高等教育出版社,袁德美主编的概率论与数理统计习题五的答案.解析

合集下载

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题问案之阳早格格创做下等培养出版社1.将一枚匀称的硬币扔二次,事变C B A ,,分别表示“第一次出现正里”,“二次出现共部分”,“起码有一次出现正里”.试写出样原空间及事变C B A ,,中的样原面. 解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2.正在掷二颗骰子的考查中,事变D C B A ,,,分别表示“面数之战为奇数”,“面数之战小于5”,“面数相等”,“起码有一颗骰子的面数为3”.试写出样原空间及事变D C B A BC C A B A AB ---+,,,,中的样原面. 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A C B A ,,分别表示某皆会住户订阅日报、早报战体育报.试用C B A ,,表示以下事变:(1)只订阅日报; (2)只订日报战早报;(3)只订一种报; (4)正佳订二种报;(5)起码订阅一种报; (6)不订阅所有报;(7)至多订阅一种报; (8)三种报纸皆订阅;(9)三种报纸不齐订阅.解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或者C B C A B A ++(8)ABC ; (9)C B A ++4.甲、乙、丙三人各射打一次,事变321,,A A A 分别表示甲、乙、丙射中.试道明下列事变所表示的截止:2A ,32A A +,21A A ,21A A +,321A A A ,313221A A A A A A ++.解:甲已打中;乙战丙起码一人打中;甲战乙至多有一人打中或者甲战乙起码有一人已打中;甲战乙皆已打中;甲战乙打中而丙已打中;甲、乙、丙三人起码有二人打中.C B A ,,谦脚Φ≠ABC ,试把下列事变表示为一些互不相容的事变的战:C B A ++,C AB +,AC B -.解:如图:C B A ,,谦脚C B C A +=+,试问B A =是可创造?举例道明. 解:纷歧定创造.比圆:{}5,4,3=A ,{}3=B ,{}5,4=C ,那么,C B C A +=+,然而B A ≠.C B A ,,,试问C B A C B A +-=--)()(是可创造?举例道明. 解:纷歧定创造. 比圆:{}5,4,3=A ,{}6,5,4=B ,{}7,6=C ,那么{}3)(=--C B A ,然而是{}7,6,3)(=+-C B A .8. 设31)(=A P ,21)(=B P ,试便以下三种情况分别供)(A B P : (1)Φ=AB ,(2)B A ⊂,(3)81)(=AB P .解:(1)21)()()()(=-=-=AB P B P AB B P A B P ;(2)61)()()()(=-=-=A P B P A B P A B P ;(3)838121)()()()(=-=-=-=AB P B P AB B P A B P . 9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 供事变C B A ,,齐不爆收的概率. 解:())(1)(C B A P C B A P C B A P ++-=++==[])()()()()()()(1ABC P BC P AC P AB P C P B P A P +---++-83016116104141411=⎥⎦⎤⎢⎣⎡+---++-= 10.每个路心有黑、绿、黄三色指示灯,假设各色灯的启关是等大概的.一部分骑车通过三个路心,试供下列事变的概率:=A “三个皆是黑灯”=“齐黑”;=B “齐绿”;=C “齐黄”;=D “无黑”;=E “无绿”;=F “三次颜色相共”;=G “颜色齐不相共”;=H “颜色不齐相共”. 解:271333111)()()(=⨯⨯⨯⨯===C P B P A P ;278333222)()(=⨯⨯⨯⨯==E P D P ;91271271271)(=++=F P ;92333!3)(=⨯⨯=G P ;98911)(1)(=-=-=F P H P . 11.设一批产品共100件,其中98件正品,2件次品,从中任性抽与3件(分三种情况:一次拿3件;屡屡拿1件,与后搁回拿3次;屡屡拿1件,与后不搁回拿3次),试供:(1) 与出的3件中恰有1件是次品的概率;(2) 与出的3件中起码有1件是次品的概率. 解:一次拿3件:(1)0588.0310012298==C C C P ; (2)0594.031001982229812=+=C C C C C P ;屡屡拿一件,与后搁回,拿3次:(1)0576.0310098232=⨯⨯=P ; (2)0588.010098133=-=P ;屡屡拿一件,与后不搁回,拿3次:(1)0588.03989910097982=⨯⨯⨯⨯⨯=P ; (2)0594.098991009697981=⨯⨯⨯⨯-=P 9,,2,1,0 中任性选出3个分歧的数字,试供下列事变的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A . 解:157)(310381==C C A P ;15142)(31038392=-=C C C A P 或者15141)(310182=-=C C A P 9,,2,1,0 中任性选出4个分歧的数字,估计它们能组成一个4位奇数的概率. 解:9041454102839=-=P P P P 14.一个宿舍中住有6位共教,估计下列事变的概率:(1)6人中起码有1人死日正在10月份;(2)6人中恰有4人死日正在10月份;(3)6人中恰有4人死日正在共一月份;解:(1)41.01211166=-= P ; (2)00061.012116246=⨯= C P ;(3)0073.012116246112== C C P 15.从一副扑克牌(52弛)任与3弛(不沉复),估计与出的3弛牌中起码有2弛花色相共的概率. 解:602.03521392131431314=+= C C C C C C P 或者602.0135211311311334=-= C C C C C P1.假设一批产品中一、二、三等品各占60%,30%、10%,从中任与一件,截止不是三等品,供与到的是一等品的概率.解:令=i A “与到的是i 等品”,3,2,1=i 329.06.0)()()()()(3133131====A P A P A P A A P A A P . 2.设10件产品中有4件分歧格品,从中任与2件,已知所与2件产品中有1件分歧格品,供另一件也是分歧格品的概率.解:令=A “二件中起码有一件分歧格”,=B “二件皆分歧格”511)(1)()()()|(2102621024=-=-==C C C C A P B P A P AB P A B P 3.为了预防不料,正在矿内共时拆有二种报警系统I 战II.二种报警系统单独使用时,系统I 战II 灵验的概率分别0.92战0.93,正在系统I 得灵的条件下,系统II 仍灵验的概率为0.85,供(1) 二种报警系统I 战II 皆灵验的概率;(2) 系统II 得灵而系统I 灵验的概率;(3) 正在系统II 得灵的条件下,系统I 仍灵验的概率.解:令=A “系统(Ⅰ)灵验”,=B “系统(Ⅱ)灵验”则85.0)|(,93.0)(,92.0)(===A B P B P A P (1))()()()(B A P B P B A B P AB P -=-=862.085.0)92.01(93.0)|()()(=⨯--=-=A B P A P B P (2)058.0862.092.0)()()()(=-=-=-=AB P A P AB A P A B P (3)8286.093.01058.0)()()|(=-== B P B A P B A P4. 设1)(0<<A P ,道明事变A 与B 独力的充要条件是 证:⇒:A 与B 独力,A ∴与B 也独力.)()|(),()|(B P A B P B P A B P ==∴)|()|(A B P A B P =∴⇐: 1)(01)(0<<∴<<A P A P 又)()()|(,)()()|(A P B A P A B P A P AB P A B P == 而由题设)()()()()|()|(A P B A P A P AB P A B P A B P =∴=即)]()()[()()](1[AB P B P A P AB P A P -=-)()()(B P A P AB P =∴,故A 与B 独力.5. 设事变A 与B 相互独力,二个事变惟有A 爆收的概率与惟有B 爆收的概率皆是41,供)(A P 战)(B P . 解:41)()(==B A P B A P ,又 A 与B 独力∴41)()](1[)()()(=-==B P A P B P A P B A P 41)](1)[()()()(=-==B P A P B P A P B A P 41)()(),()(2=-=∴A P A P B P A P 即21)()(==B P A P . 6. 道明 若)(A P >0,)(B P >0,则有(1) 当A 与B 独力时,A 与B 相容;(2) 当A 与B 不相容时,A 与B 不独力.道明:0)(,0)(>>B P A P (1)果为A 与B 独力,所以0)()()(>=B P A P AB P ,A 与B 相容.(2)果为0)(=AB P ,而0)()(>B P A P ,)()()(B P A P AB P ≠∴,A 与B 不独力.7. 已知事变C B A ,,相互独力,供证B A 与C 也独力. 道明:果为A 、B 、C 相互独力,∴)(])[(BC AC P C B A P =)()()()]()()([)()()()()()()()()()(C P B A P C P AB P B P A P C P B P A P C P B P C P A P ABC P BC P AC P =-+=-+=-+=B A ∴与C 独力.8. 甲、乙、丙三机床独力处事,正在共一段时间内它们不需要工人照应的概率分别为0.7,0.8战0.9,供正在那段时间内,最多惟有一台机床需要工人照应的概率.解:令321,,A A A 分别表示甲、乙、丙三机床不需要工人照应,那么9.0)(,8.0)(,7.0)(321===A P A P A P 令B 表示最多有一台机床需要工人照应,那么)()(321321321321A A A A A A A A A A A A P B P +++=902.01.08.07.08.02.07.09.08.03.09.08.07.0)()()()(321321321321=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A A A P A A A P A A A P A A A P 9. 如果形成系统的每个元件能平常处事的概率为)10(<<p p ,(称为元件的稳当性),假设各元件是可平常处事是相互独力的,估计底下各系统的稳当性.解:令A 常处事”i A n i 2,,2,1 =n i A A A P A P 221,,,,)( =相互独力.那么[])()()(22121n n n n A A A A A A P A P +++=][[])2(2)()()()()()(22121122122121n n n n ni i n n i i n i i n n n n n P P P P A P A P A P A A A P A A A P A A A P -=-=-+=-+=∏∏∏=+==++ )]())([()(22211n n n n A A A A A A P B P +⨯⨯++=++ n nni n i i n i i n i ni i n i P P P P A P A P A P A P A A P )2(]2[)]()()()([)(1211-=-=-+=+=∏∏∏==++=+注:利用第7题的要领不妨证 明)(i n i A A ++与)(j n j A A ++j i ≠时独力.系统I 系统II10. 10弛奖券中含有4弛中奖的奖券,每人买买1弛,供(1) 前三人中恰有一人中奖的概率;(2) 第二人中奖的概率.解:令=i A “第i 部分中奖”,3,2,1=i (1))(321321321A A A A A A A A A P ++)()()(321321321A A A P A A A P A A A P ++=)|()|()()|()|()()|()|()(213121213121213121A A A P A A P A P A A A P A A P A P A A A P A A P A P ++=21859410684951068596104=⨯⨯+⨯⨯+⨯⨯=或者213102614==C C C P (2))|()()|()()(1211212A A P A P A A P A P A P +=529410693104=⨯+⨯= 11. 正在肝癌诊疗中,有一种甲胎蛋黑法,用那种要领不妨查看出95%的真正在患者,然而也有大概将10%的人误诊.根据往常的记录,每10 000人中有4人患有肝癌,试供:(1)某人经此考验法诊疗患有肝癌的概率;(2)已知某人经此考验法考验患有肝癌,而他真真是肝癌患者的概率.解:令=B “被考验者患有肝癌”,=A “用该考验法诊疗被考验者患有肝癌”那么,0004.0)(,10.0)|(,95.0)|(===B P B A P B A P (1))|()()|()()(B A P B P B A P B P A P +=10034.01.09996.095.00004.0=⨯+⨯=(2))|()()|()()|()()|(B A P B P B A P B P B A P B P A B P +=0038.01.09996.095.00004.095.00004.0=⨯+⨯⨯= 12. 一大批产品的劣量品率为30%,屡屡任与1件,连绝抽与5次,估计下列事变的概率:(1)与到的5件产品中恰有2件是劣量品;(2) 正在与到的5件产品中已创造有1件是劣量品,那5件中恰有2件是劣量品.解:令=i B “5件中有i 件劣量品”,5,4,3,2,1,0=i (1)3087.0)7.0()3.0()(32252== C B P (2))()()|()|(00202512B P B B P B B P B B P i i === 371.0)7.0(13087.0)(1)(502=-=-= B P B P 13. 每箱产品有10件,其次品数从0到2是等大概的.启箱考验时,从中任与1件,如果考验是次品,则认为该箱产品分歧格而拒支.假设由于考验有误,1件正品被误检是次品的概率是2%,1件次品被误判是正品的概率是5%,试估计:(1)抽与的1件产品为正品的概率;(2)该箱产品通过查支的概率.解:令=A “抽与一件产品为正品”=i A “箱中有i 件次品”,2,1,0=i =B “该箱产品通过查支”(1)9.0101031)|()()(2020=-⨯==∑∑==i i i i i A A P A P A P (2))|()()|()()(A B P A P A B P A P B P +=887.005.01.098.09.0=⨯+⨯=14. 假设一厂家死产的仪器,以概率0.70不妨间接出厂,以概率0.30需进一步调试,经调试后以概率0.80不妨出厂,并以概率0.20定为分歧格品不克不迭出厂.现该厂新死产了)2(≥n n 台仪器(假设各台仪器的死产历程相互独力),供:(1)局部能出厂的概率;(2)其中恰有2件不克不迭出厂的概率;(3)其中起码有2件不克不迭出厂的概率.解:令=A “仪器需进一步调试”;=B “仪器能出厂”=A “仪器能间接出厂”;=AB “仪器经调试后能出厂”隐然AB A B +=,那么8.0)|(,3.0)(==A B P A P 24.08.03.0)|())(=⨯==A B P PA AB P 所以94.024.07.0)()()(=+=+=AB P A P B P 令=i B “n 件中恰有i 件仪器能出厂”,n i ,,1,0 =(1)nn B P )94.0()(=(2)2222222)06.0()94.0()06.0()94.0()(----==n n n n n n C C B P (3)n n nn n n k k C B P B P B P )94.0()94.0(06.01)()(1)(11120--=--=---=∑15. 举止一系列独力考查,屡屡考查乐成的概率均为p ,试供以下事变的概率:(1)直到第r 次才乐成;(2)第r 次乐成之前恰波折k 次;(3)正在n 次中博得)1(n r r ≤≤次乐成;(4)直到第n 次才博得)1(n r r ≤≤次乐成.解:(1)1)1(--=r p p P (2)k r r k r p p C P )1(11-=--+(3)r n r r n p p C P --=)1((4)r n r r n p p C P ----=)1(11 16. 对于飞机举止3次独力射打,第一次射打掷中率为0.4,第二次为0.5,第三次为0.7. 打中飞机一次而飞机被打降的概率为0.2,打中飞机二次而飞机被打降的概率为0.6,若被打中三次,则飞机必被打降.供射打三次飞机已被打降的概率.解:令=i A “恰有i 次打中飞机”,3,2,1,0=i =B “飞机被打降”隐然:09.0)7.01)(5.01)(4.01()(0=---=A P 36.07.0)5.01()4.01()7.01(5.0)4.01()7.01()5.01(4.0)(1=⨯-⨯-+-⨯⨯-+-⨯-⨯=A P 41.07.05.0)4.01(7.0)5.01(4.0)7.01(5.04.0)(2=⨯⨯-+⨯-⨯+-⨯⨯=A P 14.07.05.04.0)(3=⨯⨯=A P 而0)|(0=A B P ,2.0)|(1=A B P ,6.0)|(2=A B P ,1)|(3=A B P 所以458.0)|()()(30==∑=i i i A B P A P B P ;542.0458.01)(1)(=-=-=B P B P1. 设X 为随机变量,且k k X P 21)(==( ,2,1=k ), 则 (1) 推断上头的式子是可为X 的概率分散;(2) 假如,试供)为偶数X P (战)5(≥X P .解:令 ,2,1,21)(====k p k XP kk (1)隐然10≤≤k p ,且1121212111=-==∑∑∞=∞=k k k k p 所以,2,1,21)(===k k X P k 为一致率分散.(2)X P (为奇数31121)41411212=-===∑∑∞=∞=k k k k p 161121)5(2121555=-===≥∑∑∞=∞=k k k k p X Pλλ-==e k C k X P k!)(( ,2,1=k ), 且0>λ,供常数C . 解:1!1=-∞=∑λλe k c k k ,而1!0=-∞=∑λλe k k k 1!010=⎥⎦⎤⎢⎣⎡-∴-λλe c ,即1)1(---=λe c)10(<<p p ,不竭举止沉复考查,直到尾次乐成为止.用随机变量X 表示考查的次数,供X 的概率分散.解: ,2,1,)1()(1=-==-k p p k X P k4.设自动死产线正在安排以来出现成品的概率为p=0.1,当死产历程中出现成品时坐时举止安排,X 代表正在二次安排之间死产的合格品数,试供(1)X 的概率分散; (2))5(≥X P .解:(1) ,2,1,0,1.0)9.0()1()(=⨯=-==k p p k X P k k (2)555)9.0(1.0)9.0()()5(=⨯===≥∑∑∞=∞=k k k k X P X P5.一弛考卷上有5讲采用题,每讲题列出4个大概问案,其中有1个问案是精确的.供某教死靠预测能问对于起码4讲题的概率是几?解:果为教死靠预测问对于每讲题的概率为41=p ,所以那是一个5=n ,41=p 的独力沉复考查.641)43()41(43)41()4(0555445=+⨯=≥C C XP6.为了包管设备平常处事,需要配备适合数量的维建人员.根据体味每台设备爆收障碍的概率为0.01,各台设备处事情况相互独力.(1)若由1人控制维建20台设备,供设备爆收障碍后不克不迭即时维建的概率;(2)设有设备100台,1台爆收障碍由1人处理,问起码需配备几维建人员,才搞包管设备爆收障碍而不克不迭即时维建的概率不超出0.01?解:(1)0175.0)99.0(01.020)99.0(11920≈⨯⨯--(按Poisson (泊紧)分散近似)(2)λ==⨯==101.0100,100np n (按Poisson (泊紧)分散近似)01.0!1)99.0()01.0()1(100111001100100≤⨯≈=+≥∑∑+=-+=-N k k N k kk k k e CN X P 查表得4=NX遵循参数为λ的Poisson(泊紧)分散,且21)0(==X P ,供(1)λ; (2))1(>X P . 解:2ln ,21!0)0(0=∴===-λλλe X P )]1()0([1)1(1)1(=+=-=≤-=>X P X P X P X P )2ln 1(21]2ln 2121[1-=+-=8.设书籍籍上每页的印刷过得的个数X 遵循Poisson(泊紧)分散.经统计收当前某原书籍上,有一个印刷过得与有二个印刷过得的页数相共,供任性考验4页,每页上皆不印刷过得的概率.解:)2()1(===X P X P ,即2,!2!121==--λλλλλe e20-==∴e X P )(842)(--==∴e e P9.正在少度为的时间隔断内,某慢救核心支到慢迫呼救的次数遵循参数为的Poisson 分散,而与时间隔断的起面无关(时间以小时计),供(1)某一天从中午12时至下午3时不支到慢迫呼救的概率;(2)某一天从中午12时至下午5时支到1次慢迫呼救的概率;9.正在少度为t 的时间隔断内,某慢救核心支到慢迫呼救的次数X 遵循参数为2t 的Poisson(泊紧)分散,而与时间隔断的起面无关(时间以小时计). 供(1)某一天从中午12时至下午3时不支到慢迫呼救的概率;(2)某一天从中午12时至下午5时支到1次慢迫呼救的概率;解:(1)23)0(23,3-====e X P t λ(2)251)0(1)1(25,5--==-=≥==e X P X P t λX试供(1)a ; (2)12-=X Y 的概率分散.解:(1)12312=+++++a a a a a 101=∴a .(2)X的概率稀度直线如图1.3.8所示.试供:((3)2(<-X P ⎪⎪⎪⎩⎪⎪⎪⎨⎧∈+-=其它,0)3,0[,216121)(x x x f (3)1211)2161()2121()22012=+-++=≤<-⎰⎰-dx x dx x X P ( X的概率稀度为试决定常数a 并供)6(π>X P .解:令1)(=⎰+∞∞-dx x f ,即1sin 0=⎰dx x a 1cos 0=-∴ax ,即2,0cos π==a a 23|cos sin )6(2626=-==>⎰πππππx xdx X P xx e+-2形成概率稀度函数?解:令 12=⎰+∞∞-+-dx ce x x 即141)21(2=⎰+∞∞---dx e ec x 即141=πce411-=∴e c π),(~2σμN X ,其概率稀度函数为644261)(+--=x x e x f π(+∞<<∞-x )试供2,σμ;若已知⎰⎰∞-+∞=C Cdx x f dx x f )()(,供C .解:222)3(2)2(64432161)(--+--==x x x eex f ππ2=∴μ ,32=σ若⎰⎰∞-+∞=ccdx x f dx x f )()(,由正态分散的对于称性可知2==μc .X的概率稀度为以Y 表示对于X 的三次独力沉复考查中“21≤X ”出现的次数,试供概率)2(=Y P .解:412)21(21==≤⎰xdx XP 649)43()41()2(223===C Y P . X遵循[1,5]上的匀称分散,试供)(21x X x P <<. 如果 (1)5121<<<x x ; (2)2151x x <<<. 解:X 的概率稀度为⎪⎩⎪⎨⎧≤≤=其他,051,41)(x x f (1)⎰-==<<21221)1(4141)(x x dx x X x P (2)⎰-==<<51211)5(4141)(x x dx x X x P X(以分计)遵循51=λ的指数分散.某主瞅等待服务,若超出10分钟,他便离启.他一个月要来等待服务5次,以Y 表示一个月内他已等到服务而离启的次数,试供Y 的概率分散战)1(≥Y P .解:21051]1[1)10(1)10(-⨯-=--=<-=≥e e X P X P 5,4,3,2,1,0,)1()()(5225=-==∴---k e e C k Y P k k k5167.0)1(1)1(52≈--=≥-e Y PX的概率分散为2.0)1(==X P ,3.0)2(==X P ,5.0)3(==X P ,试供X 的分散函数;)25.0(≤≤X P ;绘出)(x F 的直线.解:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=3,132,5.021,2.01,0)(x x x x x F ; 5.0)25.0(=≤≤X P )(x F 直线:2.试供:)1|2≠X .(2 3.从家到书籍院的途中有3个接通岗,假设正在各个接通岗逢到黑灯的概率是相互独力的,且概率均是0.4,设X 为途中逢到黑灯的次数,试供(1)X 的概率分散;(2)X 的分散函数.解:(1)3,2,1,0,)3()2()(33===-k C k X P k k k 列成表格(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F X的分散函数,并绘出)(x F 的直线.解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++-<≤-++-<=313041211210141214110)(22x x x x x x x x x F5. 设连绝型随机变量X 的分散函数为试供:(1)B A ,的值;(2))11(<<-X P ;(3)概率稀度函数)(x f .解:(1)11)(lim )(2=∴=+=+∞-+∞→A Be A F x x 又10)0()(lim 20-=-=∴==+-→+A B F Be A x x (2)21)1()1()11(--=--=<<-e F F X P (3)⎩⎨⎧≤>==-0,0,2)(')(2x x e x F x f x 6. 设X 为连绝型随机变量,其分散函数为试决定)(x F 中的d c b a ,,,的值.解: 10)(=∴=-∞a F 又11)(=∴=+∞d F 又10)1ln (lim 1-=∴==++-→c a cx x bx x 又111)1ln (lim =+-∴==+--→e be d x x bx ex 即1=bX的概率稀度函数为)1()(2x a x f +=π,试决定a 的值并供)(x F 战)1(<X P .解:1)1(2=+⎰+∞∞-dx x aπ 即 11|arctan =∴=∞+∞-a x aπ+∞<<∞-+=+=⎰∞-x x dt t a x F x,arctan 121)1()(2ππ5.0)]1arctan(121[)1arctan 121()1()1()1|(|=-+-+=--=<ππF F X Pt (年)的时间隔断内爆收天震的次数)(t N 遵循参数为1.0=λ的Poisson(泊紧)分散,X 表示连绝二次天震之间相隔的时间(单位:年),试供:(1)道明X 遵循指数分散并供出X 的分散函数; (2)以后3年内再次爆收天震的概率;(3)以后3年到5年内再次爆收天震的概率.解:(1) 当0≥t 时,t e t N P t X P 1.0)0)(()(-===>t e t X P t X P t F 1.01)(1)()(--=>-=≤=∴当0<t 时,0)(=t F ⎩⎨⎧<≥-=∴-01)(1.0x x e x F xX 遵循指数分散(1.0=λ)(2)26.01)3(31.0≈-=⨯-e F (3)13.0)3()5(≈-F F 9. 设)16,1(~-N X ,试估计(1))44.2(<X P ;(2))5.1(->X P ;(3))4(<X P ;(4))11(>-X P .解:(1)8051.0)444.3()4)1(44.2()44.2(=Φ=--Φ=< X P (2))5.1(1)5.1(-≤-=->X P X P 5498.0)81(1)415.1(1=-Φ-=+-Φ-= (3))414()414()4|(|+-Φ-+Φ=<X P )43()45(-Φ-Φ=6678.01)43()45(=-Φ+Φ= (4)[])2()0()2()0()1|1(|>+<=><=>-X P X P X X P X P )412(1)410(+Φ-++Φ=8253.0)43(1)41(=Φ-+Φ=X近似遵循正态分散)10,70(2N ,第100名的结果为60分,问第20名的结果约为几分?解:10020)60|(=≥≥X x X P 而[])60()()60()60()()60|(≥≥=≥≥≥=≥≥X P x X P X P X x X P X x X P 又8413.0)1(1070601)60(=Φ=⎪⎭⎫⎝⎛-Φ-=≥ X P 16826.08413.02.0)(=⨯=≥∴x X P 即16826.0)1(10701)(=Φ=⎪⎭⎫ ⎝⎛-Φ-=≥x x X P 83174.01070=⎪⎭⎫⎝⎛-Φ∴x ,96.01070≈-x ,6.79≈x 11. 设随机变量X 战Y 均遵循正态分散,)4,(~2μN X ,)5,(~2μN Y ,而)4(1-≤=μX P p ,)5(2+≥=μY P p ,试道明 21p p =. 道明:)1(44)4(1-Φ=⎪⎭⎫⎝⎛--Φ=-≤=μμμX P p )1()1(1551)5(2-Φ=Φ-=⎪⎭⎫⎝⎛-+Φ-=+≥=μμμY P p 21p p =∴.12. 设随机变量X 遵循[a,b]上的匀称分散,令d cX Y +=()0≠c ,试供随机变量Y 的稀度函数.解:⎪⎩⎪⎨⎧≤-≤⋅⎪⎭⎫ ⎝⎛-=其它,0,||1)(b cdy a c c d y f y f X Y 当0>c 时,⎪⎩⎪⎨⎧+≤≤+-=其他,0,)(1)(d cb y d a c a b c y f Y 当0<c 时,⎪⎩⎪⎨⎧+≤≤+--=其他,0,)(1)(d ca y d b c a b c y f Y。

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

P(B) P(A)P(B A) P(A)P(B A)
第 5 页 共 101 页
5
0.2 0.1
1 0.02702
0.8 0.9 0.2 0.1 37
即考试及格的学生中不努力学习的学生仅占 2.702%
(2) P(A B) P(AB)
P(A)P(B A)
P(B) P(A)P(B A) P(A)P(B A)
可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有 N 种取法,故所有可能的取法总数为 Nn 种,n
次抽取中有
m
次为正品的组合数为
C
m n
种,对于固定的一种正、次品的抽取次序,
m 次取得正品,都有 M 种取法,共有 Mm 种取法,nm 次取得次品,每次都有 NM 种取法,共有(NM)nm 种取法,故
【解】 P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)
111 1 3
=+ + =
4 4 3 12 4
7. 从 52 张扑克牌中任意取出 13 张,问有 5 张黑桃,3 张红心,3 张方块,2 张梅花的概率 是多少?
【解】
p=
C153C133C133C123
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确

概率论和数理统计课后习题答案解析____完整校对版

概率论和数理统计课后习题答案解析____完整校对版

复旦大学习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N M 件次品中取n m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m种取法,n m 次取得次品,每次都有N M种取法,共有(N M )n m种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p ==16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 3101100C(0.35)(0.65)0.5138kk k k p -===∑(2) 10102104C(0.25)(0.75)0.2241k k k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a x y .则基本事件集为由0<x <a ,0<y <a ,0<a x y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C P (AB )+P (AC )P (BC )≤P (A ).【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P(A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1甲反≤n 乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P(A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n 1是1,2,…,n 中的任n 1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rrm m m n m nmn m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n r 次,设n 次取自B 1盒(已空),n r 次取自B 2盒,第2n r +1次拿起B 1,发现已空。

高等教育出版社,袁德美主编的概率论与数理统计习题二的答案.解析39页PPT

高等教育出版社,袁德美主编的概率论与数理统计习题二的答案.解析39页PPT

56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
Hale Waihona Puke 高等教育出版社,袁德美主编的概率论 与数理统计习题二的答案.解析

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。

概率论与数理统计课后习题答案高等教育出版社

概率论与数理统计课后习题答案高等教育出版社

概率论与数理统计课后习题答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

0.05

查表得: χ 20.95 (8) = 15.507 ,故拒绝域为 (15.507, + ∞) .
代入样本值 s = 0.007 得 K 值为 K = 8 × (0.007)2 = 15.68 > 15.507 (0.005) 2
所以拒绝 H 0 ,故可以认为这批导线的标准差显著地偏大。
7. 某厂使用两种不同的原料 A, B 生产同一类产品,现抽取用原料 A 生产的样品 220 件,测得平均 重量为 2.46kg,标准差为 0.57kg。抽取用原料 B 生产的样品 205 件,测得平均重量为 2.55kg,标 准差为 0.48kg。设这两个总体都服从正态分布,且方差相等,问在显著水平α = 0.05 下能否认为 使用原料 B 生产的产品平均重量较使用原料 A 生产的产品平均重量为大?
当假设 H 0 为真时,取检验统计量
T = X − 3.25 ~ t(4) S/ 5

P ⎪⎨⎧ ⎪⎩
X − 3.25 S/ 5
>
t
0.01 2
(4)⎪⎬⎫ ⎪⎭
=
0.01
查表得: t 0.01 (4) = 4.6041,故拒绝域为 (−∞,−4.6041) U (4.6041,+∞) .
2
代入样本值 x = 3.252, s = 0.013 得 T 值为 T = 3.252 − 3.25 = 0.344 < 4.6041 0.013 / 5
当假设 H 0′ 为真时,取检验统计量
F = S12 ~ F (10,8)
S
2 2

P⎪⎨⎧ ⎪⎩
S12
S
2 2
<
F 1−
0.05

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。

高等教育出版社,袁德美主编的概率论与数理统计习题一的答案

高等教育出版社,袁德美主编的概率论与数理统计习题一的答案
则所求概率为
P( A2 ) P(A1)P(A2 A1) P(A1)P(A2 A1)
2211 5 3 4 3 4 12
1.38某人决定将一笔钱投资于房地产、股票和期货之 一,他选择这三种投资渠道的概率依次为1/2,1/4和1/4. 据有关信息显示,现阶段这三种投资渠道亏本的概率分 别为1/8,1/4和1/8.问他投资亏本的概率是多少?
(3)(A B) U B A (×) 证明 ( A B) U B ( A I B) U B
(AU B) I (B U B)
AUB
1.4 试问下列命题是否成立?若正确给出其证明,若错误 举一个反例.
(4)若AB ,且C A,则BC (√) 证明(反证法) 假设BC , 则至少一个 BC
P AB 0.1, P(AC) 0.08, P(BC) 0.05, P ABC 0.03
(3)P ABC U ABC U ABC P ABC P ABC P ABC
其中P ABC P AUB UC 1 P AUB UC
1[0.7 0.2]
0.5
1.10 设A,B是任意两事件,将下列四个数P(A),P(AB), P(A∪B),P(A)+P(B)按由小到大的顺序排列起来
解 Q AB A (AUB)
∴P(AB)≤P(A)≤P(A∪B) 又P(A∪B)=P(A)+P(B)P∴(PA(BA)∪B)≤P(A)+P(B ) ∴P(AB)≤P(A)≤P(A∪B)≤P(A)+P(B)
(3)连续抛一枚硬币直到正面出现为止的试验次数
3 {1, 2,L } (4)某城市一天的用电量 4 {t t 0}

高等教育出版社,袁德美主编的概率论与数理统计习答案

高等教育出版社,袁德美主编的概率论与数理统计习答案

1
2
E( X E( X ) ) E( X 1) x 1 f ( x)dx
(1 x) x dx
0 1 2 1
1 ( x 1) (2 x) dx 3
4.13 设 (X, Y ) 的联合概率密度是
y
12 y 2 , 0 y x 1 f ( x, y ) 其他 0 , 求(1)E(X),E(Y);(2)E(XY);(3)E(X2+Y2)
4.19 设 X表示10次独立重复射击命中目标的次数,每 次命中目标的概率为0.4,则E(X2)=( A )
(A)18.4

(B)24
(C)16
(D)12
X
B(10, 0.4)
E ( X ) np 4
D( X ) npq 2.4
又D( X ) E ( X ) [ E ( X )]
Cov( X , Y ) E( XY ) E( X ) E(Y ) 0
XY
Cov( X , Y ) 0 D( X ) D(Y )
1 解 又P( X 1, Y 1) 8 3 3 P ( X 1) , P (Y 1) 8 8
但P( X 1, Y 1) P( X 1) P(Y 1)
2 2




xyf ( x, y) dxdy dx
0
1 xy 12 y dy 2
(3) E ( X Y )
1

x
( x 2 y 2 ) f ( x, y ) dxdy
2 2 2
16 dx ( x y ) 12 y dy 0 0 15

概率论与数理统计第五版答案

概率论与数理统计第五版答案

概率论与数理统计第五版答案第一章简介本章主要介绍概率论与数理统计的基本概念和研究对象,并概述了本书的组织结构和学习方法。

1.1 概率论与数理统计的基本概念概率论是研究不确定现象的数学分支,数理统计是利用概率论的方法进行统计分析的科学。

概率论研究的对象是随机现象及其概率规律,而数理统计研究的是通过对样本数据的分析来推断总体特征和进行决策。

1.2 概率论的基本思想概率论的基本思想是根据已知信息推断未知信息的可能性。

它主要包括两个方面:经典概率和统计概率。

经典概率是指通过理论计算得出的概率值,统计概率是通过观察数据进行统计分析得出的概率值。

1.3 数理统计的基本思想数理统计的基本思想是根据样本数据推断总体特征,并进行决策。

它包括描述统计和推断统计两个部分。

描述统计是对样本数据的整理、加工和展示;推断统计是通过样本数据来推断总体特征,并给出相应的置信区间或检验结果。

1.4 本书的结构和学习方法本书一共分为五个部分,分别是概率基础、随机变量及其分布、数理统计基础、参数估计与检验、方差分析与回归分析。

每个部分都有相应的章节和习题。

本书的学习方法包括理论学习和实践练习相结合。

在学习理论知识的同时,通过习题的解答来巩固和应用所学的知识。

第二章概率基础本章介绍了概率的基本性质和运算法则,并讲解了概率模型和条件概率的概念。

2.1 概率的基本性质概率具有非负性、规范性和可列可加性三个基本性质。

非负性指概率的取值范围为[0,1];规范性指必然事件的概率为1,不可能事件的概率为0;可列可加性指若事件A1、A2…是两两互斥事件,则它们的概率之和等于它们的并事件的概率。

2.2 概率的运算法则概率的运算法则包括加法法则和乘法法则。

加法法则是指若事件A和B互斥,则它们的概率之和等于它们的并事件的概率;乘法法则是指若事件A和B相互独立,则它们的概率之积等于它们的联合事件的概率。

2.3 概率模型概率模型是指用概率分布来描述随机现象的数学模型。

概率论与数理统计含答案

概率论与数理统计含答案

《概率论与数理统计》复习大纲与复习题09-10第二学期一、复习方法与要求学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成.学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目.如开学给出的学习建议中所讲:作为本科的一门课程,在教材中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.考试也有所侧重,期末考试各章内容要求与所占分值如下:第一章随机事件的关系与运算,概率的基本概念与关系,约占30分.第二章一维随机变量的分布,约占25分.第三章二维随机变量的分布,仅要求掌握二维离散型随机变量的联合分布律、边缘分布律、随机变量独立的判别与函数分布的确定. 约占10分.第四章随机变量的数字特征. 约占15分.第五、六、七、八章约占20分.内容为:第五章:契比雪夫不等式与中心极限定理.分布);正态总体样第六章:总体、样本、统计量等术语;常用统计量的定义式与常用分布(t分布、2本函数服从分布定理.第七章:矩估计,点估计的评选标准,一个正态总体期望与方差的区间估计.第八章:一个正态总体期望与方差的假设检验.二、期终考试方式与题型本学期期末考试类型为集中开卷考试,即允许带教材与参考资料.三、应熟练掌握的主要内容1. 理解概率这一指标的涵义.2. 理解统计推断依据的原理,即实际推断原理,会用其作出判断.3. 理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.掌握事件的运算律.4. 熟练掌握用简单事件的和、差、积、划分等表示复杂事件;掌握事件的常用变形:AB A B A -=- (使成包含关系的差),A B -=AB (独立时计算概率方便) A B A AB +=+,A B AB AB AB +=++(使成为互斥事件的和) 12n A AB AB AB =+++(n B B B 、、、其中 21是一个划分)(利用划分将A 转化为若干互斥事件的和)A AB AB =+(B B 与即一个划分) 若A B ⊃,则,,AB A AB B A B ==⊂.5. 掌握古典概型定义,熟悉其概率计算公式.掌握摸球、放盒子、排队等教材所举类型概率的计算.6. 熟练掌握事件的和、差、积、独立等基本概率公式,以及条件概率、全概、逆概公式,并利用它们计算概率.7. 掌握离散型随机变量分布律的定义、性质,会求简单离散型随机变量的分布律.8. 掌握0-1分布、二项分布、泊松分布的分布律. 9. 掌握连续型随机变量的概率密度的定义与性质. 10. 掌握随机变量分布函数的定义、性质.11. 理解连续型随机变量的概率密度曲线、分布函数以及随机变量取值在某一区间上的概率的几何意义. 12. 掌握随机变量X 在区间(,)a b 内服从均匀分布的定义,会写出X 的概率密度. 13. 掌握正态分布2(,)N μσ概率密度曲线图像; 掌握一般正态分布与标准正态分布的关系定理; 会查正态分布函数表;理解服从正态分布μ(N ),2σ的随机变量X ,其概率{}P X μσμσ-<<+与参数μ和σ的关系.14. 离散型随机变量有分布律会求分布函数;有分布函数会求分布律. 15. 连续型随机变量有概率密度会求分布函数;有分布函数,会求概率密度. 16. 有分布律或概率密度会求事件的概率.17. 理解当概率()0P A =时,事件A 不一定是不可能事件;理解当概率()1P A =时,事件A 不一定是必然事件. 18. 掌握二维离散型随机变量的联合分布律定义;会利用二维离散型随机变量的联合分布律计算有关事件的概率; 有二维离散型随机变量的联合分布律会求边缘分布律以及判断是否独立; 会确定二维离散型随机变量函数的分布.19. 掌握期望、方差定义式与性质,会计算上述数字.20. 掌握0-1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布的参数与期望、方差的关系.21.了解契比雪夫不等式.22. 会用中心极限定理计算概率.理解拉普拉斯中心极限定理的涵义是:设随机变量X 服从二项分布(,)B n p ,当n 较大时,则~(,)X N np npq 近似,其中1q p =-23. 了解样本与样本值的区别,掌握统计量,样本均值与样本方差的定义.24. 了解2χ分布、t 分布的概率密度图象,会查两个分布的分布函数表,确定上α分位点. 25. 了解正态总体2(,)N μσ中,样本容量为n 的样本均值X 与22)1(σS n -服从的分布.26. 掌握无偏估计量、有效估计量定义. 27. 会计算参数的矩估计.28. 会计算正态总体2(,)N μσ参数μ与2σ的区间估计.29. 掌握一个正态总体2(,)N μσ,当2σ已知或未知时,μ的假设检验,2σ的假设检验. 30. 了解假设检验的两类错误涵义.四、复习题注 为了方便学员复习,提供复习题如下,这些题目都是课件作业题目的改造,二者相辅相成,希望帮助大家学懂基本知识点. 期终试卷中70分的题目抽自复习题.(答案供参考)(一)判断题第一章 随机事件与概率1.写出下列随机试验的样本空间(1)袋中有编号为1、2、3、4、5的5个球,从中随机取1个,观察取到球的号码,样本空间为{1,2,3,4,5}S = . 正确(2)袋中有编号为1、2、3的3个球,从中随机取2个,观察取到球的号码,样本空间为{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}S = 错误解析 同时取2个球,不可能取到2个号码相同的球,如(1,1),(2,2),(3,3),所以是错误的.2. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)A B +=(取到1、1、2、3、3、5号球) 错误解析 取到1号球是一个结果,即一个样本点,其含在事件A 中也含在事件B 中,事件A B +是将A ,B 的样本点放到一起构成新的事件,“取到1号球”仍然是一个样本点,不能记为1、1,同理 3、3也是错误的.(2)\A B E ≠(取到2号球) 错误解析 事件\A B 即A B -,其由属于A 而不属于B 的样本点构成,只有“取到2号球”属于A ,不属于B ,所以\A B E =,故\A B E ≠是错误的.(3)CD = (取到1、2、3、4、5号球) 错误解析 事件CD 由属于C 且属于D 的样本点构成,C =(取到3、4、5号球),D =(取到4、5号球),共同的样本点为(取到4、5号球),所以CD =(取到4、5号球),故CD =(取到1、2、3、4、5号球)是错误的.(4)\C D = (取到3号球) 正确解析 参照对事件\A B 的分析,可知\C D = (取到3号球)是正确的. (5)A D +=(取到1、2、3、4、5号球) 正确解析 参照对事件A B +的分析,可知A D +=(取到1、2、3、4、5号球)是正确的. (6)AD =(取到1、2、3、4、5号球) 错误解析 事件,A D 没有共同的样本点,即事件A 与D 互斥,AD Φ=,故AD =(取到1、2、3、4、5号球)是错误的.(7)A =(取到4,5号球); 正确解析 A 为A 的对立事件,其由所有属于样本空间而不属于事件A 的样本点组成。

高等教育出版社,袁德美主编的概率论与数理统计习题二的答案.解析

高等教育出版社,袁德美主编的概率论与数理统计习题二的答案.解析

P( X 18)
C 0.8 0.2 C 0.8 0.2 C 0.8
18 20 18 2 19 20 19 20 20
20
0.206
2.13设X服从泊松分布,且已知P(X=1)=P(X=2),求P(X=2), 解 设X~P(λ)
x 0
0.8 lim 0.5e x 0.3
x 0
(2) P{ X 0} lim F ( x ) lim 0.5e 0.5
x
x 0
x 0
0.5e x , x 0 2.4 设随机变量X的分布函数 F ( x ) 0.8 , 0 x 1 1, x1
求(1)P{X=0};(2)P(X<0);(3)P(0<X≤1.5);(4)P(X>3) 解 (3) P{0 X 1.5} F (1.5) F (0) 0.2
(4) P{ X 3} 1 P{ X 3} 1 F (3) 0
2.5 掷一枚骰子,用X表示掷出的点数,求X的分布列及 分布函数

1 0 F1 ( x) 1
°
2 对x1 x2 , 都有F1 ( x1 ) F1 ( x2 )
°
00 3 F1 () lim F1 ( x ) xlim
° x
F1 () lim F1 ( x ) lim 1 1
x x
2.2 指出下列函数是否是分布函数?

2
°

2 1 f1 ( x )dx 2 sin xdx cos x 0
f1 ( x)是概率密度函数
2.19 指出下列函数是否是概率密度函数?

概率及数理统计课后习题答案(高等教育出版社)

概率及数理统计课后习题答案(高等教育出版社)

6.从 5 双不同的鞋子中任取 4 只,这 4 只鞋子中“至少有两只配成一双” (事件 A)的 概率是多少?
解: P ( A)
1 2 C5 C8 C52 4 C10
7 . 在 1,1 上 任 取 一 点 X , 求 该 点 到 原 点 的 距 离 不 超 过
o
. .

1 的概率. 5
答 : 样 本 空 间 由 如 下 36 个 样 本 点 组 成 {(i , j ) i , j 1,2,3,4,5,6} ( 3) 调 查 城 市 居 民 ( 以 户 为 单 位 ) 烟 、 酒 的 年 支 出 答 : 结 果 可 以 用 ( x, y) 表 示 , x, y 分 别 是 烟 、 酒 年 支 出 的 元 数 .这 时 , 样 本
a 0 x 2 a 所求事件满足: 0 y 2 x y (a x y )
m
概率论与数理统计
习题解答
B 相 互 独 立 , 求 P( B) .
解:若 A 、 B 互 不 相 容 , P ( B ) P (A B ) P (A ) 0.7 0.4 0.3 ; 若 A 、 B 相 互 独 立 , 则 由 P (A B ) P (A ) P ( B ) P ( A ) P ( B ) 可 得 P ( B) =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中 1,2,3 号仓库的概率分别为 0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率. 解:设 A {命中仓库},则 A {没有命中仓库},又设 Ai {命中第 i 仓库} (i 1,2,3) 则 P ( A1 ) 0.01, P ( A2 ) 0.02, P ( A3 ) 0.03 ,

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P ,又因为)()(B A P B P 即.0)()( B A P B P 所以(1) 当)()(B A P B P 时P (AB )取到最大值,最大值是)()(A P AB P =0.6.(2)1)( B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P ,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P ,即)()()(1)(1)()(AB P B P A P B A P B A P AB P ,所以.1)(1)(p A P B P4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)( AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k +25C其中:!2161815C C C为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k +25C其中:)(142815C C C 为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k -25C法五:考虑对立事件:410C k -45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k其中:!4141618110C C C C 为没有一双配对的方法数所求概率为.2113410C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025 C C p ,法二:1213102513 A A C p (2) 法二:20131024 C C p ,法二:2013102413 A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341 A M P , 1694)(324232 A C M P , 1614)(3143C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232 C C M P ,6.0)(2512131 C C C M P ,1.0)(25221 C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则2121M M M M M 且.所以.2813C C C C )()()()(282328252121 M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2的面积的面积A A P . 图?11.随机地向半圆220x ax y(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标, 表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x}事件A =“原点和该点的连线与x 轴的夹角小于4” ={(x ,y ):40,20,202x ax y a x }因此211214121)(222 a aa A A P 的面积的面积.12.已知21)(,31)(,41)( B A P A B P A P ,求)(B A P . 解:,1213141)()()( A B P A P AB P ,6121121)|()()(B A P AB P B P.311216141)()()()(AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<-="X" )103010(<-<-="X" 709.010<="" bdsfid="71" p="" x="">1.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<-="X" )2010020(<-<-="X" 8<="" bdsfid="77" p="" x="">7205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<="">解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<-<-="X" )<="" bdsfid="88" p="" x="">414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(?->?-=X P )2251020020000(>?-=X P 由独立同分布的中心极限定理,1020020000?-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>?-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--??-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--??-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<="" bdsfid="123" p="">()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--?-≤?-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=XP )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(?->?-=T P )91.03010300(>?-≈T P ,由独立同分布的中心极限定理,3010300?-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>?-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 设随机变量X的数学期望E(X)=μ,方差D(X)=σ2,使用切 比雪夫不等式估计概率P(|X-μ|≥3σ)的上界
2 1 解 P( X 3 ) 2 3 9
5.2 已知正常成年男性每毫升的血液中,含白细胞平均数 是7.3×106,标准差是0.7×106.使用切比雪夫不等式,估计每 毫升血液中含白细胞数在5.2×106到9.4×106之间的概率.
要使得最终能作出正确决策, 2 则300名代表中至少有 人要贡献正确意见,即X 200 3 X 210 200 210 P( X 200) P( ) 63 63 10 1 ( ) (1.26) 0.8962 63
ห้องสมุดไป่ตู้
P X k 1 pk , P X k 0 1 pk , k 1,2,
1 n 1 n lim P X k pk 0 n n k 1 n k 1
解 Xk
B(1, pk ) , k 1, 2,
,
E( X k ) pk , D( X k ) pk (1 pk ) 1 X n之间相互独立 1 n 1 n 由切比雪夫大数定律得 lim P X k pk 0 n n k 1 n k 1 且X1 , X 2 ,
10 X 60 50 60 X 60 60 60 0) P( ) P( 3 6 54 54 54 54
(0) (1.36) 0.5 (1 0.9131) 0.4131
5.15 某专卖店销售三种品牌的台灯,由于售出哪一种台灯 完全是随机的,因而售出一盏台灯的价格是一个随机变量 , 它取100元,200元,300元的概率分别为0.6,0.2和0.2.若一段 时间内售出了100盏台灯,求(1)收入至少14800元的概率. 解 (1)设收入为Y,售出(i×100)元的台灯个数Xi ,(i=1,2,3) X 1 X 2 X 3 100 Y 100 X 1 200 X 2 300 X 3 14800 X 1 X 2 X 3 100 X 1 2 X 2 3 X 3 148
令X 2 0, 此时X1有最大值, X1 3(100 X1 ) 148 X1 76
解对每次售出的台灯价格进行考查, 要么售出价格为100元的台灯,要么不是售出价格为 100元的台灯.
则X1
B(100,0.6), E( X1 ) 60, D( X1 ) 24 X 1 60 76 60 ) P(Y 14800) P( X1 76) P( 24 24 (3.27) 0.9995166
5.15 某专卖店销售三种品牌的台灯,由于售出哪一种台 灯完全是随机的,因而售出一盏台灯的价格是一个随机变 量,它取100元,200元,300元的概率分别为0.6,0.2和0.2.若 一段时间内售出了100盏台灯,求(2)出售价格为200元的 台灯多于10盏的概率. 解 (2)对每次售出的台灯价格进行考查, 要么售出价格为200元的台灯,要么不是售出价格为 200元的台灯.
5.13 某复杂系统由100个相互独立起作用的部件组成.在 整个运行期间,每个部件损坏的概率为0.1,为了使整个系统 起作用,至少需有85个部件工作.求整个系统工作的概率. 解 设X为100个部件损坏的个数, 则X~B(100,0.1) 且E( X ) 10, D( X ) 9
要使整个系统工作, 至少需要85个部件工作, 即部件损坏的个数不能超过15个. ∴系统工作的概率为 X 10 15 10 ) (1.67) 0.9525 P( X 15) P( 3 3
10 X 10 ) P( X 10) P(10 X 10) P( n n n 12 12 12 10 12 2( ) 1 0.9 n
10 12 10 12 ( ) 0.95 查表得 1.65 n n
10 12 n n 440.8 故最多随机取440个数相加 1.65
则X 2
B(100,0.2), E( X 2 ) 20, D( X 2 ) 16
10 20 X 2 20 100 20 ) P(10 X 2 100) P( 16 16 16
(20) (2.5) (2.5) 0.9938
5.16 某会议共有300名代表,若每名代表贡献正确意见的 概率都是0.7,现要对某事可行与否进行表决,并按2/3以上代 表的意见作出决策.假设代表们各自独立地作出意见,求作 出正确决策的概率. 解 设X为300名代表中作出正确意见的人数, 则X~B(300,0.7) 且E( X ) 210, D( X ) 63
由辛钦大数定律得
1 n 2 P Yn X i 6 n i 1
5.10 计算机在进行加法时,遵循四舍五入原则,为简单计, 假设每个加数按四舍五入取为整数.试求(1)随机取1000 个数相加,问误差总和的绝对值超过10的概率是多少? (2)要想使误差总和的绝对值小于10的概率超过90%,最 多随机取几个数相加? 解 (1)设第i个加数的误差为Xi , 则Xi~U[-0.5,0.5] 1 E ( X i ) 0, D( X i ) , i 1, 2, ,1000 12
5.14 假设某生产线的产品其次品率为10%.求在新生产的 600件产品中,次品的数量介于50和60之间的概率. 解 设X为600件产品中次品的个数, 则X~B(600,0.1) 且E ( X ) 60, D( X ) 54 50 60 X 60 60 60 ) P(50 X 60) P( 54 54 54
1 P( 1.2
X 1.2) 250 3
1 [2( 1.2) 1] 2[1 (1.1)] 2 [1 0.8643]
0.2714
解 (2)设最多随机取n个数相加,
n
n 则误差总和X X i E ( X ) 0, D ( X ) 12 i 1
5.9 设相互独立的r.v.序列 X n , n 1 且每个Xn都服从参数为2的泊松分布, 问当n→∞时,
1 n 2 Yn X i 依概率收敛于哪个常数值随机变量? n i 1 2 2 解 E( X i ) D( X i ) [ E( X i )] 2 6
则误差总和X X i
i 1 1000
1000 250 E ( X ) 0, D( X ) 12 3
P( X 10) 1 P( X 10) 1 P(10 X 10)
10 1 P( 250 3
X 10 ) 250 250 3 3
解 设正常成年男性每毫升的血液中,含白细胞数量为随 机变量X P(5.2 106 X 9.4 106 )
P(2.1106 X 7.3106 2.1106 )
P ( X 7.3 106 2.1 106 )
0.7 10 1 2.110
6 2
6 2
8 9
5.5 设随机变量X~P(λ),使用切比雪夫不等式证明 1 P(0 X 2 )


P(0 X 2 )
P( X )
P( X )
1 1 2 1
5.6 设相互独立的r.v.序列 X n , n 1 满足 试证明对于任意给定的ε >0,总有
相关文档
最新文档