生1起意外事故的概率是多少?6. 设随机变量的分布密度为p(x)=,求P(x)与P().7. 设随机变量的分布密度为p(x)=,求:(1)常数a;(2)P(>3).8. 设服从N(0,1),试求:(1)P();(2)P(>2);(3)P(≤-1.8);(4)P()(5)P().9. 设服从N(5,3),求P(<10),P().10. 设服从N(1,0.6),求P(>0),P().11. 某校电器(3)班学生期末考试的数学成绩x(分)近似服从正态分布N(75,10),求数学成绩在85分以上的学生约占该班学生的百分之几?12. 已知随机变量的分布列为,(1)求=2-的分布列;(2)求=3+2分布列.13. 已知随机变量的分布密度为=,且=2-,试求的分布密度.14. 某机械零件的指标值在[90,110]内服从均匀分布,试求:(1)的分布密度、分布函数;(2)取值于区间(92.5,107.5)内的概率.15. 某电子元件的使用寿命服从以=的指数分布,其分布函数为=(1)求随机变量的分布密度p(x);(2)作出p(x)及F (x)的图象;(3)求这类元件使用寿命1000小时以上的概率.二、二维随机变量1. 已知的联合分布函数为F=++,试求:1)F(1,1);2)P(0,1);3)边缘分布函数,并考察随机变量与的独立性.2.已知的联合分布函数为F=,试求:1)边缘分布函数;2)联合密度、边缘密度,并考察随机变量与的独立性.3.离散型随机向量有如下的概率分布求的边缘分布,并考察与相互独立性.4.随机向量在矩形区域内服从均匀分布,求的联合分布密度与边缘分布密度,又问随机变量是否独立?5.随机向量的联合分布密度为=,求:1)系数A;2)的边缘分布密度.6.一机器制造直径为的圆轴,另一机器制造内径为的轴衬,设的联合分布密度为=,若轴衬的内径与轴的直径之差大于0.004且小于0.36,则两者可以相适衬,求任一轴与任一轴衬适衬的概率.7.对于下列三组参数,写出二维正态随机向量的联合分布密度与边缘分布密度.8.设与相互独立,其密度分别为=,=,求+的密度.9.设某种商品一周的需要量是一个随机变量,其密度为=,如果各周的需要量是互相独立的. 试求:1)两周的需要量的概率密度;2)三周的需要量的概率密度.10. 已知相互独立的随机变量,,…,都服从泊松分布,记=,试求P(3).11. 一本5万字的学生用书,按常规允许出错率为0.0001,试求该书不多于10个错误的概率.12. 某工厂生产的一批零件,合格率为95%,今从中抽取1000件,试求下列事件的概率:1)被检验的1000件中恰好有40件不合格品;2)不合格的件数不少于40件;3)不合格的件数在40到60之间.13. 某公司电话总机有200台分机,每台分机有6%的时间用于外线通话,假定每台分机用不用外线是相互独立的,试问该总机至少应装多少条外线,才能有95%的把握确保各分机需用外线时不必等候.练习题三1. 已知随机变量的分布列为P (=m )=, m =2,4,…,18,20, 求E .2.两台生产同一种零件的车床,一天生产中次品数的概率分布分别是如果两台机床的产量相同,问哪台机床好?3.某射手每次射击打中目标的概率都是0.8,现连续向一目标射击,直到第一次击中为止.求“射击次数”的期望. 4.盒中有五个球,其中有三白二黑,从中随机抽取两个球,求“抽得的白球数”的期望.5.射击比赛,每人射四次(每次一发),约定全部不中得0分,只中一弹得15分,中二弹得30分,中三弹得55分,中四弹得100分.甲每次射击命中率为,问他期望能得多少分?6.设随机变量的分布密度为=求E.7.设随机变量的分布密度为=且=3+2,求E与D.8.对球的直径作近似测量,设其值均匀地分布在区间内,求球体积的均值.9.已知随机变量的分布列为,求E,E(2-3),E2,E(2-2+3).10.设随机变量的分布密度为=求E,E(2-3),E2,E(2-2+3)11.设随机变量的分布密度为=且E=,求常数,并D.12.设随机变量的分布密度为=,求E,D,E(-),D(-).练习题四一、统计概念1.设(,,)是正态总体N(,)的一个样本,其中是未知量,是已知量,问下列各式哪些是统计量?1);2)-;3)min{};4);5)+2-3;6)+2-.2.设总体服从泊松分布,即分布列为P(=m)=,>0为参数,m=1,2,…,试求样本(,,…,)的联合分布列.3.设总体的分布密度为()=,0<x<1,>-1为参数,试求样本(,,…,)的联合分布密度.4.已知某样本值为:2.06,2.44,5.91,8.15,8.75,12.50,13.42,15.78,17.23,18.22,22.72. 试求样本平均值、样本方差、样本修正方差.5.设总体的分布密度为()=,>0为参数,,,…,是总体中的一个样本,试求:E、D、E、E.6.设,,…,是总体的样本,试求:E、D、E.1)~N(,) ;2)~b(1,p).7.求下列各题中有关分布的临界值.1),;2),;3),.8.求下列各题中的常数k.1)设~,P(>k)=0.10;2)设~,P(<k=0.95;3)设~,P(>k)=0.05;4)设~,P(>k)=0.05;5)设~,P(>k)=0.95.9.对于给定的临界概率及自由度k(或k1,k2),查表求符合题意的相应临界值.1)已知=0.0838,求及;2)已知=0.01,k=51,求及;3)已知=0.01,k=23,求及,使P()=,P()=;4)已知=0.01,k1=8,k2=5,求及,使P()=,P()=.二、参数估计1.设总体的分布列为,式中0<<0.25为待估参数,(,,…,)为样本,试求的矩估计量.2.设总体的分布密度为=,>0为待估参数,(,,…,)为的一个样本,求的矩估计量.3. 已知一批元件的长度测量误差服从N(,),,为未知参数,现从总体中抽出200个样本值,经分组后整理成下表求,的估计值.4.设总体服从两点分布,分布列为P(=x)=,x=0,1,0<<1为待估参数,为的一观察值,求的最大似然估计值.5. 设总体的分布密度为=,>0为待估参数,现从中抽取10观察值,具体数据如下1050110010801200130012501340106011501150,求的最大似然估计值.6. 对于总体有E=,D=,(,)是的样本,讨论下列统计量的无偏性与有效性.=+,=+-,=+.7. 某水域由于工业排水而受污染,现对捕获的10条鱼样检测,得蛋白质中含汞浓度(%)为0.2130.2280.1670.7660.0540.0370.2660.1350.0950.101,若生活在这个区域的鱼的蛋白质中含汞浓度~N(,),试求=E,=D的无偏估计.8. 用某仪器测量某零件的温度,重复测量5次,量得温度如下(单位:℃):12501265124512601275,假定测量温度服从正态分布,且测量精度为11,试找出平均温度的置信区间(=0.05).9. 已知灯泡寿命的标准差=50小时,从中抽取25个灯泡检验,其平均寿命是500小时,试以95%的可靠性对灯泡的平均寿命进行区间估计.10. 已知某炼铁厂的铁水含铁量~N(,),现随机测量了5炉铁水,其含铁量为4.28 4.40 4.42 4.35 4.37,求的置信度为0.95的置信区间.11. 设某种电子管的使用寿命服从N(,),从中随机抽取30个进行检验,测得平均使用寿命25000小时,标准差700小时,以95%的可靠性,求整批电子管与的置信区间.12. 已知某种木材横纹抗压力的实验值服从正态分布,对10个试件作横纹抗压力试验,得数据如下(单位:公斤/平方厘米):578572570568572570570596584572.1)横纹抗压力~N(580,),试对进行区间估计(=0.05).2)横纹抗压力~N(,),试对进行区间估计(=0.05).三、假设检验1. 已知在正常生产情况下某种汽车零件的质量服从正态分布N(54 , 0.752).在某日生产的零件中抽取10件,测得质量(g)如下:54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3.如果标准差不变,该日生产的零件质量的均值是否有显著差异?(=0.05)2. 化肥厂用自动打包机包装化肥.某日测得9包化肥的质量(kg)如下:49.7 49.8 50.3 50.5 49.7 50.1 49.9 50.5 50.4.已知每包化肥的质量服从正态分布,是否可以认为每包化肥的平均质量为50 kg?(=0.05)3. 进行5次试验,测得锰的熔化点(℃)如下:1269 1271 1256 1265 1254.已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250℃?(=0.01)4. 已知某炼铁厂铁水含碳量服从正态分布N(4.40,0.052 ),现在测定了5炉铁水,其含碳量为4.34 4.40 4.42 4.30 4.35如果估计方差没有变化,可否认为现在生产之铁水平均含碳量为4.40(=0.05)?5. 已知某一试验,其温度服从正态分布N(,),现在测量了温度的5个值为:1250 1265 1245 1260 1275问是否可以认为=1277(=0.05)?6. 打包机装糖入包,每包标准重为100斤,每天开工后,要检验所装糖包的总体期望值是否合乎标准(100斤). 某日开工后,测得九包糖重如下(单位:斤):99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5如果打包机装糖的包重服从正态分布,问该天打包机工作是否正常(=0.05)?7. 某种导线的电阻服从正态分布N(,),要求电阻的标准差不得超过0.004欧姆. 今从新生产的一批导线中抽取10根,测其电阻,得s2=0.006欧姆. 对于=0.05,能否认为这批导线电阻的标准差显著偏大?8. 从一批灯炮中抽取50个灯泡的随机样本,算得样本平均数=1900小时,s2=490小时,以=1%的水平,检验整批灯泡的使用寿命是否为2000小时?9. 某种羊毛在处理前后,各抽取样本,测得含脂率如下(%):处理前:19 18 21 30 66 42 8 12 30 27处理后:19 24 7 8 20 12 31 2913 4.若羊毛含脂率按正态分布,问处理后含脂率有无显著变化(=0.05)?10. 两台车床生产同一种滚珠(滚珠直径按正态分布),从中分别抽取6个和9个产品,试比较两台车床生产的滚珠直径的方差是否相等(=0.10)?甲车床:34.5 38.2 34.2 34.1 35.1 33.8乙车床:34.5 42.3 41.7 43.1 42.4 42.2 41.8 43.0 42.9.11. 甲、乙两个铸造厂生产同一种铸件,假设两厂铸件的重量都服从正态分布,测得重量如下(单位:kg):甲厂:85.6 85.9 85.7 85.7 86.0 85.5 85.4 85.8乙厂:86.2 85.7 86.5 85.8 86.3 86.0 85.8 85.7 .问两厂铸件的平均重量有无显著差别(=0.05)?练习题五1. 某地4.5至10.5周岁女孩7个所年龄组的平均身高(单位:cm)的实测值如下表女孩年龄平均身高试求女孩长身高关于年龄的线性回归方程.2. 用切削机床进行金属品加工时,为了适当地调整机床,需要测定刀具的磨损速度.在一定时间(例如每隔一小时)测量刀具的厚度,得到数据如下:试求刀具厚度关于切削时间的线性回归方程,并考察相关的显著性.。
《概率论与数理统计》考试练习题及参考答案
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
完整版概率论与数理统计习题及答案选择题
完整版概率论与数理统计习题及答案选择题《概率论与数理统计》习题及答案选择题单项选择题1.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件入为().(A)“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C)“甲种产品滞销或乙种产品畅销”:(D)“甲种产品滞销” ?解:设B '甲种产品畅销',C '乙种产品滞销',A BCA BCB UC '甲种产品滞销或乙种产品畅销' .选C.2.设A, B,C是三个事件,在下列各式中,不成立的是()?(A) ( A B)UB AUB ;(B ) (AUB) B A;(C) (AUB) AB AB U AB ;(D) (AUB) C (A C )U(B C).解:(A B)UB AB UB (AUB)I?UB) AUB A对.(AUB) B (AUB) B AB UBB AB A B A B不对(AUB) AB (A B)U(B A) AB U AB. C 对选B同理D也对.3.若当事件A, B同时发生时,事件C必发生,则().(A ) P(C ) P( A) P(B) 1 ;(B ) P(C ) P( A) P(B) 1;(C) P(C ) P( AB);(D) P(C ) P( AUB).解:AB C P(C) P( AB) P(A) P(B) P(AUB) P(A) P( B) 1选B.4?设P(A) a, P( B) b, P( AUB) c,贝忡(廳)等于( ).(A ) a b ;(B ) c b;(C) a(l b) ;(D ) ba.解:P( AB) P(A B) P(A) P( AB) a P( A) P(B) P(AUB) c b151 ?152 ?选B.5.设A, B 是两个事件,若 P( AB) 0 ,则( (A ) A, B 互不相容;(B ) AB 是不可能事件; (C) P( A) 0 或 P(B) 0 ;解:Q P(AB) 0 AB(D ) AB 未必是不可能事件.选D.6.设事件A, B 满足AB (A ) A, B 互不相容; ,则下列结论屮肯定正确的是((B) A, B 相容;(C) P( AB) P(A)P(B); (D) P( A B)P(A).解:BA A,B 相容 AB P( AB) B, BA, ABB 错. P( A B)P(A)而P( A)P(B)不一定为 P( AB) P(A). C 错. 选D.7?设 0 P(B) 1, P( Al B) (A) A, B 互不相容; P( Al B)(B ) A, B 互为对立; (C) A, B 不独立;P(AB ) P( AB^ 川牛?P(B) P(B) P(AB)(1P(B))A, B 相互独立.(D ) P( AB) P( AUB) P( AB ) P( B) 1 P(B) P(B)P(B)(1 P(A) P(B) P(AB)) P(B)(1P(B))P(B) P 2 (B) P( AB) P(B) P( A)P(B) P 2 (B) 选D.P( AB) P( A)P(B) 8.下列命题中,正确的是( 1 P( AUB)P(B)(A)若P( A) 0 , 则A 是不可能事件; (B )若 P( AUB) P( A) P(B),则A,B 互不相容; (C)若 P( AUB)P( AB) 1,则 P(A) P(B) 1 ;(D) P( A B) 解:P(AUB)P(A) P(B). P(A) P(B)P(AB)P(AUB) P(AB) P(A) P(B) 1由 P( A) B 错.只有当AB 时 P(A B) P( A) P(B),否则不对.选C.153 ?(C) P( A) P( Al B) ; (D)前三者都不一定成立.P( AB )解:P(AI B) ------------------ 要与P( A)比较,需加条件. 选D.P(B)11?设0 P(B) 1,P(A I )P(A2)0 且 P(A I U A 2 I B) P(A[ I B) P( A 2 I B), 则下列等式成立的是()?(A ) P( Ai U A2 I B) P( Ai I B) P( A 2 I B); (B ) P( Ai B U A2 B) P( A I B) P( A 2 B); (C) P( Ai U A2 ) P( Ai I B) P( A 2 I B); (D) P( B) P( Ai )P( B I Ai ) P( A 2 ) P( B I A 2 ).解.:P(AUAIB) P(AIB) P(A I B) P(AAIB) p(亦 B) P(A? I B)P( Ai A2 I B) 0 P( Ai A2 B) 0P( Ai BU A 2B)P(A I B) P(A 2 B) P( A I A 2 B) P(A I B) P(A 2 B) 选B.解2:由 P{ Ai U A 2I B} P( Ai I B) P( A2 I B)得P( Ai B U A 2 B) P( A I B) P( A2 B)P(B)P(B)可见 P( Ai BU A2B) P( A I B) P( A2B) 选B.12.假设事件A, B 满足P(B I A) 1 ,贝ij ( ).(A 、>B 是必然事件;(B) P( B) 1; (C) P( A B) 0 ; (D) A B .解: P(B 1 A)P( AB)]P(A) P( AB) P(A) P( A) P( AB ) 0P( AB) 0选C.13. 设A, B 是两个事件,且A B, P(B) 0 ,则下列选项必然成立的是).(A ) P( AU B) P( A); (B ) P( AB) P(A);(C) P(B 1 A) P(B); (D ) P(B A)P(B) P(A). 解:B A AUB AP( AUB) P( A)选A.10.设A, B 是两个事件,且 P( A) P( Al B);(A ) P( A) P( Al B);(B) P(B) 0,则有( )9.设A, B 为两个事件,且 B A ,则下列各式中正确的是().154 ?(A ) P( A) P( Al B) ; (B ) P( A) P( Al B);(C) P( A) P( Al B) ;( D ) P( A)P( Al B).解:P(AI B)P( AB) A B P( A)-7P( A)P(B)P(B)A BP( A) P(B) 0 P(B) 1 选B(或者:A B,P( A) P( AB) P(B)P( Al B) P( Al B))14.设 P(B) 0, Ai , A2互不相容,则下列各式中不一定正确的是().(A ) P( Ai A 2I B) 0;(B ) P( Ai U A2 IB) P( Ai I B) P( A2 I B); (C) P( Ai A2 I B) 1;(D)P( Ai U A2 I B) 1.解:P( Ai A2 ) 0 Q Ai A2P(A I A 2B)P(Ai A2 I B) P(B) 0P(Ai U A2 I B) P( Ai I B) P(A2 I B) P( Ai A2 I B)P(Ai I B) P( A2 I B)P(Ai A 2 I B) P( Ai U A2 IB) 1 P( AiU A2 I B)1 P(Ai I B) P( A2 I B) 1P(Ai U A2 IB) P( Ai A2 I B) 1 P( Ai A2 I B) 1 0 选C.15. 设A, B, C 是三个相互独立的事件,且 0 P(C) 1 ,则在下列给定的四对事件中不相互独立的是().__(A) AUB 与 C ; ( B) AC 与 C ;(C) A B 与 C ;(D ) AB 与 C. - --------------------解:P[(AUB)C] P(ABC) P( A)P(B)P(C )(1 P( A))(l P(B)) P(C)[1 (P( A) P( B) P( A)P( B))] P(C ) P(A U B) P(C ) A 对. P( ACC )P[( AUC )C ] P( AC UCC ) P( AC) P(C ) P( AC )------- 11"111 -----------------------------------------------------------P(C ) P( AC )P(C ) AC 与 C 不独立选 B.16. 设A, B, C 三个事件两两独立,则 A, B, C 相互独立的充分必要条件是( ).(A ) A 与BC 独立; (B) AB 与AUC 独立; (C) AB 与AC 独立;(D) AUB 与AUC 独立.A 对.B 对.C 错. 1D 对.155 ?解:Q A, B, C 两两独立,P( ABC ) P( A)P( B) P(C ) P( A) P( BC )反之,如I A 与 BC 独立则 P( ABC ) P( A) P(BC ) P( A)P( B)P(C ) 选A.P( AB) P(BC ) P( ABC ) P( AUC )P( B)P[( A C ) A] P(ACA) P(AC ) P( A)P(C ) P(A)P( AC )C 对选D (也可举反例).18. —种零件的加工由两道工序组成.第一道工序的废品率为选B.20?设随机变量 X 的概率分布为P(X k) b 4 k 1,2,L ,b 0,则若A, B, C 相互独立则必有A 与BC 独立.17. (C) 设A, B,C 为三个事件且A, B 相互独立,则以下结论屮不正确的是 )若 P(C ) )若 P(C ) 若 P(C ) 1,则AC 与BC 也独立; 1,则AUC 与B 也独立; 1,则A C 与A 也独立; (D) 解: ,则A 与C 也独立. P( A)P(B), P(C )若C B Q P(AB)AC 与BC 也独立.1 概率为1的事件与任何事件独立P[(AUC)I B] P[( AUC )B] P( AB UBC) pi ,第二道工序的废品率为 (A )1 pi(C) 1 pi 解:设A P2,则该零件加工的成品率为((B ) 1 pi p2 : (D ) (1 pi ) 第i 道工序为成品P2 pi P2 ; 成品零件, Ai (1 P2)? i 1, 2.P( Ai ) 1P( A) P( Ai A 2)PlP( A2 ) 1 p2 P(Ai )P(A 2) (1Pl )(1P2)1 pi P2pi P2选C.19.设每次试验成功的概率为 p(0第10次试验才取得第 4次成功的概率为(A) Cio 4 p 4(l p)6 ;(C) C94 p 4(l p)5 ;1),现进行独立重复试验,则直到((B) C93 p 4(l p)6 ;(D) C93 p 3 (1 p)6.3次成功解:说明前9次取得了 C 93 p 3 (1 p)6p C 93 p 4 (1 p)6 第10次才取得第4次成功的概率为)156 ?23.下列函数屮,可作为某个随机变量的分布函数的是()1(A ) F ( x)1-; (B ) F ( x)丄—arc tan x ;1 X 22一(1 eX),x 0(C) F ( x)20 ,x 0;(C)亠(D )-J —.1 bb 1解:P (X K)b k bk b—b- 1k 1k 1k 111(A )为任意正实数; (B) b 1 ;——选C ?1 b21.设连续型随机变量 X 的概率密度和分布函数分别为 f (x )和F (x ),则下列各式正确的是()?(A) 0 f(X ) 1; (B) P(X x) f(x); (C) P(X x) F ( x); (D ) P(X x) F(x). /?选 D.22.下列函数可作为概率密度的是( ).(A ) f(X ) e lxl ,x R ;(B ) f(X )1 2 , x R ;(1 x)12 x_(C) f( X )Ve 2, x 0,0 ,x0;1,1 xl 1, (D) f ( X )0,1 xl 1?解:A : e lxl dx 2B :----- d x ——(1 x 2) 且 f (x)e X dx 21—arc tan xe X dx 2错. 丄[-—]12 2-------- - 0 x R 选 B. (1 解:F (x) P( X x) P(X x)157 ?选B. 26 .设随机变量X ?N(l,22),其分布函数和概率密度分別为F ( x)和()f ( X )dx ;(D ) F ( x) f(t)dt ,其中f(t )dt 1.解:对A : 0F(x) 1,但F(x)不具有单调非减性且 F()0 /. A 不是.对B :一 arc tan x 一\ 0 F ( x)1.2 2由arctanx 是单调非减的 F(x)是单调非减的.F()丄 1—( -) 0F() J- 1 --------- 1 .2 22 2F(x)具有右连续性.选B.24 ?设 Xi ,X 2 是随机变量,其分布函数分别为Fi ( x), F2 (X ),为使F ( x) aFi (x) bF 2 ( x)是某一随机变量的分布函数,在下列给定的各组数值中应取()?32(A ) a —, b2 : (B) a —,b2 ;5531(C) a _ ,b 3 ; (D) a _ ,b3.2 222解:F ()aFi () bF2 ()0 , F() a b 1 ,只有A 满足/.选A25.设随机变量X 的概率密度为f (x),且 f (x)f (x), F ( x)是 X 的分则对任意实数布函数, a 有()?(C)(D)2F(a); 2F (a) 1 .o f ( x)dx ;解: F(a)f (x)dx af()du f (u) du f ( x)dx f(x) dx 1f(x)dxf (x)dx)of ( x)dxof ( x)dxf (x)dxf(x)dxf (x)dxof (x)dx —2。
概率论与数理统计习题参考答案
概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
概率论及数理统计练习题及答案
概率论及数理统计练习题及答案练习1.写出下列随机试验的样本空间(1)把一枚硬币连续抛掷两次.观察正、反面出现的情况;(2)盒子中有5个白球,2个红球,从中随机取出2个,观察取出两球的颜色;(3)设10件同一种产品中有3件次品,每次从中任意抽取1件,取后不放回,一直到3件次品都被取出为止,记录可能抽取的次数;(4)在一批同型号的灯泡中,任意抽取1只,测试它的使用寿命. 解:(1)U={正正正反反正反反}(2)U={白白白红红白红红}(3)U={1,4,5,6,7,8,9,10}(4)U={t>0}2.判断下列事件是不是随机事件(1)一批产品有正品,有次品,从中任意抽出1件是正品;(2)明天降雨;(3)十字路口汽车的流量;(4)在北京地区,将水加热列100℃,变成蒸汽;(5y掷一枚均匀的骰子,出现1点.解:(1)(2)(3)(5)都是随机事件,(4)不是随机事件。
3.设A,B为2个事件,试用文字表示下列各个事件的含义(1)A+B; (2)AB; (3)A-B; (4)A-AB;(5)AB;(6)AB AB.解:(1)A ,B 至少有一个发生;(2) A ,B 都发生;(3) A 发生而B 不发生;(4) A 发生而B 不发生;(5)A ,B 都不发生;(6)A ,B 中恰有一个发生(或只有一个发生)。
4.设A,B,C 为3个事件,试用A,B,C 分别表示下列各事件(1)A ,B ,C 中至少有1个发生;(2)A ,B ,C 中只有1个发生;(3)A ,B ,C 中至多有1个发生;(4)A ,B ,C 中至少有2个发生;(5)A ,B ,C 中不多于2个发生;(6)A ,B ,C 中只有C 发生.解:(1)A B C,(2)AB C A B C A B C,(3)AB C ABC A B C A B C,(4)ABC ABC ABC ABC AB BC AC,(5)ABC A B C,(6)A B C ++?+??+++??+??+++++++??或或练习1.下表是某地区10年来新生婴儿性别统计情况:出生年份1990 1991 1992 1993 1094 1995 1996 1997 1998 1999 总计男 3 011 2 531 3 031 2 989 2 848 2 939 3 066 2 955 2 967 2 974 29311女 2 989 2 352 2 944 2 837 2 784 2 854 2 909 2 832 2 878 2 888 28267 总计 6 000 4 883 5 975 5 826 5 632 5 793 5 975 5 787 5 845 5 862 57578 据此估计此地区生男孩、女孩的概率.(,)2.掷两枚均匀的骰子,求下列事件的概率(1)点数和为1; (2)点数和为5;(3)点数和为12; (4)点数和大干10;(5)点数和不超过11.解:11135(1)0,(2),(3),(4),(5)93612363.抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.344.在100件同类产品中,有95件正品,5件次品,从中任取5件.求(1)取出的5件产品中无次品的概率;()(2)取出的5件产品中恰有2件次品的概率;()5.从0,1,2,…,9这10个数字中每次任取1个,然后放回,共取5次.求下列事件的概率(1)A={5个数字各不相同};(2)B={5个数字不含0和1};(3)C={5个数字中,1恰好出现2次}.6.袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率(1)2个球恰好同色;2/5(2)2个球中至少有1个红球.9/10练习1.甲乙两炮同时向一架敌机射击,已知甲炮的击中率是,乙炮的击中率是,甲乙两炮都击中的概率是,求飞机被击中的概率是多少解:P(A B)P(A)P(B)P(AB)P(A)P(B)P(A)P(B)0.50.60.50.60.8+=+-=+-=+-?=2.某种产品共40件,其中有3件次品,现从中任取2件,求其中至少有1件次品的概率是多少解:237240C 10.146C -= 3.一批产品共50件,其中46件合格品,4件废品,从中任取3件,其中有废品的概率是多少废品不超过2件的概率是多少,解:有废品的概率:346350C 10.2255C -= 废品不超过2件的概率:3211246464464333505050C C C C C 0.9998C C C ++= 4.设有100个圆柱形零件,其中95个长度合格,92个直径合格,87个长度直径都合格.现从中任取1件该产品,求:(1)该产品是合格品的概率;(2)若已知该产品直径合格,求该产品是合格品的概率;(3)若已知该产品长度合格,求该产品是合格品的概率.解:A :长度合格;B :直径合格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题一、填空1、假设事件A与B相互独立,且P(A)=0.2,P(B)=0.3,则P(AB)= 0.06解:因为事件A与B相互独立,所以P(AB)= P(A)P(B)=0.2*0.3=0.062、设X~E(γ),则E(X)=1γ解:定义。
当X~E(γ),E(X)=1γ,D(X)=1γ23、设随机变量X~U[2,5],则P{2<x≤3}= 13解:即求区间概率,小区间概率比上大区间概率。
即3−25−2=134、设二维随机变量(X,Y)~N(1,1,4,9,12),则Cov (X,Y)= 3解由二维随机变量知μ1=1,μ2=1,∆12=4,∆22=9,ρ=12故由ρXY=D(x)D(y)=12=Cov(x,y)2∗3所以Cov (X,Y)= 35、设随机变量X~N(4,25),x1,x2,…x n是来自总体X的一个样本,则样本均值 N(4,25n)解:定义。
由随机变量符合正态分布,所以X ~ N(μ,σ2n)所以样本均值X服从 N(4,25n)6、设随机变量X~N(1,4),则P{X≥1}=0.5解:正态随机变量标准化因为F(X)=P(X≤X}P{X≥1}=1−P{X<1}=1−F(1)=1−0.5=0.5 7、设X为随机变量,且E(X)=2,D(X)=4,则E(X2)=8解:由公式D(X)=E(X2)−E2(X)知E(X2)=D(X)+E2(X)=4+4=88、已知二维随机变量(X,Y)服从区域G:0≤x≤1,0≤y≤2上的均匀分布,则P{X≤1,Y≤1}=0.5解:f(x,y)={1−02−0,(x,y)∈G 0, esle所以∬12dxdy=12或画图,小正方形面积比上长方形,为0.59、若进行n次独立实验,每次实验的成功概率均为p,则n次实验中恰好成功的概率为Cn k P k(1−P)n−k解:由题知为n次的伯努利事件,由定义知概率为Cn k P k(1−P)n−k10、设E(X)=μ,D(X)=σ2,则由切比雪夫不等式知P{|X−μ|≥3σ2}≤19解:由切比雪夫不等式P{|X−μ|≥3σ2}≤D(X)ε=σ2(3σ)=19二、计算1、 设P (A )=14, P (B )=25,分别在下列情况下,求P(AB)(1)A 与B 相互独立 (2)P (AB )=18,解:(1)因为A 与B 相互独立,所以P (AB )=P (A )P (B )=14∗25=110由P(AB)=P (B −A )=P (B )−P (AB )=25−110=310(2)因为P (AB )=18,所以=P (B −A )=P (B )−P (AB )=25−18=11402、 设P (A )=13, P (B/A )=14,求P (AB ),解:由P (B/A )=P(AB)P(A),故P (AB )=P (B/A )∗P (A )=13∗14=112P(AB)=1−P (AB )=1−112=11123、 将3个球随机地投入到5个盒子里,求下列事件的概率。
(1) A 表示“任取3个盒子中各有1个球”。
(2) B 表示任取1个盒子中有3个球。
解:(1)P (A )=3!∗C 5353=1225(2) P (B )=C 515=1254、 设随机变量X~U [0,1],求Y =e X 的概率密度函数。
解:X~U[0,1]为特殊分布,所以fX(x)={1,0≤x ≤10,esle因为Y =e X 在[0,1]上是单调函数,值域为[1,e]反函数为h (y )=ln y,ℎ‘(y )=1y所以fY(y)={1,1≤y ≤e 0,esle5、 设连续型随机变量X 的概率密度分布函数f (x )={kx,0≤x <60,else(1) 求k,(2)求P {−1<X <1}解:(1)由公式∫f (x )dx =∫kxdx =1=18k 26+∞−∞ 所以k =118(2) P {−1<X <1}=∫f (x )dx =∫118dx =1−11−11366、已知随机变量X 的分布律为 X -1 0 1 2P 0.2 0.1 0.3 0.4 (1) 求Y=4X+1(2)Z=X 2的分布律 解:(1)Y=4X+1Y -3 1 5 9P 0.2 0.1 0.3 0.4 (2) Z=X 2X2 0 1 4P 0.1 0.5 0.47、设二维随机变量(X,Y)的联合分布律为Y 0 1 2X0 1/20 6/20 3/201 3/20 6/20 a(1)求a(2)关于X及Y的边缘分布律(3)在Y=0的条件下X的条件分布律解:(1)a=1-1/20-6/20-3/20-3/20-6/20=1/20(2)X 0 1P 1/2 1/2Y 0 1 2P 1/5 3/5 1/5(2)由P{X=0|Y=0}=P{X=0,Y=0}P{Y=0}=12015=14P {X =1|Y =0}=P{X =1,Y =0}P{Y =0}=32015=34所以X 0 1P{x=xi |Y=0} 1/4 3/4 8、二维随机变量(X,Y )的联合密度函数为f(x ,y)={1,0<x <1,0<y <2x0, else(1) 关于X,Y 的边缘密度函数(2)判断X 与Y 是否独立 解:(1)当x ≤0,x ≥1时fX (x)∫f (x,y )dy =∫0dy =0+∞−∞+∞−∞当0≤x ≤1时fX (x)∫f (x,y )dy =∫1dy =2x 2x+∞−∞所以fX (x)={2x,0≤x <10, else当y ≥0,y ≥2时fY (y)∫f (x,y )dx =∫0dy =0+∞−∞+∞−∞当0<x<2时fY(y)∫f (x,y )dx =∫1dx =1−y1y 2+∞−∞所以 fY(y)={1−y2,0≤y <20, else(2)因为f (x,y )≠fX (x )∗fY (y)所以X 和Y 不独立 9、设随机变量X 的概率密度函数为f (x )={2−x,x, 0<x <11≤x ≤20, esle求方差D(X)解:由公式∫∫g (x,y )f (x,y )dxdy +∞−∞+∞−∞得 ∫x 2dx +∫2x −x 221dx =110 所以E(X)=1Ex 2=∫x 2xdx +∫(2x −x 221)xdx =71所以D (X )=Ex 2−(Ex )2=76−1=1611、 已知盒中有5个球,其中2个白球,3个黑球,从中1次摸出3个球,以X 表示取到的白球个数,求X 的分布律和期望E(X)。
解:取到的白球个数可能为0,1,2P {X =0}=C 3353=1P {X =1}=C 32C 21C 53=6P{X=2}=C22C31C53=310所以分布律为X 0 1 2P 1/10 3/5 3/10E(X) = 1*3/5+2*3/10=5/612、设(x1,x2)是取自总体X的样本,且E(X)=μ,P(X)=σ2,设有估计量θ1̂=23x1+13x2,θ2̂=14x1+14x2,θ3̂=12x1+12x2(1)哪个是μ的无偏估计(2)哪个最有效解:(1)E(θ1)̂=E(23x1+13x2)=23E(x1)+13E(x2)=2 3μ+13μ=μE(θ2)̂=E(14x1+14x2)=14E(x1)+1 4E(x2)=14μ+14μ=12μE(θ3)̂=E(12x1+12x2)=12E(x1)+1 2E(x2)=12μ+12μ=μ所以θ1̂和θ3̂是μ的无偏估计(2)D(θ1)̂=D(23x1+13x2)=49D(x1)+19D(x2)=59σ2D(θ3̂)=D(12x1+12x2)=14D(x1)+14D(x2)=12σ2θ3̂<θ1̂,所以θ3̂最有效三、应用设某人从北京到广州开会,他乘坐飞机,火车,汽车的概率分别为20%,25%,55%,三种方式迟到的概率分别为5%,6%,10%。
(1)求迟到的概率(2)若他迟到了,则他乘坐的那种解:(1)20%*5%+25%*6%+55%*10%=0.008(2)55%*10%>25%*6%>20%*5%所以乘坐的是汽车四、证明设A,B为两个任意事件,且P(A)=0.4,P(B)=0.6,求证P(AB)=P(A B)证明:因为==1−P(AUB)=1−[P(A)+P(B)−P(AB)=1−[0.4+0.6−P(AB)]=P(AB)。