高中数学必修二直线与圆的综合问题

合集下载

高二数学直线与圆中的范围,最值问题

高二数学直线与圆中的范围,最值问题

高二数学直线与圆中的范围,最值问题全文共四篇示例,供读者参考第一篇示例:高二数学是学生学习数学的重要阶段,其中直线与圆的范围、最值问题是一个重要的知识点。

直线与圆是几何学中常见的基本图形,通过研究它们的范围和最值问题,可以帮助我们更好地理解几何学知识和提高数学解题能力。

一、直线与圆的范围问题在高二数学中,直线与圆的范围问题是一个常见的题型。

在这类问题中,我们需要根据给定的条件,求解直线和圆的交点、直线与圆的位置关系等。

通过分析这些问题,可以帮助我们锻炼逻辑思维能力和几何推理能力。

我们常见的一个问题是求解一条直线与一个圆的交点。

在这种情况下,我们可以通过联立直线方程和圆方程,求解得到交点的坐标。

我们也可以通过图形的几何性质,利用角度和面积关系来求解交点的坐标。

这种方法不仅可以帮助我们更直观地理解直线与圆的位置关系,同时也可以提高我们的几何思维能力。

除了交点问题,直线与圆的位置关系问题也是直线与圆范围问题的重要内容。

在这种情况下,我们需要判断一条直线与一个圆的位置关系,例如直线是否相交、相切或相离等。

通过分析直线与圆的几何性质,我们可以利用距离公式或者向量运算等方法,快速求解出直线与圆的位置关系,从而解决相应的问题。

我们常见的一个问题是求解一个圆与一条直线的最大交点数。

在这种情况下,我们可以通过分析直线与圆的几何性质,确定交点的位置关系,进而求解出最大交点数。

我们也可以利用微积分法,对交点函数进行求导,求得最大值或最小值,从而得出最大交点数。

在实际问题中,直线与圆的最值问题也具有广泛的应用。

在工程设计中,我们常常需要通过求解直线与圆的最值问题,确定构建物体的最优位置、最短路径等。

通过研究直线与圆的最值问题,我们可以应用数学原理,解决实际问题,提高实际工作效率。

第二篇示例:高中数学中,直线与圆是一个重要的内容,其中涉及到了许多范围和最值的问题。

在解决这些问题时,我们需要深入理解直线与圆的性质,并灵活运用数学知识来解决这些问题。

广东省江门一中(人教版)高中数学必修二 4.2.4 直线圆的关系综合 学案

广东省江门一中(人教版)高中数学必修二 4.2.4 直线圆的关系综合 学案

一、学习目标:1、直线与圆的位置关系,圆的切线方程和弦长问题.2、能用直线与圆的位置关系解决简单的实际问题.二、课前导学:知识梳理:1、直线与圆的位置关系直线l:Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0)的位置关系:(1)几何方法:圆心(a,b)到直线Ax+By+C=0的距离d=d<r⇔直线与圆相交;d=r⇔直线与圆相切;d>r⇔直线与圆相离..(2)代数方法:由消元得到的一元二次方程的判别式为Δ,则Δ>0⇔直线与圆相交;Δ=0⇔直线与圆相切;Δ<0⇔直线与圆相离.2.圆的切线(1)求过圆上的一点(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,再由垂直关系知切线斜率为-,由点斜式方程可求得切线方程.如果k=0或k不存在,则可直接得切线方程为x=x0或y=y0.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.②代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一元二次方程,由Δ=0,可求得k.经过圆上一点的圆的切线有且仅有一条;经过圆外一点P(x0,y0)的圆的切线有两条,因此用点斜式或斜截式直线方程求切线时,若有两解,则所求两条切线方程可得,若仅有一解,则另一条必为x=x0.(3)从圆外一点P(x1,y1)引到圆x2+y2+Dx+Ey+F=0的切线,则点P到切点的切线长d=x21+y21+Dx1+Ey1+F.三、合作探究:探究一 求圆的切线方程过点作圆的切线,首先要判断点的位置,来确定是一条切线还是两条切线.例1 过点A (4,-3)作圆C :(x -3)2+(y -1)2=1的切线,求此切线的方程.【思路点拨】 可用待定系数法求解,但千万不要忽视斜率不存在的情况.即15x +8y -36=0.(2)若切线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4,综上,所求切线方程为15x +8y -36=0或x =4.【名师点评】 此题易丢掉斜率不存在的切线,注意补救.探究二 利用直线与圆的位置关系求圆方程圆所满足的条件是利用直线和圆的位置关系给出的,挖掘其位置关系,找出圆的条件.【解】 ∵(4-3)2+(-3-1)2=17>1, ∴点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k ,则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径1,所以|3k -1-3-4k |k 2+1=1,解得k =-158. 所以切线方程为y +3=-158(x -4),例2【名师点评】 (1)明确圆心的位置及圆的半径与两平行线间的距离之间的关系是解决本题的关键.(2)要注意应用切线的如下性质:①过切点且垂直于切线的直线必过圆心;②过圆心且垂直于切线的直线必过切点.探究三 圆的弦长及应用例3 已知直线:230l x y +-=与圆22:60C x y x y m ++-+=相交于,P Q 两点,O 为坐标原点,D 为线段PQ 的中点。

高中数学必修2直线与圆常考题型:两直线的交点坐标、两点间的距离(教师版)

高中数学必修2直线与圆常考题型:两直线的交点坐标、两点间的距离(教师版)

两直线的交点坐标、两点间的距离【知识梳理】1.两直线的交点坐标23.(1)公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.(2)文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.【常考题型】题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标: (1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点.【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l1:3x+4y-2=0和l2:2x+y+2=0的交点且过坐标原点的直线l的方程.题型三、两点间距离公式的应用【例3】已知点A(1,1),B(5,3),C(0,3),求证:△ABC为直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P1(x1,y1)和P2(x2,y2),则|P1P2|=(x2-x1)2+(y2-y1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解.2.解答本题还要注意构成三角形的条件.【对点训练】3.已知点A(-1,2),B(2,7),在x轴上求一点P,使|P A|=|PB|,并求|P A|的值.【练习反馈】1.直线3x+2y+6=0和2x+5y-7=0的交点的坐标为()A.(-4,-3)B.(4,3)C.(-4,3) D.(3,4)2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为()A.1 B.-5C.1或-5 D.1-或53.设Q(1,3),在x轴上有一点P,且|PQ|=5,则点P的坐标是________.4.若p,q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.5.分别求经过两条直线2x+y-3=0和x-y=0的交点,且符合下列条件的直线方程.(1)平行于直线l1:4x-2y-7=0;(2)垂直于直线l2:3x-2y+4=0.题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.[解] (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得⎩⎨⎧x =-103,y =143.所以l 1与l 2相交,且交点坐标为⎝⎛⎭⎫-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾.方程组无解,所以两直线无公共点,l 1∥l 2. 【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标:(1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.解:(1)解方程组⎩⎪⎨⎪⎧ 2x +y +3=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-1,所以直线l 1与l 2相交,交点坐标为(-1,-1).(2)解方程组⎩⎪⎨⎪⎧x +y +2=0,①2x +2y +3=0,②①×2-②,得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1∥l 2.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点. [证明] 法一:取m =1时,直线方程为y =-4;取m =12时,直线方程为x =9.两直线的交点为P (9,-4),将点P 的坐标代入原方程左边=(m -1)×9+(2m -1)×(-4)=m -5.故不论m 取何实数,点P (9,-4)总在直线(m -1)x +(2m -1)y =m -5上, 即直线恒过点P (9,-4).法二:原方程化为(x +2y -1)m +(-x -y +5)=0. 若对任意m 都成立,则有⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得⎩⎪⎨⎪⎧x =9,y =-4.所以不论m 为何实数,所给直线都过定点P (9,-4). 【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,所以其斜率k =2-2=-1,直线方程为y =-x ,一般式为x +y =0.法二:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ), 即(3+2λ)x +(4+λ)y +2λ-2=0. 将原点坐标(0,0)代入上式,解得λ=1, ∴l 的方程为5x +5y =0,即x +y =0.题型三、两点间距离公式的应用【例3】 已知点A (1,1),B (5,3),C (0,3),求证:△ABC 为直角三角形. [证明] 法一:∵|AB |=(5-1)2+(3-1)2=25,|AC |=(0-1)2+(3-1)2=5, 又|BC |=(5-0)2+(3-3)2=5,∴|AB |2+|AC |2=|BC |2, ∴△ABC 为直角三角形.法二:∵k AB =3-15-1=12,k AC =3-10-1=-2,∴k AB ·k AC =-1,∴AB ⊥AC ,∴△ABC 是以A 为直角顶点的直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. 【对点训练】3.已知点A (-1,2),B (2,7),在x 轴上求一点P ,使|P A |=|PB |,并求|P A |的值. 解:设所求点P (x,0),于是由|P A |=|PB |得(x +1)2+(0-2)2=(x -2)2+(0-7)2,即x 2+2x +5=x 2-4x +11,解得x =1. 所以,所求P 点坐标为(1,0),|P A |=(1+1)2+(0-2)2=2 2.【练习反馈】1.直线3x +2y +6=0和2x +5y -7=0的交点的坐标为( ) A .(-4,-3) B .(4,3) C .(-4,3)D .(3,4)解析:选C 由方程组⎩⎪⎨⎪⎧ 3x +2y +6=0,2x +5y -7=0,得⎩⎪⎨⎪⎧x =-4,y =3.2.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为( ) A .1 B .-5 C .1或-5 D .1-或5解析:选C ∵|AB |=(a +2)2+(3+1)2=5,∴a =-5或a =1.3.设Q (1,3),在x 轴上有一点P ,且|PQ |=5,则点P 的坐标是________. 解析:由题意设P (a,0),则|PQ |=(a -1)2+(0-3)2=5,解得a -1=±4,即a =5或-3.故点P 的坐标是(5,0)或(-3,0).答案:(5,0)或(-3,0)4.若p ,q 满足p -2q =1,直线px +3y +q =0必过一个定点,该定点坐标为________. 解析:因为p =2q +1代入整理:(2x +1)q +3y +x =0对q 为一切实数恒成立,即2x +1=0,且3y +x =0,所以x =-12,y =16.答案:⎝⎛⎭⎫-12,16 5.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程. (1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0.解:解方程组⎩⎪⎨⎪⎧2x +y -3=0,x -y =0,得交点P (1,1).(1)若直线与l 1平行, ∵k 1=2, ∴斜率k =2,∴所求直线方程为y -1=2(x -1) 即:2x -y -1=0. (2)若直线与l 2垂直, ∵k 2=32,∴斜率k =-1k 2=-23,∴y -1=-23(x -1)即:2x +3y -5=0.。

高中数学 第2章 平面解析几何初步 直线与圆综合学案 苏教版必修2 学案

高中数学 第2章 平面解析几何初步 直线与圆综合学案 苏教版必修2 学案

直线与圆综合(定点、定值、最值问题)一、解答题1.已知圆()222:2(0)M x y r r +-=>与曲线()():23430C y x y --+=有三个不同的交点. (1)求圆M 的方程;(2)已知点Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.①若42AB =,求MQ 及直线MQ 的方程; ②求证:直线AB 恒过定点.2.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与x 轴、y 轴交于点A 、B(不同于原点O),求证:的面积为定值; (2)设直线与圆交于不同的两点,且,求圆M 的方程;(3)设直线与(2)中所求圆交于点E 、F , P 为直线x=5上的动点,直线PE ,PF 与圆的另一个交点分别为G ,H ,且G ,H 在直线异侧,求证:直线GH 过定点,并求出定点坐标.3.已知圆22:2O x y +=,直线:2l y kx =-. (1)若直线l 与圆O 交于不同的两点,A B ,当2AOB π∠=时,求k 的值.(2)若1,2k P =是直线l 上的动点,过P 作圆O 的两条切线,PC PD ,切点为,C D ,探究:直线CD 是否过定点;(3)若,EF GH 为圆22:2O x y +=的两条相互垂直的弦,垂足为1,2M ⎛⎫ ⎪ ⎪⎝⎭,求四边形FGFH 的面积的最大值.4.已知平面直角坐标系xoy 内两个定点()1,0A 、()4,0B ,满足2PB PA =的点(),P x y 形成的曲线记为Γ.(1)求曲线Γ的方程;(2)过点B 的直线l 与曲线Γ相交于C 、D 两点,当⊿COD 的面积最大时,求直线l 的方程(O 为坐标原点); (3)设曲线Γ分别交x 、y 轴的正半轴于M 、N 两点,点Q 是曲线Γ位于第三象限内一段上的任意一点,连结QN 交x 轴于点E 、连结QM 交y 轴于F .求证四边形MNEF 的面积为定值.5.已知圆22:9O x y +=,直线1l :x =6,圆O 与x 轴相交于点A B 、(如图),点P (-1,2)是圆O 内一点,点Q 为圆O 上任一点(异于点A B 、),直线A Q 、与1l 相交于点C .(1)若过点P 的直线2l 与圆O 相交所得弦长等于,求直线2l 的方程; (2)设直线BQ BC 、的斜率分别为BQ BC k k 、,求证:BQ BC k k ⋅为定值.6.已知圆C 经过点()()0,2,2,0A B ,圆C 的圆心在圆222x y +=的内部,且直线3450x y ++=被圆C 所截得的弦长为3点P 为圆C 上异于,A B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)求证:AN BM 为定值;(3)当PA PB 取得最大值时,求MN .7.如图,已知定圆22:(3)4C x y +-=,定直线:360m x y ++=,过(1,0)A -的一条动直线l 与直线相交于N ,与圆C 相交于P ,Q 两点,M 是PQ 中点. (Ⅰ)当l 与m 垂直时,求证:l 过圆心C ; (Ⅱ)当||23PQ =时,求直线l 的方程;(Ⅲ)设t AM AN =,试问t 是否为定值,若为定值,请求出t 的值;若不为定值,请说明理由. 8.已知圆,相互垂直的两条直线都过点,(1)当时,若圆心为的圆和圆外切且与直线都相切,求圆的方程;(2)当时,记被圆所截得的弦长分别为,求:①的值;②的最大值.9.已知圆C :()2244x y +-=,直线l :()()31140m x m y ++--= (Ⅰ)求直线l 所过定点A 的坐标;(Ⅱ)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(Ⅲ)已知点()3,4M -,在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有PM PN为一常数,试求所有满足条件的点N 的坐标及该常数。

人教版高中数学必修2《直线与圆的位置关系》教案

人教版高中数学必修2《直线与圆的位置关系》教案
本节课教学难点:理解可以通过直线与圆的方程所组成的方程组的解来确定它们的位置关系.
四、教学过程设计
解析几何就是用代数方法研究几何图形,当然也要研究几何图形的位置关系,直线与直线的位置关系已经研究清楚,这节课我们研究直线与圆的位置关系。
1.问题情境
问题1.直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?
师生活动:学生解答,解释出错原因。
6.课堂小结
问题9判断直线与圆的位置关系有哪些方法?
问题10当直线与圆相交时,如何求弦长?
设计意图:巩固所学知识,培养学生归纳概括能力.
师生活动:学生思考,教师引导时应涉及到“如何求弦长”以及判断直线与圆的位置关系有几种方法?它们的步骤是什么?
人教版高中数学必修2《直线与圆的位置关系》教案这篇文章共11261字。
(2)通过消元,得到一个一元二次方程;
(3)求出其判别式△的值;
(4)判断△的符号:
若△>0,则直线与圆相交;
若△=0,则直线与圆相切;
若△<0,则直线与圆相离.
4.例题示范
例1如图,已知直线:和圆心为的圆,
(1)判断直线与圆的位置关系;
(2)如果相交,求它们交点的坐标.
设计意图:通过例题巩固判断直线与圆的位置关系方法,关注量与量之间的关系.使学生体验用坐标法研究直线与圆的位置关系的想法与结论.
4.当直线与圆有公共点时,能通过联解方程组得出直线与圆的公共点的坐标.
5.当直线与圆相交时,会求圆的弦长,以及能解决与弦长相关的简单问题.
6.通过直线与圆的位置关系的代数化处理,使学生进一步认识到坐标系是联系“数”与“形”的桥梁,从而更深刻地体会坐标法思想.
教学应对
三、教学问题诊断

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

人教A版高中数学必修2 4.2.1直线与圆的位置关系(教学设计)

人教A版高中数学必修2  4.2.1直线与圆的位置关系(教学设计)

人教A版高中数学必修2课题:4.2.1直线与圆的位置关系【教材分析】《直线、圆的位置关系》是圆与方程这一章的重要内容。

它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用解析法进一步研究直线与圆的位置关系,它既是对圆的方程的应用和拓展,又是研究圆和圆的位置关系的基础,并且为后续研究直线和圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。

【学生学情分析】在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。

本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。

通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。

【教学目标】(一)知识与技能:理解直线与圆三种位置关系;能根据直线、圆的方程,用代数法和几何法判断直线与圆位置关系;掌握直线和圆的位置关系判定的应用,会求弦长.(二)方法与过程:通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、合作交流的学习方式;强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.(三)情感态度与价值观:让学生亲生经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“数形结合”等数学思想的内涵,养成良好的思维习惯.【教学重点与难点】重点:直线与圆的位置关系的判断方法.难点:灵活的运用“数形结合”解决直线和圆相关的问题.【课型】新课【课时安排】1节课【教法、学法指导、教学手段】教法“引导-探究”教学法、“命名”教学法、“题组”教学法;学法:观察发现、自主探究、合作交流、变式学习、归纳总结、应用提高;教学手段:多媒体教学【教学准备】学生学情,课件、教学设计,学生课堂练习题;彩色粉笔,翻页笔。

间的位置关系呢?方法一:可以依据圆心到直线的距离与半径长的关系,判断直线与圆的方法二,由直线l(–问题6过点M【板书设计】有两个公共点直线和圆相交有惟一公共点直线和圆相切直线和圆相离。

人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。

最新人教版高中数学必修2第四章《直线与圆的位置关系》

最新人教版高中数学必修2第四章《直线与圆的位置关系》

4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。

高中数学必修2直线与圆的位置关系2

高中数学必修2直线与圆的位置关系2
把直线方程与圆的方程联立成方程组
利用消元法,得到关于另一个元的一元二次方程
求出其Δ的值
比较Δ与0的大小: 当Δ<0时,直线与圆相离;当Δ=0时, 直线与圆相 切 ;当Δ>0时,直线与圆相交。
结束 返回 下一页
直线与圆的位置关系
已知直线l:kx-y+3=0和圆C: x2+y2=1,试问:k为何值时,直线l与 圆C相交?
直线与圆的位置关系
问题1:你知道直 线和圆的位置关系
有几种?
结束 返回 下一页
例1 如图4.2-2,已知直线L:3x+y-6=0和圆心为C的圆
x2y22y40,判断直线L与圆的位置关系;如 果相交,求它们交点的坐标。
分析:方法一,判
断直线L与圆的位置关 系,就是看由它们的方 程组成的方程有无实数
解;方法二,可以
到台风的影响. y
B
0
A
x
归纳小结:直线与圆的位置关系的判断方法有两种:
①代数法:通过直线
方程与圆的方程所组成的 方程组成的方程组,根据 解的个数来研究,若有两 组不同的实数解,即⊿> 0,则相交;若有两组相 同的实数解,即⊿=0, 则相切;若无实数解,即 ⊿<0,则相离.
②几何法:由圆心
到直线的距离d与半径r 的大小来判断:当d<r时, 直线与圆相交;当d=r时, 直线与圆相切;当d>r时, 直线与圆相离.
r2d22( 7)2 b1
故所求圆的方程是(x-3)2+(y-1)2=9
或(x+3)2+(y+1)2=9。
结束 返回 下一页
例1:过点P(1,-1)的直线L与圆M:
(x-3)2+(y-4)2=4

苏教版高中数学必修二知识讲解_直线与圆的位置关系_基础

苏教版高中数学必修二知识讲解_直线与圆的位置关系_基础

直线与圆的位置关系::【学习目标】1.依据直线和圆的方程,能熟练求出他们的交点坐标.2.能通过比较圆心到直线的距离和半径之间的大小关系判断直线和圆的位置关系.3.理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组的解(无解、有唯一解、有两组解)的对应关系.4.能利用直线和圆的方程研究与圆有关的问题,提高学生的思维能力.【要点梳理】要点一:直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.直线与圆的位置关系的判定:(1)代数法:判断直线l与圆C的方程组成的方程组是否有解.如果有解,直线l与圆C有公共点.有两组实数解时,直线l与圆C相交;有一组实数解时,直线l与圆C相切;无实数解时,直线l与圆C相离.(2)几何法:由圆C的圆心到直线l的距离d与圆的半径r的关系判断:<时,直线l与圆C相交;当d r=时,直线l与圆C相切;当d r>时,直线l与圆C相离.当d r要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决. 要点二:圆的切线方程的求法 1.点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1O M l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .2.点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .要点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.要点三:求直线被圆截得的弦长的方法1.应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.2.利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.3.利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12|l x x =-.【典型例题】类型一:直线与圆的位置关系例1.已知直线y=2x+1和圆x 2+y 2=4,试判断直线和圆的位置关系.【思路点拨】解决本题的方法主要有两个,其一是利用圆心到直线的距离与半径的大小关系;其二是引入一元二次方程,利用方程根来解决. 【答案】相交 【解析】解法一:∵x 2+y 2=4, ∴圆心为(0,0),半径r=2.又∵y=2x+1,∴圆心到直线的距离为2d r ==<=.∴直线与圆相交. 解法二:∵⎩⎨⎧=++=,4,1222y x x y ∴(2x+1)2+x 2=4, 即5x 2+4x-3=0.判别式Δ=42-4×5×(-3)=76>0. ∴直线与圆相交.【总结升华】判断直线与圆的位置关系可以从代数方法和几何意义两个方面加以考虑.例2.已知直线方程mx ―y ―m ―1=0,圆的方程x 2+y 2―4x ―2y+1=0.当m 为何值时,圆与直线 (1)有两个公共点;(2)只有一个公共点; (3)没有公共点. 【答案】(1)m >0或43m <-(2)m=0或43m =-(3)403m -<< 【解析】 解法一:将直线mx ―y ―m ―1=0代入圆的方程化简整理得, (1+m 2)x 2―2(m 2+2m+2)x+m 2+4m+4=0. ∵Δ=4m(3m+4),∴当Δ>0时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当Δ=0时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当Δ<时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 解法二:已知圆的方程可化为(x ―2)2+(y ―1)2=4, 即圆心为C (2,1),半径r=2.圆心C (2,1)到直线mx ―y ―m ―1=0的距离d ==.当d <2时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当d=2时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当d >2时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 【总结升华】解决此类问题是搞清直线与圆的位置和直线与圆的公共点的个数间的等价关系.在处理直线与圆的位置关系时,常用几何法,即比较圆心到直线的距离和半径的大小,而不用联立方程.举一反三:【变式】求实数m 的范围,使直线30x my -+=与圆22650x y x +-+=分别满足: (1)相交;(2)相切;(3)相离.【答案】(1)m <-m >2)m =±3)m -<<【解析】圆的方程化为标准为22(3)4x y -+=,故圆心(3,0)到直线30x my -+=的距离d =,圆的半径2r =.(1)若相交,则d r <2<,所以m <-m >(2)若相切,则d r =2=,所以m =±(3)若相离,则d r >2>,所以m -<<【总结升华】一般来讲,选择此方法要比选择计算判别式的方法在运算上简单. 类型二:圆的切线问题【与圆有关的位置关系370892 典型例题1】例3.过点(7,1)P 作圆2225x y +=的切线,求切线的方程.【思路点拨】先判断点在圆上或圆外,如果点在圆上则有一条切线.如果点在圆外,则有两条切线.本例中很明显点在圆外.【答案】43250x y --=或34250x y +-= 【解析】因为22715025+=>,所以点在圆外。

高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程

高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程

直线的两点式方程、直线的一般式方程【知识梳理】1.直线的两点式与截距式方程(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 3.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.【常考题型】题型一、利用两点式求直线方程【例1】 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.[解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.【类题通法】求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.【对点训练】1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.解析:(1)由于点A 与点B 的横坐标相等,所以直线l 没有两点式方程,所求的直线方程为x =2.(2)由两点式方程得,过A ,B 两点的直线方程为y -(-1)4-(-1)=x -2-3-2,即x +y -1=0.又点P (3,m )在直线AB 上,所以3+m -1=0,得m =-2.答案:(1)x =2 (2)-2题型二、直线的截距式方程及应用【例2】 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. 【类题通法】用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式. (3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.【对点训练】2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a 、b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +yb=1.∵直线过点(-2,2),代入直线方程得-2a +2b =1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解;当2a 2a +2=2时,化简得a 2-a -2=0, 解得⎩⎪⎨⎪⎧ a =-1,b =-2,或⎩⎪⎨⎪⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.题型三、直线方程的一般式应用【例3】 (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0.①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. 【类题通法】1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,(1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.【对点训练】3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1, ∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.【练习反馈】1.直线x 3-y4=1在两坐标轴上的截距之和为( )A .1B .-1C .7D .-7解析:选B 直线在x 轴上截距为3,在y 轴上截距为-4,因此截距之和为-1. 2.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 解析:选D 求直线方程的截距式,必须把方程化为x a +yb =1的形式,即右边为1,左边是和的形式.3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________. 解析:由题意直线过两点,由直线的两点式方程可得:y -25-2=x -(-1)2-(-1),整理得x -y +3=0.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 解析:由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0. 答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:∵直线AB 过点A (0,-5),B (-3,3)两点, 由两点式方程,得y +53+5=x -0-3-0.整理,得8x +3y +15=0.∴直线AB 的方程为8x +3y +15=0. 又∵直线AC 过A (0,-5),C (2,0)两点, 由截距式得x 2+y-5=1,整理得5x -2y -10=0,∴直线AC 的方程为5x -2y -10=0.。

高中数学必修2直线与圆的位置关系知识题型总结

高中数学必修2直线与圆的位置关系知识题型总结

直线与圆的位置关系一、点与圆的位置关系设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ;①P 在在圆C 外22020)()(r b y a x r d >-+-⇔>⇔; ②P 在在圆C 内22020)()(r b y a x r d <-+-⇔<⇔; ③P 在在圆C 上22020)()(r b y a x r d =-+-⇔=⇔;二、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,位置关系的判定:判定方法1:联立方程组 得到关于x(或y)的方程(1)△>0相交; (2)△=0相切; (3)△<0相离。

判定方法2:若圆心(a ,b)到直线L 的距离为d (1)d<r 相交; (2)d=r 相切;(3)d>r 相离。

利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。

三、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。

(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离2121||r r O O +>⇔;4条公切线②两圆外切2121||r r O O +=⇔;3条公切线③两圆相交212112||||r r O O r r +<<-⇔;2条公切线④两圆内切||||1221r r O O -=⇔;1条公切线⑤两圆内含||||1221r r O O -<⇔;没有公切线四、两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:① 若1C 与2C 相切,则表示其中一条公切线方程; ② 若1C 与2C 相离,则表示连心线的中垂线方程.五、圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 补充:① 上述圆系不包括2C ;② 2)当1λ=-时,表示过两圆交点的直线方程(公共弦)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=六、 过一点作圆的切线的方程:(1) 过圆外一点的切线: ①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即 ⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k ,得到切线方程【一定两解】例1. 经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为 。

说课稿 人教版 数学 高中 必修二 《直线与圆的位置关系》

说课稿 人教版 数学 高中 必修二 《直线与圆的位置关系》

《直线与圆的位置关系》(第一课时)说课稿尊敬的各位评委老师,大家下午好!我是应聘高中数学的3号考生,今天我抽到的说课题目是《直线与圆的位置关系》。

下面我将从说教材、说学情、说教法、说学法、说教学程序、说板书设计六个方面来开始我的说课。

一、说教材《直线与圆的位置关系》是人教版高中数学必修2第二章第三节的内容。

本节课的内容是直线与圆的位置关系,在此之前,学生已经学习直线与圆的位置关系,直线的方程与圆的方程,为本节课的学习打下了基础,同时,本节课的内容也为今后学习空间直角坐标系做好铺垫,所以,本节课的内容起到承上启下的过度作用。

基于以上对教材地位和作用的分析,确定了本节课的三维教学目标:知识与技能目标:在教师引导下,能将直线、圆的位置关系的实际问题坐标化,进一步培养学生“用数学”的意识;能根据给定直线、圆的方程判断直线、圆的位置关系,通过观察、验证、推理与交流等数学活动,找到判断直线、圆的位置关系的一般方法;能利用直线、圆的位置关系解决有关的简单问题,提升学生的逻辑思维能力和分析问题、解决问题的能力。

过程与方法目标:经历理论与实际的联系,提升数学建模能力,培养运用数形结合与方程的思想解决问题的意识;经历探索判断直线、圆的位置关系的过程,学生参与数学实践;通过多媒体动画演示,培养用运动变化的观点来分析问题、解决问题的能力。

情感态度与价值观目标:学生主动参与用坐标法探求直线、圆的位置关系的过程,学生感受成功的喜悦;通过自主探究、小组合作、讨论,培养团队精神和主动学习的良好习惯。

基于以上对于教材地位和作用的分析,以及设定的三维教学目标,确定了本节课的教学重难点:教学重点是运用坐标法探究直线、圆的位置关系,结合几何图形,将直线与圆的位置关系转化为圆心到直线的距离d与半径r的关系,将圆与圆的位置关系转化为连心线与两圆半径的关系,进一步体会数形结合这一重要数学思想;教学难点是把实际问题转化为数学问题,建立相应的数学模型;对用方程组的解来判断直线、圆的位置关系的方法的理解。

人教版高中数学必修2-4.2《直线与圆的方程应用》教学设计

人教版高中数学必修2-4.2《直线与圆的方程应用》教学设计

4.2 直线、圆的位置关系4.2.3 直线与圆的方程应用(朱海军)一、教学目标(一)核心素养通过直线与圆方程的综合应用,熟练掌握使用代数法来解决问题的方法. (二)学习目标1.坐标法解决直线和圆的应用问题(分析,建系,抽象出数学问题).2.与圆有关的最值问题.3.与圆有关的中点弦问题.(三)学习重点综合使用直线与圆的方程来解决问题.(四)学习难点1.将实际问题转化为数学问题.2.在运用坐标系证明几何问题时,合理建立直角坐标系的方法.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材中的例题4,了解将实际问题转化为数学问题的具体例子;(2)记一记:用坐标法解决几何问题的步骤第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.(3)做一做:完成课后习题2,体会使用直线与圆方程解决问题的过程.2.预习自测(1)赵州桥的跨度是37.4米,圆拱高约为7.2米,求这座圆拱桥的拱圆方程. 【知识点】将实际问题转化为数学问题的方法.【数学思想】代数法【解题过程】放在一元二次方程中,我们可以画出拱圆图形是一个抛物线,则设拱圆的方程为c bx ax y ++=2,顶点在y 轴上若跨度两边的点在x 轴上,则方程过点(-18.75,0)、(18.75,0)、(0,7.2),将这三个点代入方程,解出a,b,c 即可若拱圆的顶点在x 轴上,则方程过点(-18.75,-7.2)、(18.75,-7.2)、(0,0),将这三个点代入方程,解出a,b,c 即可.但是由于此题要求的是拱圆方程,则我们必须求出的是一个圆的方程,因此我们可以设圆心坐标为原点,半径为r ,则圆拱桥的方程为222r y x =+,则有,半径与跨度一般、半径减圆拱高的线段构成一个直角三角形.有:()2222.775.18-+=r r ,解出r =28.0再代入圆的方程即可. 【思路点拨】建立直角坐标系【答案】2220.28=+y x(2)如果实数,x y 满足等式22(2)3x y -+=,那么xy 的最大值是________. 【知识点】直线与圆的最值问题【数学思想】化归与转化【解题过程】分析可知,x y 的最值是过原点的直线与圆相切时的直线的斜率,设:0,l kx y l d k -====则圆心到的距离则所以x y 【思路点拨】xy 看成(,)x y 与(0,0)连线的斜率【答 (3)过圆22(2)4x y +-=外一点(2,2)A -,引圆的两条切线,切点为12,T T , 则直线12TT 的方程为________.【知识点】切线、切点弦【数学思想】方程思想【解题过程】设切点12,T T 为1122(,),(,)x y x y ,则1AT 的方程为11(2)(2)4x x y y +--=,同理2AT 的方程为22(2)(2)4x x y y +--=,则。

高中数学必修2直线与圆常考题型:点到直线的距离、两条平行线间的距离(教师版)

高中数学必修2直线与圆常考题型:点到直线的距离、两条平行线间的距离(教师版)

点到直线的距离、两条平行线间的距离【知识梳理】点到直线的距离与两条平行线间的距离题型一、点到直线的距离【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1D.2+12.点P(2,4)到直线l:3x+4y-7=0的距离是________.题型二、两平行线间的距离【例2】求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=|b1-b2|k2+1;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2时,d=|C1-C2|A2+B2.但必须注意两直线方程中x,y的系数对应相等.【对点训练】3.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________.题型三、距离的综合应用【例3】求经过点P(1,2),且使A(2,3),B(0,-5)到它的距离相等的直线l的方程.【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l的特征,然后由已知条件写出l的方程.【对点训练】4.求经过两直线l1:x-3y-4=0与l2:4x+3y-6=0的交点,且和点A(-3,1)的距离为5的直线l的方程.【练习反馈】1.原点到直线x+2y-5=0的距离为()A.1 B. 3C.2 D. 52.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. 2C. 3 D.23.直线4x-3y+5=0与直线8x-6y+5=0的距离为________.4.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是________.5.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.[解] (1)直线y =34x +14化为一般式为3x -4y +1=0,由点到直线的距离公式可得d =|3×3-4×(-2)+1|32+(-4)2=185. (2)因为直线y =6与y 轴垂直,所以点P 到它的距离d =|-2-6|=8. (3)因为直线x =4与x 轴垂直,所以点P 到它的距离d =|3-4|=1. 【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1D.2+1解析:选C 由点到直线的距离公式知 d =|a -2+3|2=|a +1|2=1,得a =-1±2.又∵a >0,∴a =2-1.2.点P (2,4)到直线l :3x +4y -7=0的距离是________. 解析:点P 到直线l 的距离d =|3×2+4×4-7|32+42=155=3.答案:3【例2】 求与直线l :5x -12y +6=0平行且到l 的距离为2的直线方程. [解] 法一:设所求直线的方程为5x -12y +C =0. 在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12×12+C |52+(-12)2=|C -6|13,由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+(-12)2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l 1:y =kx +b 1,l 2:y =kx +b 2,且b 1≠b 2时,d =|b 1-b 2|k 2+1;当直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0且C 1≠C 2时,d =|C 1-C 2|A 2+B2.但必须注意两直线方程中x ,y 的系数对应相等.【对点训练】3.两直线3x +y -3=0和6x +my -1=0平行,则它们之间的距离为________. 解析:因为两直线平行,所以m =2.法一:在直线3x +y -3=0上取点(0,3),代入点到直线的距离公式,得d =|6×0+2×3-1|62+22=104. 法二:将6x +2y -1=0化为3x +y -12=0,由两条平行线间的距离公式得d =⎪⎪⎪⎪-3+1232+12=104. 答案:104题型三、距离的综合应用【例3】 求经过点P (1,2),且使A (2,3),B (0,-5)到它的距离相等的直线l 的方程. [解] 法一:当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.法二:由平面几何知识知l ∥AB 或l 过线段AB 的中点. ∵直线AB 的斜率k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 的中点(1,-1),则直线方程为x =1, 故所求直线方程为x =1或4x -y -2=0. 【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l 的特征,然后由已知条件写出l 的方程.【对点训练】4.求经过两直线l 1:x -3y -4=0与l 2:4x +3y -6=0的交点,且和点A (-3,1)的距离为5的直线l 的方程.解:由⎩⎪⎨⎪⎧x -3y -4=0,4x +3y -6=0,解得⎩⎪⎨⎪⎧x =2,y =-23,即直线l 过点B ⎝⎛⎭⎫2,-23. ①当l 与x 轴垂直时,方程为x =2,点A (-3,1)到l 的距离d =|-3-2|=5,满足题意. ②当l 与x 轴不垂直时,设斜率为k , 则l 的方程为y +23=k (x -2),即kx -y -2k -23=0,由点A 到l 的距离为5,得⎪⎪⎪⎪-3k -1-2k -23k 2+(-1)2=5,解得k =43,所以l 的方程为43x -y -83-23=0,即4x -3y -10=0.综上,所求直线方程为x =2或4x -3y -10=0.【练习反馈】1.原点到直线x +2y -5=0的距离为( ) A .1 B. 3 C .2D. 5解析:选D d =|-5|5= 5.2.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为( ) A .1 B. 2 C. 3D .2 解析:选B 在l 1上取一点(1,-2),则点到直线l 2的距离为|1-2-1|12+12= 2.3.直线4x -3y +5=0与直线8x -6y +5=0的距离为________.解析:直线8x -6y +5=0化简为4x -3y +52=0,则由两平行线间的距离公式得⎪⎪⎪⎪5-5242+32=12. 答案:124.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________. 解析:∵|5×2-12k +6|52+122=4,∴|16-12k |=52,∴k =-3,或k =173.答案:-3或1735.已知△ABC 三个顶点坐标A (-1,3),B (-3,0),C (1,2),求△ABC 的面积S . 解:由直线方程的两点式得直线BC 的方程为 y 2-0=x +31+3, 即x -2y +3=0.由两点间距离公式得 |BC |=(-3-1)2+(0-2)2=25,点A 到BC 的距离为d ,即为BC 边上的高, d =|-1-2×3+3|12+(-2)2=455,所以S =12|BC |·d =12×25×455=4,即△ABC 的面积为4.。

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.(2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b=1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎨⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎨⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( )或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A. 二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A2x+B2y+C2=0,因此它不能表示直线l2.(2)平行直线系方程:与直线Ax+By+C=0(A,B不同时为0)平行的直线系方程是Ax+By+λ=0(λ≠C).(3)垂直直线系方程:与直线Ax+By+C=0(A,B不同时为0)垂直的直线系方程是Bx-Ay+λ=0.4.过点A(3,-1)作直线l交x轴于点B,交直线l1:y=2x于点C,若|BC|=2|AB|,求直线l的方程.[解] 当直线l的斜率不存在时,直线l:x=3,∴B(3,0),C(3,6).此时|BC|=6,|AB|=1,|BC|≠2|AB|,∴直线l的斜率存在.设直线l的方程为y+1=k(x-3),显然k≠0且k≠2.令y=0,得x=3+1 k ,∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=kx -3,得点C 的横坐标x C =3k +1k -2. ∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |, ∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k, 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2).又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3),所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0.注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧2-a2+-3-b 2=r 2,-2-a 2+-5-b2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0. 再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为125+12+-6-22=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y-y0=k(x-x0),化成一般式kx-y+y-kx0=0,利用圆心到直线的距离等于半径长,解出k;②当切线斜率存在时,设切线方程为y-y0=k(x-x0),与圆的方程(x-a)2+(y-b)2=r2联立,化为关于x的一元二次方程,利用判别式为0,求出k.当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解.(2)利用圆的弦长公式l=1+k2|x1-x2|=1+k2·x1+x22-4x1x2(其中x1,x2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d、圆的半径r与弦长的一半l2为线段长的三条线段构成直角三角形,故有l=2r2-d2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系.(2)若圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交.则两圆方程相减后得到的新方程:(D1-D2)x+(E1-E2)y+(F1-F2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x+y-2=0与圆(x-1)2+(y-2)2=1相交于A,B两点,则|AB|=( )(2)若直线x-my+1=0与圆x2+y2-2x=0相切,则m的值为( )A.1 B.±1C.± 3(3)已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).①若l与圆C相切,求l的方程;②若l与圆C相交于P,Q两点,且|PQ|=22,求此时直线l的方程.[解析] (1)∵圆心(1,2)到直线x+y-2=0的距离d=22,∴|AB|=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m 2=1,解得m =± 3. 答案:(1)D (2)C(3)解:①若直线l 的斜率不存在,则直线l :x =1,符合题意. 若直线l 的斜率存在,设直线l 的方程为y =k (x -1), 即kx -y -k =0.由题意知,圆心(3,4)到直线l 的距离等于2,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程为3x -4y -3=0.综上可得,所求直线l 的方程是x =1或3x -4y -3=0.②由直线l 与圆C 相交可知,直线l 的斜率必定存在,且不为0,设直线l 的方程为k 0x -y -k 0=0,圆心(3,4)到直线l 的距离为d ,因为|PQ |=24-d 2=22,所以d =2, 即|3k 0-4-k 0|k 20+1=2,解得k 0=1或k 0=7,所以所求直线l 的方程为x -y -1=0或7x -y -7=0. 注:研究直线与圆位置关系综合问题时易忽视直线斜率k 不存在情形,要注意作出图形进行判断.12.由直线y =x +1上的一点向圆x 2-6x +y 2+8=0引切线,则切线长的最小值为( )A .1B .22D .3解析:选C 切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d 2-r 2=8-1=7.13.P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )B .22D .23解析:选C 圆的标准方程为(x -1)2+(y -1)2=1,圆心C (1,1),半径r =1.根据对称性可知四边形PACB 的面积等于2S △APC =2×12×|PA |×r =|PA |=|PC |2-r 2=|PC |2-1.要使四边形PACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形PACB 面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝⎛⎭⎪⎫-m +12,m -12, 由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。

高中数学必修2直线与圆优质教案:直线与圆的位置关系(第2课时)Word版含解析

高中数学必修2直线与圆优质教案:直线与圆的位置关系(第2课时)Word版含解析

导入新课一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图1分析:如图1,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根, Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23. 这样就可求得切线的方程为22102320+--±=+-x y ,整理得y=±33(x+2). 点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便). 变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +. 例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a-,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外,即22)12()21(+++a >4342a -. 化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a 解得-332<a <332,a ∈R . 所以-332<a <332. 故a 的取值范围是(-332,332). 点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件. 拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 解:设点P的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x+1=0.①因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM的方程为y=±33(x+1).②将②代入①整理,得x2-4x+1=0.解得x1=2+3,x2=2-3.代入②得点P的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN的方程为y=x-1或y=-x+1.课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的.作业课本习题4.2 A组5、6、7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+(k2﹣1)?y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心C到直线l的距离为=,∵截得的弦长为2,∴半径为2,∴圆C:(x﹣3)2+(y﹣4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+(k2﹣1)?y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线l与圆C交于A,B两点.∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,∴△CAB为正三角形,∴三角形的高等于边长的,∴圆心C到直线l的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.在△CDE中,∵DE=,∴=∴,当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.∵CH=,∴|n+1|=,∴n=,∴存在n的值,使得△CDE的面积最大值为3,此时直线m的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).∵?=6||,∴﹣3×(x﹣4)+0×y=6,化简得=1为所求点P的轨迹方程.4分(Ⅱ)设A(x1,y1),B(x2,y2).①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),∴﹣λ1=1+同理由得﹣λ2=1+,∴﹣(λ1+λ2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,∴y1+y2=﹣,y1y2=﹣代入得∴(λ1+λ2)=2+=,∴λ1+λ2=﹣②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,∴λ1+λ2=﹣11分综上,λ1+λ2为定值﹣.12分.【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…(1分)所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(4分)(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…(5分)所以|MN|==…(7分)因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…(9分)所以△QMN的面积.…(10分)令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…(11分)所以△QMN的面积的最大值为.…(12分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,从而丨PM丨+丨PN丨=4>丨MN丨=2,∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线C的轨迹方程为;(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,解得:m>2或m<﹣2,由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,∴k AQ?k BQ=?==,要使k AQ?k BQ为非零常数,当且仅当,解得t=±2,当t=2时,常数为=,当t=﹣2时,常数为=,∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;(Ⅱ)可设直线,进而表示面积,即可求△OEF面积的取值范围.【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线…(5分)由得,,同理可得:,;所以,又OE⊥OF,所以…(8分)令t=k2+1,则t>1且k2=t﹣1,所以=…(10分)又,所以,所以,所以,所以,所以△OEF面积的取值范围为.…(12分)【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,所以,,,同理,,所以Q(1,2)与M,N两点连线的斜率之积为定值4.【点评】本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.【分析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为的椭圆,即可求曲线E 的方程;(2)联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC过定点(3,0),表示出面积,即可求△ABC面积的最大值.【解答】解:(1)圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则﹣r=|PM|.因为动圆P经过点N,所以r=|PN|,>|MN|,所以曲线E是M,N为焦点,长轴长为的椭圆.由,得b2=2﹣1=1,所以曲线E的方程为…(4分)(Ⅱ)直线BC斜率为0时,不合题意设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)=.代入得又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),解得m=3,故直线BC过定点(3,0)…(8分)由△>0,解得t2>4,=(当且仅当时取等号).综上,△ABC面积的最大值为…(12分)【点评】本题考查圆与圆的位置关系,考查椭圆的定义与方程,考查直线与椭圆位置关系的运用,考查韦达定理,属于中档题.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.【分析】(1)设出直线方程,利用直线与圆的位置关系,列出不等式求解即可.(2)设出M,N的坐标,利用直线与圆的方程联立,通过韦达定理,结合向量的数量积,求出直线的斜率,然后判断直线与圆的位置关系求解|MN|即可.【解答】解:(1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,解得:<k<所以k的取值范围为得(,)(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程:(x﹣2)2+(y﹣3)2=1,整理得(1+k2)x2﹣4(1+k)x+7=0.所以x1+x2=,x1x2=,?=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1==12,解得k=1,所以直线l的方程为y=x+1.故圆心C在直线l上,所以|MN|=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力,是中档题.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【分析】(1)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段OQ的长;(2)联立直线和抛物线方程进行消元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,得2+=,∴n=2,抛物线C的方程为y2=2x,P(2,2).…(2分)C在第一象限的图象对应的函数解析式为y=,则y′=,故C在点P处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点Q的坐标为(﹣2,0).故线段OQ的长为2.…(5分)(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0.由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …(7分)直线PA的斜率为,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以+=2×…(10分)整理得:=,因为l2不经过点Q,所以b≠﹣2,所以2m﹣b+2=2m,即b=2.故l2的方程为x=my+2,即l2恒过定点(2,0).…(12分)【点评】本题主要考查直线和抛物线的位置关系,利用直线和抛物线方程,转化为一元二次方程,结合韦达定理,利用设而不求的思想是解决本题的关键.。

相关文档
最新文档