2019年人教版及高中数学平面向量知识点易错点归纳

合集下载

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。

例如,物理学中的力、位移、速度等都是向量。

向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的大小叫做向量的模,记作a(对于向量a)。

模为0的向量叫做零向量,记作0,零向量的方向是任意的。

模为1的向量叫做单位向量。

2. 向量的表示方法几何表示:用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。

例如,以A为起点,B为终点的向量记作AB。

字母表示:用小写字母a,b,c,表示向量。

3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。

若a=b,则a=b且a与b方向相同。

例如,在平行四边形ABCD中,AB=DC。

平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。

规定零向量与任意向量平行。

若a与b是平行向量,则记作ab。

例如,在梯形ABCD中,ADBC。

二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC=a+b。

例如,若a表示向东3个单位长度的位移,b表示向北4个单位长度的位移,那么a+b表示向东北方向5个单位长度(根据勾股定理3^2+4^2 = 5)的位移。

平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则向量AC=a+b。

运算律:向量加法满足交换律a+b=b+a,结合律(a+b)+c=a+(b+c)。

2. 向量的减法定义:向量a与b的差ab=a+(b),其中b是b的相反向量,b与b大小相等,方向相反。

三角形法则:已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则向量BA=ab。

3. 向量的数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,它的方向当> 0时与a相同,当<0时与a相反,当= 0时,a=0。

平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。

《平面向量》主要知识点与易错点

《平面向量》主要知识点与易错点

《平面向量》主要知识点与易错点1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量. 2.平面向量的和与差:(1)122311n n n A A A A A A A A -+++=;(2)AB AC CB -=;(3)向量加法与减法的几何表示:平行四边形法则、三角形法则;(4)若1122(,),(,)x y x y ==a b ,则1212(,)a b x x y y ±=±±. 3.实数与向量的积实数λ与向量a 的积是一个向量:(1)||||||λλ=a a ;(2)当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ=0a ; 4.向量式的化简(1)首尾相连的向量相加; (2)共起点的两个向量相减; (3)共起点的两个向量相加. 5.向量共线(1)向量a 与()≠0 b b 共线的充要条件是存在唯一的实数λ,使λ=a b . (2)(1),,OA xOB yOC x y A B C =++=⇒三点共线.,,A B C 三点共线且O 不在..,,A B C 所在直线上.....(1)OA xOB yOC x y ⇒=++=. (3)若1122(,),(,)x y x y ==a b ,则a ∥1221x y x y ⇔=b . (4)若,a b 不共线,则两向量x y +a b 与m n +a b 共线x ym n⇔=. 6.平面向量基本定理若12,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ, 使得1122λλ=+a e e . 7.向量的数量积(1)两个向量的夹角的定义,两个向量夹角θ的取值范围是[0,]π:0θ=⇔a 与b 同向;θπ=⇔a 与b 反向; (2)两个向量的数量积是一个实数,||||cos θ⋅=a b a b ;若1122(,),(,)x y x y ==a b ,则1212x x y y ⋅=+a b . (3)22||==⋅a a a a ;121200x x y y ⊥⇔⋅=⇔+=a b a b ;cos ||||θ⋅==a ba b ||||||(⋅≤a b a b 其中取等号时向量a 与 b 共线) (4)a 在b 上的射影||cos ||θ⋅==a b a b 注意:向量a 与 b 的夹角为锐角0⇔⋅>a b 且a 与 b 不共线;向量a 与 b 的夹角为钝角0⇔⋅<a b 且a 与 b 不共线; (5)求平面向量数量积的解题程序:①确定题目中的已知向量; ②用已知向量表示所求数量积中的两个向量.易错点1:向量共线概念理解致错.将向量共线片面理解为向量同向,忽视反向的情况.易错点2:不注意向量方向,将向量夹角看错.如在△ABC 中,60B =︒,有同学会将AB 与BC 夹角错以为60︒. 易错点3:将向量AB 的坐标错以为点B 的坐标.易错点4:将0⋅>a b 与,a b 的夹角为锐角看作等价条件,或将0⋅<a b 与,a b 的夹角为钝角看作等价条件.事实上,上述两种错误分别忽视了向量夹角为0︒和180︒的情形.易错点5:在向量数量积运算中,错误使用数量积的运算律.如把⋅=⋅a b b c 化简为(=a c 向量之间没有除法运算,所在等式或不等式两边不能约去一个向量);错误地认为数量积满足结合律()()⋅⋅⋅⋅a b c =a b c .易错点6:向量射影理解错误.把向量射影错以为只是正数.事实上,向量a 在b 上的射影||cos θa 是一个实数,可以是正数,可以是负数,也可以是零. 解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k a ,1=→或()n m a ,=→; (2)给出→=+0PN PM ,等于已知P 是MN 的中点;(3)给出()BQ BP AQ AP +=+λ,等于已知B A ,与PQ 的中点三点共线;(4) 给出以下情形之一: ①//; ②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使, 等于已知C B A ,,三点共线. (5)在ABC ∆中,给出()12AD AB AC =+,等于已知AD 是ABC ∆中BC 边的中线;(6) 给出0=⋅,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m MB MA ,等于已知AMB ∠是钝角或180︒, 给出0>=⋅m ,等于已知AMB ∠是锐角或0︒,(7)给出=⎫⎛+λ, 等于已知MP 是AMB ∠的平分线/(8)在平行四边形ABCD 中,给出0)()(=-⋅+,等于已知ABCD 是菱形;(9) 在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形;(10)在ABC ∆中,给出222OC OB OA==,等于已知O 是ABC ∆的外心(11) 在ABC ∆中,给出=++,等于已知O 是ABC ∆的重心(12)在ABC ∆中,给出OA OC OC OB OBOA ⋅=⋅=⋅,等于已知O 是ABC ∆的垂心(13)在ABC ∆中,给出+=()||||AB AC AB AC λ+)(+∈R λ 等于已知通过ABC ∆的内心;。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。

平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。

一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。

2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。

平行向量的模长相等。

3. 零向量:所有分量都为零的向量称为零向量,用0→表示。

零向量的模长为0。

4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。

二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。

向量加法满足交换律和结合律。

2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。

向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。

3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。

4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。

内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。

5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。

外积的结果是一个向量。

三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。

2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。

3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。

4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。

5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。

四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。

2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。

平面向量知识点总结

平面向量知识点总结

平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。

在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。

本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。

1. 定义:平面向量是一个具有大小和方向的量。

它可以用一个有向线段来表示,也可以用它的坐标来表示。

平面向量的定义包括初始点和终点,表示为AB。

2. 运算法则:平面向量有加法和数乘两种运算方式。

向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。

向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。

3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。

设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。

4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。

否则,向量组V1, V2, ... , Vn是线性无关的。

线性无关的向量组在平面向量的研究中具有重要的作用。

5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。

向量的方向表示向量的朝向,即向量的角度。

向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。

6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。

设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。

7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。

根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。

5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。

平面向量知识点易错点归纳

平面向量知识点易错点归纳

平面向量知识点易错点归纳Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】§ 平面向量的概念及线性运算1名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量零向量 长度为0的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a |a |平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为0 2.向量运算定义 法则(或几何意义) 运算律 加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算 (1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB→∥BC →,则A 、B 、C 三点共线. 失误与防范1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.§ 平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠∥b x 1y 2-x 2y 1=0. 方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.§ 平面向量的数量积1.平面向量的数量积已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ; (2)非零向量a ,b ,a⊥ba·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=a·a ; (4)cos θ=a·b|a||b|;(5)|a·b |__≤__|a||b|. 4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=x 2-x 12+y 2-y 12. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b x 1x 2+y 1y 2=0. 方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 失误与防范1.(1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a⊥b .§ 平面向量的应用1.向量在平面几何中的应用平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥ba =λb (b ≠0)x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥ba·b =0x 1x 2+y 1y 2=0.(3)求夹角问题,利用夹角公式cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22 (θ为a 与b 的夹角). 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即W =F·s =|F||s |cos θ (θ为F 与s 的夹角).3.平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质. 方法与技巧1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. 3.向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 失误与防范1.注意向量夹角和三角形内角的关系,两者并不等价.2.注意向量共线和两直线平行的关系;两向量a ,b 夹角为锐角和a ·b >0不等价.。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结高中平面向量知识点总结一、基本概念和基本性质:1. 平面向量的定义:平面向量是有大小有方向的量,可以用有向线段来表示。

2. 平面向量的表示:一般表示为AB(或→AB),其中A为向量的起点,B为向量的终点。

可以用坐标表示或分量表示。

3. 向量的相等:当且仅当它们的大小相等且方向相同。

4. 零向量:大小为0的向量,所有向量都与零向量相等,用0或→0表示。

5. 向量的负向量:一个向量的负向量大小相等,方向相反,用−→AB表示。

6. 平面向量的加法:向量相加的结果称为向量的和,可以用平行四边形法则或三角形法则进行计算。

7. 平行向量的性质:平行向量的大小相等或成比例,方向相同或相反。

8. 平面向量的数乘:一个向量乘以一个实数得到的向量。

即向量AB乘以实数k得到的向量为k→AB,大小为|k||→AB|,方向与→AB相同或相反。

二、坐标表示和分量表示:1. 平面向量的坐标表示:设A(x1, y1)和B(x2, y2)为平面上两点的坐标,向量→AB的坐标表示为(x2-x1, y2-y1)。

2. 平面向量的分量表示:向量→AB的x轴和y轴的分量分别为→AB的坐标中的x分量和y分量,分别记作comp_x(→AB)和comp_y(→AB)。

三、数量积:1. 定义:设有两个向量→A和→B,它们的数量积(又称内积、点乘)为一个实数,记作→A·→B(或A·B),表示为|→A||→B|cosθ,其中θ为两个向量的夹角。

2. 性质:a. 交换律:→A·→B = →B·→Ab. 分配律:(→A + →B)·→C = →A·→C + →B·→Cc. 结合律:(k→A)·→B = k(→A·→B),其中k为实数d. |→A·→B| ≤ |→A||→B|,当且仅当两个向量平行时取等号四、平面向量的夹角和正交:1. 夹角:两个非零向量→A和→B之间的夹角θ的余弦值为→A·→B/|→A||→B|,θ的范围为[0,π]。

高中数学:关于平面向量的考点整理

高中数学:关于平面向量的考点整理

高中数学:关于平面向量的考点整理1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。

向量和数量是数学中讨论的两种量的形式,数量是实数。

2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。

3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。

模也叫作绝对值、大小、长度,这几个说法是一个意思。

(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。

(3)相反向量:方向相反、大小相等的向量叫做相反向量。

一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。

(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。

因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。

两个非零向量平行时,必定方向相同或相反。

规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。

(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。

规定零向量和任意向量都垂直,但不能说夹角90度。

(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。

规定零向量和任意向量都平行且垂直。

(7)单位向量:长度为1的向量叫做单位向量。

一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。

(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。

(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。

(完整版)高中平面向量公式及知识点默写

(完整版)高中平面向量公式及知识点默写

平面向量知识点及公式默写一,基本观点1,向量的观点:。

B2,向量的表示: a 。

3,向量的大小:(或称模),记作 a 或许 AB 。

A4,零向量:,记为,零向量方向是。

5,单位向量:长度为的向量称为单位向量,一般用 e 、 i 来表示。

e 1 , i 16,平行向量(也称共线向量):方向向量称为平行向量,规定零向量与随意愿量。

若 a 平行于 b ,则表示为 a ∥ b 。

7,相等向量:称为相等向量。

若 a 与 b 相等,记为 a = b8,相反向量:称为相反向量。

若 a 与 b 是相反向量,则表示为 a = b ;向量 ABBA 二,几何运算1,向量加法:a a ba( 1)平行四边形法例(起点同样),可理解为力的合成,以下图:bA( 2)三角形法例(首尾相接),可理解为:位移的合成,以下图,AB BC( 3)两个向量和还是一个向量;( 4)向量加法知足互换律、联合律: a b b a , (a b) c a (b c)( 5)加法几种状况(加法不等式):abbab ab ? aa b a b a b a b a b a b a b2,减法:B( 1)两向量起点同样,方向是从减数指向被减数,如图AB AC( 2)两向量差仍旧是一个向量; A( 3)减法实质是加法的逆运算:AB AC CB AB CA CB3,加法、减法联系:B( 1)加法和减法分别是平行四边行两条对角线,AB AD AC , AB AD DB( 2)如有AB AD AB AD ,则四边形ABCD 为矩形AB b Ca bCCD4,实数与向量的积:当0 时, a 与 a 方向;当0 时, a 与 a 方向;当0 时, a当 a 0 时, a 0 ; a( 2)实数与向量相乘知足:( a) ( )a( a b)5,向量共线:( 1)向量b与非零向量a共线的条件是:有且只有一个实数,使得O( 2)如图,平面内A, B, C 三点共线的重要条件是存在三个不为零的实数m, n, q,使得 qOA mOB nOC 0 ,且m n q 0 ,反之也建立。

平面向量易错点总结

平面向量易错点总结

平面向量易错点总结:1、解题书写应该带箭头。

好多学生受教材和作业等印刷资料的影响,以为手写不需要带箭头,那是因为它们都是加粗的印刷体;而咱们手写,不论小写字母a,还是确定起点字母A、终点字母B,只要是向量都应该带箭头;另外,很多学生听课没认真看老师在黑板上的书写,多次提醒也不一定记住,唯有正式考试扣分才会痛彻心扉。

2、默认向量夹角的夹角θ为锐角,忘记了取值范围[0,π]。

初中学习锐角三角函数,到高中三角形法则和平行四边形法的作图大多夹角都是锐角,容易让部分学生先入为主,认为两个向量的夹角一定是锐角或直角。

这个是感官上的错误,只需要明确两个向量的数量积运算的结果可以为负数即可避免这个错误,或者牢记反向夹角为180°这个特殊取值也行。

3、忽视方向,在不共起点的情况下弄错夹角。

方向是向量的关键特征之一,方向不一样,两个向量就是不一样,那么两个向量之间的夹角也是如此。

很多同学习惯在脑海中作图,不喜欢动手在草稿本上画出来,这样很难分清楚起点不一样的两个向量的夹角到底是哪个角、是锐角还是钝角?如果学生勤于画图、平移共起点,按照定义确定夹角就不会出现这样的错误;4、纠结零向量的概念。

在概念辨析题中,零向量当然是不容忽视的,但是在数乘、数量积这2个重要运算的具体题目中,参数、待定系数可以为0,而向量为零向量是不是让题目太简单了?有点不适应哈,目前我还没见过这样的题目。

所以,学生们不需要纠结,它太特殊,方向任意,既然“难以捉摸”,咱们就避开它,或者先讨论它合不合题意;5、共起点的两个向量的减法,对于运算结果是“终点指被减“”不熟练。

学生不熟练,或者不能很快写结果,主要有2个原因:一个是力的合成三角形法则,没有位移的合成平行四边形法则简单,两个终点谁指向谁还要费脑筋思考一下下;二个向量减法的坐标运算的确是前面减去后面,给三角形法则运算带来了干扰,因为起点坐标减去终点坐标得到的、用两个字母所在线段表示的向量和终点坐标减去起点坐标得到的向量互为相反向量,关键是看你要哪一个向量,最终结果起点不一样则计算公式就不一样;另外,加法与减法互为逆运算,学生不熟悉减法运算,可以先转化为加法运算再移项就可以得到减法运算的正确结果,保证不会错,还是做一个加法宝宝好,远离减法哈哈。

平面向量知识点易错点归纳

平面向量知识点易错点归纳

平面向量知识点易错点归纳段宇昕数学资料平面向量知识点归纳§5.1平面向量和线性运算的概念1.向量的有关概念名称向量零向量单位向量平行向量共线向量相等向量相反向量2.向量的线性运算向量运算定义法则(或几何意义)运算律(1)交换律:a+b加法求两个向量和的运算求a与b的相反向减法量-b的和的运算叫做a与b的差求实数λ与向量a的积的运算三角形法则(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方λ(μa)=(λμ)a;(λ+μ)a=λa+μa;a-b=a+(-b)=b+a.(2)结合律:(a+b)+c=定义既有大小又有方向的量;向量的大小叫做向量的长度(或称模)长度为0的向量;其方向是任意的长度等于1个单位的向量方向相同或相反的非零向量方向相同或相反的非零向量又叫做共线向量长度相等且方向相同的向量长度相等且方向相反的向量两向量只有相等或不等,不能比较大小0的相反向量为00与任一向量平行或共线备注平面向量是自由向量记作0a非零向量a的单位向量为±|a|a+(b+c).数乘向与a的方向相反;当λ=0时,λa=0λ(a+b)=λa+λb3.共线向量定理A向量A(A)≠ 0)和B共线当且仅当存在唯一实数λ时,使B=λa。

方法和技巧1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.→→2.可以运用向量共线证明线段平行或三点共线.如ab∥cd且ab与cd不共线,则ab∥cd;→→若ab∥bc,则a、b、c三点共线.2022年8月24日在资兴市立中学1页第1页段宇昕数学资料平面向量知识点归纳错误与预防1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.使用矢量减法时,很容易将两个矢量的顺序弄错,从而获得所获得矢量的相反矢量,从而导致错误§5.2平面向量基本定理及坐标表示1.平面向量的基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,非共线向量E1和E2被称为表示该平面中所有向量的一组基。

平面向量概念方法题型易误点及应试技巧总结

平面向量概念方法题型易误点及应试技巧总结

概念、方法、题型、易误点及应试技巧总结平面向量一.向量有关概念 :1.向量的概念 :既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线 段来表示,注意 不能说向量就是有向线段 ,为什么?(向量可以平移) 。

如:已知 A (1,2),B ( 4,2),则把向量 AB 按向量 a =(- 1,3)平移后得到的向量是(答:( 3,0 ))2. 零向量 :长度为 0 的向量叫零向量,记作: 0 ,注意 零向量的方向是任意的 ;共线的单位向量是3. 单位向量 :长度为一个单位长度的向量叫做单位向量 ( 与 AB AB| AB |4. 相等向量 :长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; );5.平行向量(也叫共线向量) :方向相同或相反的非零向量 a 、 b 叫做平行向量,记 作: a ∥ b ,规定零向量和任何向量平行 提醒 :。

①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量 共线 , 但两条直线平行不包含两条直线重合;③平行向量无传递性 !(因为有 0 ) ;A 、B 、C 共线 ④三点 AB 、AC 共线;6. 相反向量 :长度相等方向相反的向量叫做相反向量。

a 的相反向量是- a 。

如 下列命题:( 1)若 同,终点相同。

( 3)若 ,则 a b 。

(2)两个向量相等的充要条件是它们的起点相 a b ,则 是平行四边形。

(4)若 是平行四边形,AB DC ABCD ABCD 则 AB DC 。

(5)若 a ,则 a c 。

(6)若a /b ,b /c ,则 a // c 。

其中正确的是 bb, c (答:(4)(5))二.向量的表示方法 :1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如 3.坐标表示法:在平面内建立直角坐标系,以与 a , b , c 等; x 轴、 y 轴方向相同的两个单位向量 i ,,称 x, y 为向量 a 的坐j 为基底,则平面内的任一向量 a 可表示为 a xi y jx, y 标, a = x, y 叫做向量 a 的坐标表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.1 平面向量的概念及线性运算
三角形法则
3.共线向量定理
向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧
1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.
2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD →
且AB 与CD 不共线,则AB ∥CD ;
若AB →∥BC →
,则A 、B 、C 三点共线.
失误与防范
1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.
2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.
§5.2 平面向量基本定理及坐标表示
1.平面向量基本定理
如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.
其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则
a +
b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),
λa =(λx 1,λy 1),|a |=x 21+y 2
1.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →
|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示
设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0. 方法与技巧
1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件
若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法
判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范
1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.
2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1
y 2
,因为x 2,y 2有可能等
于0,所以应表示为x 1y 2-x 2y 1=0.
§5.3 平面向量的数量积
1.平面向量的数量积
已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.
规定:零向量与任一向量的数量积为__0__.
两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|.
2.平面向量数量积的几何意义
数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;
(2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;
当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=a·a ;
(4)cos θ=a·b
|a||b|;
(5)|a·b |__≤__|a||b|.
4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);
(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .
5.平面向量数量积有关性质的坐标表示
设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.
(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →
|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 方法与技巧
1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.
2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 失误与防范
1.(1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系.
2.a·b=0不能推出a=0或b=0,因为a·b=0时,有可能a⊥b.
§5.4 平面向量的应用
1.向量在平面几何中的应用
平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.
(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b⇔a=λb(b≠0)
⇔x1y2-x2y1=0.
(2)证明垂直问题,常用数量积的运算性质
a⊥b⇔a·b=0⇔x1x2+y1y2=0.
(3)求夹角问题,利用夹角公式
cos θ=a·b
|a||b|=
x1x2+y1y2
x21+y21x22+y22
(θ为a与b的夹角).
2.平面向量在物理中的应用
(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相
似,可以用向量的知识来解决.
(2)物理学中的功是一个标量,这是力F与位移s的数量积.即W=F·s=|F||s|cos θ (θ为F
与s的夹角).
3.平面向量与其他数学知识的交汇
平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.
方法与技巧
1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.
2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.
3.向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.失误与防范
1.注意向量夹角和三角形内角的关系,两者并不等价.
2.注意向量共线和两直线平行的关系;两向量a,b夹角为锐角和a·b>0不等价.。

相关文档
最新文档