信号与系统_连续系统的时域分析

合集下载

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

信号与系统的分析方法有时域,变换域两种

信号与系统的分析方法有时域,变换域两种

§2-3 Z反变换
一.定义:
已知X(z)及其收敛域,反过来求序列x(n) 的变换称作Z反变换。
记作:x(n) Z [ X ( z )]
1
z变换公式:
正:X ( z )
n
x ( n) z n ,

R x z Rx
1 反:x(n) X ( z ) z n 1dz, c ( Rx , Rx ) 2j c
j Im[ z ]
z 收敛域: a
0
a
z
Re[ z ]
*收敛域一定在模最大的极点所在的圆外。
[例2-3]求序列 x(n) b u(n 1) 变换及收敛域。
n
x ( n)
n
b nu (n 1) z n

b 1 z (b 1 z ) 2 (b 1 z ) n
§2-1 引言
信号与系统的分析方法有时域、变换域两种。 一.时域分析法 1.连续时间信号与系统: 信号的时域运算,时域分解,经典时域 分析法,近代时域分析法,卷积积分。 2.离散时间信号与系统: 序列的变换与运算,卷积和,差分方程 的求解。
二.变换域分析法
1.连续时间信号与系统: 信号与系统的频域分析、复频域 分析。
2.离散时间信号与系统: Z变换,DFT(FFT)。 Z变换可将差分方程转化为代数方程。
§2-2 Z变换的定义及收敛域
一.Z变换定义: 序列的Z变换定义如下:
X ( z ) Z [ x(n)]
n
x ( n) z

n
*实际上,将x(n)展为z-1的幂级数。
ze ze
jT ST
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , 的z反变换。 解:

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

《信号与系统》第2章1

《信号与系统》第2章1

信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )


信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R

信号与线性系统分析第2章

信号与线性系统分析第2章
t r ( Pmt m Pm1t m1 P 0的特征根) 1t P 0 )(有r重为
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d


为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )

f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:

信号与系统实验二 连续LTI系统的时域分析

信号与系统实验二    连续LTI系统的时域分析

实验二 连续LTI 系统的时域分析一. 实验目的1. 加深对线性时不变系统中零状态响应概念的理解,掌握其求解方法;2. 掌握求解给定连续系统的冲激响应和阶跃响应的方法。

二. 实验原理1.连续系统零状态响应的数值解线性时不变 (LTI) 连续时间系统用常系数线性微分方程进行描述,系统的零状态响应就是在系统初始状态为零条件下微分方程的解。

MATLAB 控制系统工具箱提供了一个lism 函数来求解连续时间系统的零状态响应,其调用格式为y = lism(sys,f,t)其中t 表示计算系统响应的时间抽样点向量,f 是系统输入信号向量,sys 是LTI 系统模型,用来表示微分方程、状态方程。

在求解微分方程时,微分方程的LTI 系统模型sys 要借助MATLAB 中的tf 函数来获得,其调用格式为sys = tf(b,a)其中a 、b 分别为微分方程左端和右端各项的系统向量。

例如系统方程 (3)(2)(1)(2)(1)2210210()()()()()()()a y t a y t a y t a y t b f t b f t b f t +++=++该方程左边、右边的系数向量分别为3210[,,,]a a a a a =,210[,,]b b b b =。

例1:描述某线性时不变系统的方程为"()4'()4()'()3()y t y t y t f t f t ++=+试求:当()()tf t e t ε-=时,系统的零状态响应()zs y t 。

解:实现所要求运算的m 文件如下,a = [1 4 4]; %将y (t )各阶导数的系数放在向量a 中b = [1 3]; %将f (t )各阶导数的系数放在向量b 中sys = tf(b, a); %求系统模型systd = 0.01; %定义时间间隔t = 0 : td : 10; %定义时间向量f = exp(-t); %将f (t )表示出来y = lsim(sys, f, t); %求系统的零状态响应plot(t, y); %绘出零状态响应的波形xlabel('t(sec)'); %给出x 坐标的标签ylabel('y(t)'); %给出y 坐标的标签grid on %在图上显示方格程序运行结果见图1。

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

第2章信号与系统的时域分析

第2章信号与系统的时域分析

f 1 ( )
2012-8-10


f 2 ( t ) dt f 2 ( )


f 1 ( t ) dt 0
30
性质4 卷积时移连续信号与系统的时域分析 第2章
2012-8-10
31
第 2 章 连续信号与系统的时域分析
由卷积时移性质还可进一步得到如下推论:
若f1(t)*f2(t)=y(t), 则
n 1
( n 1 )!
2
( t ), ,
t
2
( t ), t ( t ), ( t ), ( t ),
n
2
d (t ) d (t ) d (t ) , , , , 2 n 2012-8-10 dt dt dt
3
第 2 章 连续信号与系统的时域分析
,
f 1 ( t t1 ) f 2 ( t t 2 ) y ( t t1 t 2 )
式中,t1和t2为实常数。
(2.2-21)
2012-8-10
32
第 2 章 连续信号与系统的时域分析
例 2.2 – 2 计算常数K与信号f(t)的卷积积分。 解 直接按卷积定义, 可得
K f (t ) f (t ) K
性质3 卷积的微分和积分

2012-8-10
27
第 2 章 连续信号与系统的时域分析
(2) 应用式(2.2 - 8)及卷积运算的结合律, 可得
2012-8-10
28
第 2 章 连续信号与系统的时域分析
(3) 因为
2012-8-10
29
第 2 章 连续信号与系统的时域分析
同理,可将f2(t)表示为

信号与系统——连续时间线性定常系统时域分析

信号与系统——连续时间线性定常系统时域分析

对于输入 t ,其特解为 B t t 0 0 ,单位冲激响应为 h1 (t ) e t u(t ) , 则 y1 (t ) h1 (t ) v(t ) e (t )u (t )v( )d e
0 t t
n 1
0 ,求 y (t) =

(1)求齐次解:由微分方程列特征方程 n an1 n1 a1 a0 0 ,求出 n 个特
i t 征根 i,i 1,, n ,则齐次解为 yh t i 1 Ae ,有 n 个待定系数 Ai,i 1,, n ;对于 i
v d 。综上有:
零状态 t 1 t v t e t v d e u t v t 0 p
e
0
t

v t d
(3-14)
由(3-14)式可进一步推得下面的(3-19)式。 § 3.2 LTI 系统的响应 LTI 系统的微分方程:
(3-11) (3-12)
若(t)、(0)已知,则(t)、(t)可确定。 注: (3-11)的两项分别是状态向量的零输入响应与零状态响应; (3-12)的两项分别是输出向量的零输入响应与零状态响应。 LTI 系统的微分方程模型: 具有 n 个独立储能元件的单输入单输出(SISO)系统,输出输入关系为:


不同的物理系统,输入-输出方程可能相同,但含义不同
对 H p 因式分解,基本单元为 H1 (p)
1 。 H1 (p) 对输入 v t 作用产 p
生输出 y1 (t )
1 v(t ) ,即 y1 (t ) y1 (t ) v(t ) ,齐次解 y1h (t ) e t u(t ) ; p

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析信号与系统是电子工程、自动控制等领域重要的基础学科,与我们日常生活息息相关。

在信号与系统中,连续时间系统分析是其中的重要内容之一。

本文将着重介绍连续时间系统分析的基本概念、方法和应用。

一、连续时间系统的概念连续时间系统是指信号的取样频率大于或等于连续时间信号的变化频率,信号在任意时间均有定义并连续可取值。

连续时间系统包括线性系统和非线性系统两种,其中线性系统是一类常见且具有重要意义的系统。

二、连续时间系统的表示连续时间系统可以通过微分方程或差分方程来表示,其中微分方程常用于描述线性时不变系统,而差分方程常用于描述线性时变系统。

在实际应用中,可以通过拉普拉斯变换或傅里叶变换对连续时间系统进行分析和求解。

三、连续时间系统的性质连续时间系统具有多种性质,包括线性性、时不变性、因果性、稳定性等。

其中线性性是指系统对输入信号的响应是可叠加的,时不变性是指系统的输出与输入之间的关系不随时间的推移而改变。

四、连续时间系统的频域分析连续时间系统的频域分析是通过傅里叶变换来实现的,可以将时域中的信号转换为频域中的频谱。

通过频域分析,我们可以获得系统的幅频特性和相频特性,进一步了解系统对不同频率信号的响应。

五、连续时间系统的时域分析连续时间系统的时域分析是通过微分方程或差分方程来实现的,可以确定系统的时域特性。

通过时域分析,我们可以获得系统的阶数、单位阶跃响应、单位冲激响应等关键信息。

六、连续时间系统的应用连续时间系统的分析在实际应用中具有广泛的应用价值。

例如,在通信系统中,我们需要对信号进行调制、解调、编码、解码等处理,这些过程都需要借助连续时间系统的分析方法。

此外,连续时间系统的分析也在信号处理、图像处理、音频处理等领域有着重要的应用。

结语:连续时间系统分析是信号与系统学科中的重要内容,具有广泛的理论基础和实际应用。

通过深入学习连续时间系统的概念、表示、性质、频域分析、时域分析和应用,我们可以更好地理解和掌握信号与系统的基本原理和方法,为相关领域的研究和应用提供理论指导和技术支持。

第2章连续系统的时域分析ppt课件

第2章连续系统的时域分析ppt课件
y(0)=c1+c2+…+cn+yp(0) y′(0)=λ1c1+λ2c2+…+λncn+y′p(0) … y(n-1)(0)=λn-1 1c1+ λn-1 2c2+…+λn-1 ncn+y(n-1)p(0)
《 信号与线性系统》
第2章 连续系统的时域分析
例2―7描述某线性非时变连续系统的微分方程为 y″(t)+3y′(t)+2y(t)=f(t) , 已 知 系 统 的 初 始 条 件 是 y(0)=y′(0)=0,输入激励f(t)=e-tu(t),试求全响应y(t)。
《 信号与线性系统》
第2章 连续系统的时域分析
例2―5求微分方程y″(t)+y(t)=f(t)的齐次解。 解由特征方程λ2+1=0解得特征根是一对共轭复数 λ1,2=±j,因此,该方程的齐次解
yh(t)=c1cost+c2sint 2. 特解的函数形式与激励函数的形式有关。表2―1 列 出 了 几 种 类 型 的 激 励 函 数 f(t) 及 其 所 对 应 的 特 征 解 yp(t)。选定特解后,将它代入到原微分方程,求出其 待定系数Pi,就可得出特解。
y(t)=yx(t)+yf(t)
(2―17)
《 信号与线性系统》
第2章 连续系统的时域分析
在零输入条件下,式(2―7)等式右端均为零,化为 齐次方程。若其特征根全为单根,则其零输入响应
n
yx(t) cxieit
i1
(2―18)
式中cxi为待定常数。 若系统的初始储能为零,亦即初始状态为零,这
时式(2―7)仍为非齐次方程。若其特征根均为单根,则 其零状态响应

信号与系统实验报告实验一 信号与系统的时域分析

信号与系统实验报告实验一 信号与系统的时域分析

实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。

在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。

信号与系统MATLAB仿真——LTI连续系统的时域分析

信号与系统MATLAB仿真——LTI连续系统的时域分析

信号与系统MATLAB仿真——LTI连续系统的时域分析1. 知识回顾(1)经典时域分析⽅法线性时不变(LTI)系统是最常见最有⽤的⼀类系统,描述这类系统的输⼊-输出特性的是常系数线性微分⽅程。

\begin{array}{l} {y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = \\ {b_m}{f^{(m)}}(t) + {b_{m - 1}}{f^{(m - 1)}}(t) + \cdot \cdot \cdot + {b_1}{f^{(1)}}(t) + {b_0}f(t) \end{array}齐次解:{y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = 0特征⽅程:{\lambda ^n} + {a_{n - 1}}{\lambda ^{n - 1}} + \cdot \cdot \cdot + {a_1}\lambda + {a_0} = 0均为单根:{y_h}(t) = \sum\limits_{i = 1}^n {{C_i}{e^{{\lambda _i}t}}}有重根(r重根):{y_h}(t) = \sum\limits_{i = 1}^r {{C_i}{t^{i - 1}}{e^{{\lambda _1}t}}}共轭复根({\lambda _{1,2}} = \alpha \pm j\beta ):{e^{\alpha t}}({C_1}\cos \beta t + {C_2}\sin \beta t)r重复根:{e^{\alpha t}}(\sum\limits_{i = 1}^r {{C_{1i}}{t^{i - 1}}} \cos \beta t + \sum\limits_{i = 1}^r {{C_{2i}}{t^{i - 1}}} \sin \beta t)特解:f(t) = {t^m}所有的特征根均不等于0:{y_p}(t) = {P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}有r重等于0的特征根:{y_p}(t) = {t^r}[{P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}] f(t) = {e^{\alpha t}}:\alpha 不是特征根:{y_p}(t) = P{e^{\alpha t}}\alpha 是特征单根:{y_p}(t) = {P_1}t{e^{\alpha t}} + {P_0}{e^{\alpha t}}\alpha 是r重特征根:{y_p}(t) = ({P_r}{t^r} + {P_{r - 1}}{t^{r - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}){e^{\alpha t}} f(t) = \cos \beta t或\sin \beta t:所有特征根均不等于 \pm j\beta :{y_p}(t) = {P_1}\cos \beta t + {P_2}\sin \beta t\pm j\beta 是特征单根:{y_p}(t) = t[{P_1}\cos \beta t + {P_2}\sin \beta t]全解:y(t) = {y_h}(t) + {y_p}(t)(2)零输⼊响应与零状态响应y(t) = {y_{zi}}(t) + {y_{zs}}(t)(3)冲激响应和阶跃响应\left\{ \begin{array}{l} \delta (t) = \frac{{{\rm{d}}\varepsilon (t)}}{{{\rm{d}}t}}\\ \varepsilon (t) = \int_{ - \infty }^t {\delta (\tau ){\rm{d}}\tau } \end{array} \right. \left\{ \begin{array}{l} h(t) = \frac{{{\rm{d}}g(t)}}{{{\rm{d}}t}}\\ g(t) = \int_{ - \infty }^t {h(\tau ){\rm{d}}\tau } \end{array} \right.(4)卷积积分y(t) = {f_1}(t) * {f_2}(t) = \int_{ - \infty }^{ + \infty } {{f_1}(\tau ){f_2}(t - } \tau ){\rm{d}}\tau系统的零状态响应:{y_{zs}}(t) = f(t) * h(t)卷积积分的性质:交换律分配率结合律任意函数与单位冲激函数卷积的结果仍是函数本⾝:f(t) * \delta (t) = f(t)2. 利⽤MATLAB求LTI连续系统的响应LTI连续系统以常微分⽅程描述,如果系统的输⼊信号及初始状态已知,便可以求出系统的响应。

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。

实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。

3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。

5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。

6、根据实验结论和实验指导书中的要求,编写实验报告。

实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。

主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。

其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。

最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。

实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1
LTI连续系统的响应
(3)当激励f(t)=e–2t时, 特解: yp(t) = (P1t + P0)e–2t 代入微分方程可得 P1e-2t = e–2t 得: P1= 1 全解:y(t)= C1e–2t + C2e–3t + te–2t + P0e–2t = (C1+P0)e–2t +C2e–3t + te–2t 将初始条件代入, y(0) = (C1+P0) + C2=1 ,y’(0)= –2(C1+P0) –3C2+1=0 解得 C1 + P0 = 2 ,C2= –1 全解: y(t) = 2e–2t – e–3t + te–2t , t≥0 系数C1+P0= 2,不能区分C1和P0,因而也不能区分自 由响应和强迫响应。
在0-<t<0+区间等号两端δ(t)项的系数应相等。 由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而 y’(t)在t= 0处将发生跃变,即y’(0+)≠y’(0-)。 但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于 y’(t)中不含δ(t),故y(t)在t=0处是连续的。 故 y(0+) = y(0-) = 2
第2-10页
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
说明
•对于一个具体的电网络,系统的 0 状态就是系统中 储能元件的储能情况; •一般情况下换路期间电容两端的电压和流过电感中的 电流不会发生突变。这就是在电路分析中的换路定则:
vC 0 vC 0 , iL 0 iL 0 .
信号与系统
第二章 连续系统的时域分析
2.1
LTI连续系统的响应
2.3
卷积积分
一、微分方程的经典解 二、关于0-和0+初始值 三、零输入响应和零状态响应
一、信号时域分解与卷积 二、卷积的图解
2.4
2.2 冲激响应和阶跃响应
一、冲激响应 二、阶跃响应
卷积积分的性质
一、卷积代数 二、奇异函数的卷积特性 三、卷积的微积分性质 四、卷积的时移特性
第2-18页
通信与电子工程学院
信号与系统
2.2
冲激响应和阶跃响应
因方程右端有δ(t),故利用系数平衡法。h”(t)中含δ(t), h’(t)含ε(t),h’(0+)≠h’(0-),h(t)在t=0连续,即 h(0+)=h(0-)。积分得 0 [h’(0+) - h’(0-)] + 5[h(0+) - h(0-)] + 6 0 h(t )dt= 1
第2-16页
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
(2)零状态响应yf(t) 满足 yf”(t) + 3yf’(t) + 2yf(t) = 2δ(t) + 6ε(t) 并有 yf(0-) = yf’(0-) = 0 由于上式等号右端含有δ(t),故yf”(t)含有δ(t),从而yf’(t) 跃变,即yf’(0+)≠yf’(0-),而yf(t)在t = 0连续,即yf(0+) = yf(0-) = 0,积分得 0 0 [yf’(0+)- yf’(0-)]+ 3[yf(0+)- yf(0-)]+20 y f (t ) d t 2 60 (t ) d t 因此,yf’(0+)= 2 – yf ’(0-)=2 对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6 不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3, 于是有 yf(t)=Cf1e-t + Cf2e-2t + 3 代入初始值求得 yf(t)= – 4e-t + e-2t + 3 ,t≥0
1 C
2.1
LTI连续系统的响应
例:电容电压的突变

t C
i ( ) d
1 i ( ) d 0 C C
0
iC (t ) C
1 vC (0 ) C
1 i ( ) d C C
0

t
0
iC ( ) d

vC ( t )

1 i ( ) d 0 C C
0

t
0
iC ( ) d
1 令t 0 , vC (0 ) vC (0 ) C

0
0 C
i ( ) d 0
如果ic (t )为有限值
i ( ) d 0 , 如果i (t )为 t
0 C
c
0
此时vC (0 ) vC (0 ) i ( ) d 0 , 此时 vC ( 0 ) 1 1 vC ( 0 ) 1 i ( ) d , 此时 v ( 0 ) v ( 0 ) C C C C C
0 C
0 0 C
0
第2-12页
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
例:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)= 0,f(t)=ε(t),求y(0+)和y’(0+)。 解:将f(t)=ε(t)代入方程 y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6ε(t) ( 1)
第2-17页
通信与电子工程学院
信号与系统
2.2
冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。h(t)=T[{0},δ(t)] 例1 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)=f(t) 求其冲激响应h(t)。 解 根据h(t)的定义 有 h”(t) + 5h’(t) + 6h(t) = δ(t) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。
于是由上式得 [y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以 y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2 由上可见,当微分方程等号右端含有冲激函数(及其各 阶导数)时,响应y(t)及其各阶导数中,有些在t=0处将 发生跃变。但如果右端不含时,则不会跃变。
第2-9页
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
二、关于0-和0+初始值
若输入f(t)是在t=0时接入系统,则确定待定系数Ci 时用t = 0+时刻的初始值,即y(j)(0+) (j=0,1,2…,n-1)。 而y(j)(0+)包含了输入信号的作用,不便于描述系统 的历史信息。 在t=0-时,激励尚未接入,该时刻的值y(j)(0-)反映 了系统的历史情况而与激励无关。称这些值为初始 状态或起始值。 通常,对于具体的系统,初始状态一般容易求得。 这样为求解微分方程,就需要从已知的初始状态 y(j)(0-)设法求得y(j)(0+)。
第2-7页
通信与电子工程学院
信号与系统 (2)特解 yp(t) = Pe – t
2.1
LTI连续系统的响应
代入微分方程得 Pe – t + 5(– Pe – t) + 6Pe – t = 2e – t 得 :P=1 得 特解:yp(t) = e – t
全解: y(t) = yh(t) + yp(t) = C1e – 2t + C2e – 3t + e – t
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
y(t)(完全解) = yh(t)(齐次解) + yp(t)(特解)
齐次解 y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0 yh(t)的函数形式由特征根确定。 特解的函数形式与激励函数的形式有关。P43表2-1、2-2 齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。
第2-15页
通信与电子工程学院
信号与系统
2.1
LTI连续系统的响应
例:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)=0,f(t)=ε(t)。求该系统的零输入 响应和零状态响应。 解:(1)零输入响应yx(t) 激励为0 ,故yx(t)满足 yx”(t) + 3yx’(t) + 2yx(t) = 0 yx(0+)= yx(0-)= y(0-)=2 yx’(0+)= yx’(0-)= y’(0-)=0 该齐次方程的特征根为–1, – 2,故 yx(t) = Cx1e –t + Cx2e –2t 代入初始值并解得系数为Cx1=4 ,Cx2= – 2 ,代入得 yx(t) = 4e –t – 2e –2t ,t > 0
第2-13页
通信与电子工程学院
信号与系统
2.1
0 0
LTI连续系统的响应
0 0
对式(1)两端积分有

0
0
相关文档
最新文档