2015年高考数学分类练习一:集合与简易逻辑
2015-2019高考数学全国卷真题(集合与简易逻辑)
2015-2019高考数学全国卷真题(集合与简易逻辑)2019-3-1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I ( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 2019-2-1.设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( )A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)2019-1-1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I =( ) A.}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<2018-3-1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B =I ( ) A.{}0 B.{}1 C.{}1,2 D.{}0,1,2 2018-2-2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8C .5D .4 2018-1-2.已知集合{}220A x x x =-->,则A =R ð( )A .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->U D .}{}{|1|2x x x x ≤-≥U 2017-3-1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为( ) A .3 B .2 C .1 D .0 2017-2-2.设集合A={1,2,4},B={x|x 2﹣4x+m=0}.若A ∩B={1},则B=( )A .{1,﹣3}B .{1,0}C .{1,3}D .{1,5}2017-2-7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩2017-1-1.已知集合{}{}131x A x x B x =<=<,,则( ) A.{}0=<I A B x x B.A B =R U C.{}1=>U A B x x D.A B =∅I2016-3-1.设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则=⋃T S ( )A. []2,3B. (][),23,-∞+∞UC. [)3,+∞D. (][)0,23,+∞U2016-2-2.已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =U ( )(A ){}1 (B ){12}, (C ){}0123,,, (D ){10123}-,,,, 2016-1-1.设集合{}2430A x x x =-+<,{}230x x ->,则A B =I ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫ ⎪⎝⎭ 2015-2-1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A ∩B=( )(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2015-1-3.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈。
2015届高考数学 集合、常用逻辑用语专题汇编及详细答案
2015届高考数学集合、常用逻辑用语专题汇编1.(2013·高考新课标全国卷Ⅰ文)已知集合A={1,2,3,4},B={x|x=n2,x∈A},则A∩B =()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:选A.∵A={1,2,3,4},B={x|x=n2,x∈A},∴B={1,4,9,16},∴A∩B={1,4}.2.(2013·高考新课标全国卷Ⅰ理)已知集合A={x|x2-2x>0},B={x|-5<x<5},则() A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.∵A={x|x>2或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0或2<x<5},A∪B=R.3.(2013·高考新课标全国卷Ⅱ理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}解析:选A.集合M={x|-1<x<3,x∈R},∴M∩N={0,1,2},故选A.4.(2013·高考新课标全国卷Ⅱ文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:选C.M∩N={-2,-1,0},故选C.5.(2013·高考大纲全国卷理)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6解析:选B.由题意可知,集合M={5,6,7,8},共4个元素.6.(2013·高考大纲全国卷文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅解析:选B.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.7.(2013·高考山东卷理)已知集合A={0,1,2},则集合B={x-y |x∈A, y∈A}中元素的个数是()A.1 B.3C.5 D.9解析:选C.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.8.(2013·高考山东卷文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅解析:选A.∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.9.(2013·高考浙江卷理)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=() A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)解析:选C.因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.10.(2013·高考浙江卷文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=() A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]解析:选D.S∩T={x|x>-2}∩{x|-4≤x≤1}={x|-2<x≤1}.11.(2013·高考北京卷理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}解析:选B.∵A={-1,0,1},B={x|-1≤x<1}且1∉B,∴A∩B={-1,0}.12.(2013·高考天津卷理)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]解析:选D.由已知得A={x|-2≤x≤2},于是A∩B={x|-2≤x≤1}.13.(2013·高考福建卷文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3C.4 D.16解析:选C.A∩B={1,3},其子集有∅,{1},{3},{1,3},共4个.14.(2013·高考辽宁卷文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选B.B={x||x|<2}={x|-2<x<2},A∩B={0,1}.15.(2013·高考辽宁卷理)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=() A.(0,1) B.(0,2]C.(1,2) D.(1,2]解析:选D.因为A={x|0<log4x<1}={x|1<x<4},B={x|x≤2},所以A∩B={x|1<x<4}∩{x|x≤2}={x|1<x≤2}.16.(2013·高考湖南卷文)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析:∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}17.(2013·高考江西卷理)已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.-2i B.2iC.-4i D.4i解析:选C.因为M={1,2,z i},N={3,4},由M∩N={4},得4∈M,所以z i=4,所以z=-4i.18.(2013·高考江西卷文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=() A.4 B.2C.0 D.0或4解析:选A.当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.19.(2013·高考湖北卷理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}解析:选C.A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1={x |x ≥0},B ={x |x 2-6x +8≤0}={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},于是A ∩∁R B ={x |0≤x <2或x >4}.20.(2013·高考湖北卷文)已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩∁U A =( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}解析:选B.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5},∴B ∩∁U A ={2,3,4}∩{3,4,5}={3,4}21.(2013·高考四川卷文)设集合A ={1,2,3},集合B ={-2,2},则A ∩B =( )A .∅B .{2}C .{-2,2}D .{-2,1,2,3}解析:选B.A ∩B ={1,2,3}∩{-2,2}={2},故选B.22.(2013·高考四川卷理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅解析:选A.∵A ={x |x +2=0},∴A ={-2}.∵B ={x |x 2-4=0},∴B ={-2,2}.∴A ∩B ={-2}.故选A.23.(2013·高考重庆卷文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.24.(2013·高考重庆卷理)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.25.(2013·高考广东卷)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选D.集合M ={0,-2},N ={0,2},故M ∪N ={-2,0,2},故选D.26.(2013·高考广东卷文)设集合S ={x |x 2+2x =0,x ∈R },T ={x |x 2-2x =0,x ∈R },则S ∩T =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选A.集合S ={0,-2},T ={0,2},故S ∩T ={0},故选A.27.(2013·高考安徽卷文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}解析:选A.因为集合A ={x |x >-1},所以(∁R A )={x |x ≤-1},则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1}={-2,-1}.28.(2013·高考新课标全国卷文Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:选B.当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x 是假命题.如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题.∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴綈p ∧q 是真命题.选B.29.(2013·高考山东卷理)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈pq ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件. 30.(2013·高考山东卷文)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p q ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件.31.(2013·高考浙江卷理)已知函数f (x )=A co s (ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.若f (x )是奇函数,则f (0)=0,所以co s φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A co s (ωx +π2)=-As in(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.32.(2013·高考浙江卷文)若α∈R ,则“α=0”是“s in α<co s α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.若α=0,则s in α=0,co s α=1,所以s in α<co s α,即α=0⇒s in α<co s α;但当α=-π2时,有s in α=-1<0=co s α,此时α≠0.所以α=0是s in α<co s α的充分不必要条件.33.(2013·高考北京卷文)“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当φ=π时,y =s in(2x +φ)=s in(2x +π)=-s in 2x ,此时曲线y =s in(2x +φ)必过原点,但曲线y =s in(2x +φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的充分而不必要条件.34.(2013·高考天津卷文)设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件解析:选A.由不等式的性质知(a -b )·a 2<0成立,则a <b 成立;而当a =0,a <b 成立时,(a -b )·a 2<0不成立,所以(a -b )·a 2<0是a <b 的充分而不必要条件.35.(2013·高考天津卷理)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:选C.对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确. 36.(2013·高考福建卷文)设点 P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.37.(2013·高考福建卷理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.38.(2013·高考陕西卷文)设全集为R, 函数f (x )=1-x 的定义域为M, 则∁R M 为( )A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞)解析:选B.函数f (x )的定义域M =(-∞,1],则∁R M =(1,+∞).39.(2013·高考湖南卷)“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.设A ={x |1<x <2},B ={x |x <2},∴A B ,即当x 0∈A 时,有x 0∈B ,反之不一定成立.因此“1<x <2”是“x <2”成立的充分不必要条件.40.(2013·高考辽宁卷)下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列{a n n}是递增数列;p 4:数列{a n +3n d}是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:选D.因为d>0,所以a n +1>a n ,所以p 1是真命题.因为n +1>n ,但是a n 的符号不知道,所以p 2是假命题.同理p 3是假命题.由a n +1+3(n +1)d -a n -3n d =4d>0,所以p 4是真命题.41.(2013·高考陕西卷理)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)解析:选D.由1-x 2≥0,知-1≤x ≤1,∴M =[-1,1],∴∁R M =(-∞,-1)∪(1,+∞).42.(2013·高考湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A.依题意得綈p :“甲没有降落在指定范围”,綈q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p )∨(綈q ).43.(2013·高考四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉BB .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 解析:选D.命题p 是全称命题:∀x ∈A,2x ∈B ,则綈p 是特称命题:∃x ∈A,2x ∉B .故选D. 44.(2013·高考重庆卷理)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0 解析:选D.因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.45.(2013·高考安徽卷)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.46.(2013·高考陕西卷)设a ,b 为向量,则“|a·b |=|a||b|”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.若|a ·b |=|a ||b |,若a ,b 中有零向量,显然a ∥b ;若a ,b 均不为零向量,则|a ·b |=|a ||b ||co s 〈a ,b 〉|=|a ||b |,∴|co s 〈a ,b 〉|=1,∴〈a ,b 〉=π或0,∴a ∥b ,即|a ·b |=|a ||b |⇒a ∥b .若a ∥b ,则〈a ,b 〉=0或π,∴|a ·b |=||a ||b |co s 〈a ,b 〉|=|a ||b |,其中,若a ,b 有零向量也成立,即a ∥b ⇒|a ·b |=|a ||b |.综上知,“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.47.(2013·高考江苏卷理)集合{-1,0,1}共有________个子集.解析:由于集合中有3个元素,故该集合有23=8(个)子集.答案:848.(2013.高考湖南卷)对于E ={a 1,a 2,...,a 100}的子集X ={a i 1,a i 2,...,a i k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中x i 1=x i 2=...=x i k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________.(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列” q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.解析:(1)子集{a 1,a 3,a 5}的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,…,0.故该数列前3项的和为2.(2)E 的子集P 的“特征数列”p 1,p 2,…,p 100中,由于p 1=1,p i +p i +1=1(1≤i ≤99),因此集合P 中必含有元素a 1.又当i =1时,p 1+p 2=1,且p 1=1,故p 2=0.同理可求得p 3=1,p 4=0,p 5=1,p 6=0,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,…,1,0,即P ={a 1,a 3,a 5,a 7,…,a 99}.E 的子集Q 的“特征数列”q 1,q 2,…,q 100中,由于q 1=1,q j +q j +1+q j +2=1(1≤j ≤98),因此集合Q 中必含有元素a 1.又当j =1时,q 1+q 2+q 3=1,当j =2时,q 2+q 3+q 4=1,当j =3时,q 3+q 4+q 5=1,…,故q 1=1,q 2=q 3=0,q 4=1,q 5=q 6=0,q 7=1,….所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,…,0,1,即Q ={a 1,a 4,a 7,a 10,…,a 100}.因为100=1+(n -1)×3,故n =34.所以集合Q 中有34个元素,其下标为奇数的有17个.因此P ∩Q ={a 1,a 7,a 13,a 19,…,a 97},共有17个元素.答案:(1)2 (2)1749.(2013·高考重庆卷)对正整数n ,记I n ={1,2,…,n },P n =⎩⎨⎧⎭⎬⎫m k m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解:(1)当k =4时,⎩⎨⎧⎭⎬⎫m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因为1+3=22,故3∉A ,即3∈B .同理,6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集合⎩⎨⎧⎭⎬⎫m k m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可求解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集合⎩⎨⎧⎪⎪m k ⎭⎬⎫m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集合C =⎩⎨⎧⎭⎬⎫m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上可知,所求n 的最大值为14.注:对P 14的分析方法不是唯一的.。
高考数学集合与简易逻辑
2015届高考数学(理)二轮专题配套练习:专题1_第1讲_集合与常用逻辑用语(含答案)
专题一集合与常用逻辑用语、不等式第1讲 集合与常用逻辑用语考情解读 1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C ,空集是任何集合的子集,含有n 个元素的集合的子集数为2n ,真子集数为2n -1,非空真子集数为2n -2. 2.集合的基本运算(1)交集:A ∩B ={x |x ∈A ,且x ∈B }. (2)并集:A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:∁U A ={x |x ∈U ,且x ∉A }.重要结论:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔B ⊆A . 3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理. 4.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 5.简单的逻辑联结词(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 6.全称量词与存在量词“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.热点一 集合的关系及运算例1 (1)(2014·四川)已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于( ) A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0}(2)(2013·广东)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( ) A .(y ,z ,w )∈S ,(x ,y ,w )∉S B .(y ,z ,w )∈S ,(x ,y ,w )∈S C .(y ,z ,w )∉S ,(x ,y ,w )∈S D .(y ,z ,w )∉S ,(x ,y ,w )∉S 思维启迪 明确集合的意义,理解集合中元素的性质特征.思维升华 (1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M ={1,2,3},N ={x ∈Z |1<x <4},则( )A .M ⊆NB .N =MC .M ∩N ={2,3}D .M ∪N =(1,4)(2)(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 热点二 四种命题与充要条件例2 (1)(2014·天津)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 (2)(2014·江西)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2≥cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β思维启迪 要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义. 思维升华 (1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a ,b 都是偶数,则a +b 是偶数”的逆否命题是________.(2)“log 3M >log 3N ”是“M >N 成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写) 热点三 逻辑联结词、量词例3 (1)已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,sin x <x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题(2)(2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题的否定既要否定量词,还要否定判断词.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假 D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,20x +2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤2或1≤a ≤2C .a >1D .-2≤a ≤11.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn 图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江)设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5}2.(2014·重庆)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .綈p ∧綈q C .綈p ∧q D .p ∧綈q 押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞)2.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题3.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a>1(推荐时间:40分钟)一、选择题1.(2014·陕西)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( ) A .5 B .6 C .12 D .133.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为()A .3B .4C .7D .8 4.“(m -1)(a -1)>0”是“log a m >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是( )A .∃x ∈(0,π2),使得cos x >xB .∀x ∈(0,π2),使得cos x ≥xC .∀x ∈(0,π2),使得cos x >xD .∀x ∈(0,π2),使得cos x ≤x6.在△ABC 中,“A =60°”是“cos A =12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B 等于( )A .{x |x ≤0}B .{x |0≤x <2或x >4}C .{x |2≤x ≤4}D .{x |0<x ≤2或x ≥4}8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .39.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真10.已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,-1]C .(-∞,-2]D .[-1,1] 二、填空题11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则ba =________.13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a 的值是________. 14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得20x -x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题. 其中真命题的序号是________.(填写所有真命题的序号)15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.例1 (1)A (2)B 变式训练 (1)C (2)C例2 (1)C (2)D 变式训练2 (1)若a +b 不是偶数,则a ,b 不都是偶数 (2)充分不必要 例3(1)C (2)D 变式训练3 (1)C (2)C BD BDA BDCBC CBCCA11.(1,+∞) 12.-4 13.1 14.①④ 15.②④。
2015年湖南省高考数学试题及答案(理科)【解析版】
2015年湖南省高考数学试题及答案(理科)【解析版】D2.(5分)(2015•湖南)设A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的( ) A . 充分不必要条件 B .必要不充分条件C . 充要条件D . 既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑. 分析: 直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答: 解:A 、B 是两个集合,则“A ∩B=A ”可得“A ⊆B ”,“A ⊆B ”,可得“A ∩B=A ”.所以A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的充要条件. 故选:C .点评: 本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A .B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B 点评: 本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x 、y 满足约束条件,则z=3x ﹣y 的最小值为( ) A . ﹣7 B .﹣1 C .1 D .2 考点: 简单线性规划.专题: 不等式的解法及应用. 分析: 由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A ,联立,解得C (0,﹣1).由解得A (﹣2,1),由,解得B (1,1)∴z=3x ﹣y 的最小值为3×(﹣2)﹣1=﹣7. 故选:A .点评: 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B 点.5.(5分)(2015•湖南)设函数f (x )=ln (1+x )﹣ln (1﹣x ),则f (x )是( )A . 奇函数,且在(0,1)上是增函数B . 奇函数,且在(0,1)上是减函数 C . 偶函数,且在(0,1)上是增函数D . 偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用. 分析: 求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答: 解:函数f (x )=ln (1+x )﹣ln (1﹣x ),函数的定义域为(﹣1,1),函数f (﹣x )=ln (1﹣x )﹣ln (1+x )=﹣[ln (1+x )﹣ln (1﹣x )]=﹣f (x ),所以函数是奇函数.排除C ,D ,正确结果在A ,B ,只需判断特殊值的大小,即可推出选项,x=0时,f (0)=0;x=时,f ()=ln (1+)﹣ln (1﹣)=ln3>1,显然f (0)<f (),函数是增函数,所以B 错误,A 正确. 故选:A .点评: 本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x 的项的系数为30,则a=( )A .B . ﹣C . 6D .﹣6考点:二项式定理的应用.专题:二项式定理. 分析: 根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为求得r ,再代入系数求出结果. 解答: 解:根据所给的二项式写出展开式的通项, T r+1==;展开式中含x 的项的系数为30, ∴,∴r=1,并且,解得a=﹣6.故选:D .点评: 本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) 附“若X ﹣N=(μ,a 2),则 P (μ﹣σ<X ≤μ+σ)=0.6826. p (μ﹣2σ<X ≤μ+2σ)=0.9544.A . 2386B .2718 C .3413 D .4772 考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析: 求出P (0<X ≤1)=×0.6826=0.3413,即可得出结论.解解:由题意P(0<X ≤1)=×0.6826=0.3413,答: ∴落入阴影部分点的个数的估计值为10000×0.3413=3413, 故选:C . 点评: 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)(2015•湖南)已知A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||的最大值为( ) A . 6 B .7 C .8 D .9 考点: 圆的切线方程.专题: 计算题;直线与圆.分析: 由题意,AC 为直径,所以||=|2+|=|4+|.B 为(﹣1,0)时,|4+|≤7,即可得出结论. 解答: 解:由题意,AC 为直径,所以||=|2+|=|4+|.所以B为(﹣1,0)时,|4+|≤7.所以||的最大值为7.故选:B.点评:本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min =,则φ=()A .B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min =,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.点评:本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A .B.C.D.考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解解:根据三视图可判断其为圆锥,答:∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x 2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A点本题很是新颖,知识点融合的很好,把立体评:几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=0.考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:(x﹣1)dx=(﹣x)|=0;故答案为:0.点评:本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.点评:本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F(c,0),P(m,n),(m<0),设PF 的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)(2015•湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = 3n ﹣1 .考点:等差数列与等比数列的综合.专题:等差数列与等比数列. 分析: 利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答: 解:设等比数列的公比为q ,S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,可得4S 2=S 3+3S 1,a 1=1, 即4(1+q )=1+q+q 2+3,q=3. ∴a n =3n ﹣1.故答案为:3n ﹣1.点评: 本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)(2015•湖南)已知函数f (x )=若存在实数b ,使函数g (x )=f (x )﹣b 有两个零点,则a 的取值范围是 {a|a <0或a >1} .考点:函数的零点.专题:计算题;创新题型;函数的性质及应用. 分析: 由g (x )=f (x )﹣b 有两个零点可得f (x )=b 有两个零点,即y=f (x )与y=b 的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围 解答: 解:∵g (x )=f (x )﹣b 有两个零点, ∴f (x )=b 有两个零点,即y=f (x )与y=b的图象有两个交点, 由x 3=x 2可得,x=0或x=1①当a >1时,函数f (x )的图象如图所示,此时存在b ,满足题意,故a >1满足题意②当a=1时,由于函数f(x)在定义域R 上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a <0或a >1 故答案为:{a|a <0或a >1}点评: 本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O 中,相较于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相较于点F ,证明: (1)∠MEN+∠NOM=180° (2)FE •FN=FM •FO .考点:相似三角形的判定.专题:选作题;推理和证明.分析:(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l :(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:(1)曲线的极坐标方程即ρ2=2ρcos θ,根据极坐标和直角坐标的互化公式得x 2+y 2=2x ,即得它的直角坐标方程; (2)直线l 的方程化为普通方程,利用切割线定理可得结论. 解答: 解:(1)∵ρ=2cos θ,∴ρ2=2ρcos θ,∴x 2+y 2=2x ,故它的直角坐标方程为(x ﹣1)2+y 2=1;(2)直线l :(t 为参数),普通方程为,(5,)在直线l 上,过点M 作圆的切线,切点为T ,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18. 点评: 本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲 18.(2015•湖南)设a >0,b >0,且a+b=+.证明:(ⅰ)a+b ≥2;(ⅱ)a 2+a <2与b 2+b <2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b <2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA <,化简可得sinA+sinC=﹣2(sinA ﹣)2+,由二次函数区间的最值可得.解答:解:(Ⅰ)由a=btanA 和正弦定理可得==,∴sinB=cosA,即sinB=sin (+A)又B 为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin (﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA ﹣)2+,∵A∈(0,),∴0<sinA <,∴由二次函数可知<﹣2(sinA ﹣)2+≤∴sinA+sinC 的取值范围为(,]点评:本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 考点: 离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析: (1)记事件A 1={从甲箱中摸出一个球是红球},事件A 2={从乙箱中摸出一个球是红球},事件B 1={顾客抽奖1次获一等奖},事件A 2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A 1,A 2相互独立,,互斥,B 1,B 2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X ~B .求出概率,得到X 的分布列,然后求解期望. 解答: 解:(1)记事件A 1={从甲箱中摸出一个球是红球},事件A 2={从乙箱中摸出一个球是红球},事件B 1={顾客抽奖1次获一等奖},事件A 2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A 1,A 2相互独立,,互斥,B 1,B 2互斥,且B 1=A 1A 2,B 2=+,C=B 1+B 2,因为P (A 1)=,P (A 2)=,所以,P (B 1)=P (A 1)P (A 2)==,P (B 2)=P ()+P ()=+==,故所求概率为:P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X ~B .于是,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==.故X 的分布列为: X0 1 2 3 PE (X )=3×=. 点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q 分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A 的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q (6,y2,0),设平面PQD 的法向量为,根据即可表示,平面AQD 的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD 1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB 1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y 1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD 的一个法向量为;又二面角P﹣QD﹣A 的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ =.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)(2015•湖南)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:+=1(a >b >0)的一个焦点.C 1与C 2的公共弦长为2. (Ⅰ)求C 2的方程;(Ⅱ)过点F 的直线l 与C 1相交于A 、B 两点,与C 2相交于C 、D 两点,且与同向. (ⅰ)若|AC|=|BD|,求直线l 的斜率; (ⅱ)设C 1在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,△MFD 总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题. 分析: (Ⅰ)根据两个曲线的焦点相同,得到a 2﹣b 2=1,再根据C 1与C 2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(ⅰ)根据向量的关系,得到(x 1+x 2)2﹣4x 1x 2=(x 3+x 4)2﹣4x 3x 4,设直线l 的方程,分别与C 1,C 2构成方程组,利用韦达定理,分别代入得到关于k 的方程,解得即可;(ⅱ)根据导数的几何意义得到C 1在点A 处的切线方程,求出点M 的坐标,利用向量的乘积∠AFM 是锐角,问题得以证明. 解答: 解:(Ⅰ)抛物线C 1:x 2=4y 的焦点F 的坐标为(0,1),因为F 也是椭圆C 2的一个焦点,∴a 2﹣b 2=1,①,又C 1与C 2的公共弦长为2,C 1与C 2的都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为(±,), 所以=1,②,联立①②得a 2=9,b 2=8, 故C 2的方程为+=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),A (x 4,y 4),(ⅰ)因为与同向,且|AC|=|BD|, 所以=,从而x 3﹣x 1=x 4﹣x 2,即x 1﹣x 2=x 3﹣x 4,于是 (x 1+x 2)2﹣4x 1x 2=(x 3+x 4)2﹣4x 3x 4,③ 设直线的斜率为k ,则l 的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x 3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k 2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x 2=4y得y′=x,所以C 1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x 1x﹣x12,令y=0,得x=x 1,M(x 1,0),所以=(x 1,﹣1),而=(x 1,y1﹣1),于是•=x 12﹣y1+1=x12+1>0,因此∠AFM 是锐角,从而∠MFD=180°﹣∠AFM 是钝角,故直线l 绕点F 旋转时,△MFD 总是钝角三角形.点评:本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k 的方程,计算量大,属于难题.23.(13分)(2015•湖南)已知a >0,函数f (x )=e ax sinx (x ∈[0,+∞]).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明: (Ⅰ)数列{f (x n )}是等比数列; (Ⅱ)若a ≥,则对一切n ∈N *,x n <|f (x n )|恒成立. 考点: 利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题: 创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分(Ⅰ)求出导数,运用两角和的正弦公式化析: 简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证; (Ⅱ)由sin φ=,可得对一切n ∈N *,x n <|f (x n )|恒成立.即为n π﹣φ<e a(n π﹣φ)恒成立⇔<,①设g (t )=(t >0),求出导数,求得最小值,由恒成立思想即可得证. 解答: 证明:(Ⅰ)f ′(x )=e ax (asinx+cosx )=•e ax sin(x+φ),tan φ=,0<φ<,令f ′(x )=0,由x ≥0,x+φ=m π,即x=m π﹣φ,m ∈N *,对k ∈N ,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x <(2k+2)π﹣φ, 则f ′(x )<0,因此在((m ﹣1)π,m π﹣φ)和(m π﹣φ,m π)上f ′(x )符号总相反.于是当x=n π﹣φ,n ∈N *,f (x )取得极值,所以x n =n π﹣φ,n ∈N *,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a (nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N *,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n ≥2时,n π﹣φ≥2π﹣φ>>,因此对n ∈N *,ax n =≠1,即有g (ax n )>g(1)=e=,故①亦恒成立. 综上可得,若a ≥,则对一切n ∈N *,x n <|f (x n )|恒成立. 点评:本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分 1.(5分)(2015•湖南)已知=1+i (i 为虚数单位),则复数z=( ) A . 1+i B .1﹣i C .﹣1+i D .﹣1﹣i2.(5分)(2015•湖南)设A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=( )A .B .C .D .4.(5分)(2015•湖南)若变量x 、y 满足约束条件,则z=3x ﹣y 的最小值为( ) A . ﹣7 B .﹣1 C .1 D .25.(5分)(2015•湖南)设函数f (x )=ln (1+x )﹣ln (1﹣x ),则f (x )是( )A . 奇函数,且在(0,1)上是增函数B . 奇函数,且在(0,1)上是减函数C . 偶函数,且在(0,D . 偶函数,且在(0,1)上是增函数1)上是减函数6.(5分)(2015•湖南)已知(﹣)5的展开式中含x 的项的系数为30,则a=( )A .B .﹣ C .6 D .﹣67.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) 附“若X ﹣N=(μ,a 2),则 P (μ﹣σ<X ≤μ+σ)=0.6826. p (μ﹣2σ<X ≤μ+2σ)=0.9544.A . 2386B .2718 C .3413 D .47728.(5分)(2015•湖南)已知A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||的最大值为( ) A . 6 B .7 C .8 D .99.(5分)(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =,则φ=( ) A . B .C .D .10.(5分)(2015•湖南) 某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )A .B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q 分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A 的余弦值为,求四面体ADPQ的体积.。
【走向高考】2015届高考数学一轮总复习 集合与常用逻辑用语阶段性测试题一 新人教A版
阶段性测试题一(集合与常用逻辑用语) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·某某某某中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案]C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案]B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于()A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案]B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·某某曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=() A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案]B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·某某省某某市期中)若U ={1,2,3,4,5,6},M ={1,2,4},N ={2,3,6},则∁U (M ∪N )=( )A .{1,2,3}B .{5}C .{1,3,4}D .{2} [答案]B[解析]∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4) [答案]B[解析]∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·某某市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0 [答案]C[解析]由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·某某某某中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案]D[解析]特称命题的否定是全称命题.6.(文)(2014·某某冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x[答案]B[解析]∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x=32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x=22=cos x ,∴D 错误,故选B. (理)(2014·某某省某某市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案]D[解析]由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·某某省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案]B[解析]∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·某某某某十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案]C[解析]∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a=0⇔|a|2-m a·b=0⇔m=1,故选C.8.(2014·某某都昌一中月考)已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则右图中的阴影部分表示()A.{2,4}B.{1,3}C.{5}D.{2,3,4,5}[答案]C[解析]阴影部分在集合B中,不在集合A中,故阴影部分为B∩(∁U A)={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥β,α⊥γ,则β∥γC.若m∥α,m∥β,则α∥βD.若m⊥α,m⊥β,则α∥β[答案]D[解析]m∥α,n∥α时,m与n可平行,也可相交或异面,故A错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B错;当α∩β=l,m⊄α,m⊄β,m∥l时,m∥α,m∥β,故C错,故选D.10.(2014某某某某中学期中)已知函数f(x)=x+b cos x,其中b为常数.那么“b=0”是“f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析]当b=0时,f(x)=x为奇函数,故满足充分性;当f(x)为奇函数时,f(-x)=-f(x),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·某某省某某市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·x m2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案]D[解析]∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B 真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x 为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案]B[解析]设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值X 围是________.[答案](-∞,-2)[解析]由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·某某市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值X 围是________.[答案]m ≤-2或-1<m <2[解析]p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值X 围是m ≤-2或-1<m <2.14.(文)(2014·某某程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数X 围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案]①②③④[解析]∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确;∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论: ①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案]②③④[解析]x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4ab)=92,等号在⎩⎪⎨⎪⎧b a =4a b,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a =2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·某某文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)[答案]①②③[解析]由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·某某八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案]①④[解析]①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·某某九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案]①②③[解析]①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·某某市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试某某数a 的取值X 围,使C ⊆(A ∩B ).[解析](1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·某某某某中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B . (1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),某某数p 的取值X 围.[解析](1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值X 围是{p |0<p ≤1}.18.(本小题满分12分)(2014·某某省某某市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,某某数m 的取值X 围.[解析]不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,某某数a 的取值X 围.[解析]由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2, ∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,某某数x 的取值X 围;(2)若綈p 是綈q 的充分不必要条件,某某数a 的取值X 围. [解析](1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马某某二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试某某数m 的取值X 围.[解析]对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3,∴m 2+5m -3≥3⇒m ≥1或m ≤-6.若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧ m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·某某冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值X 围.[解析](1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1, 当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞),∴A ∩B =(-4,-3]∪[1,2).(2)∵∁R A =(-∞,-4]∪[2,+∞),由(ax -1a)(x +4)≤0,知a ≠0, 当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a2],不满足C ⊆∁R A ; 当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a2,+∞), 欲使C ⊆∁R A ,则1a 2≥2, 解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值X 围是[-22,0).22.(本小题满分14分)(2014·某某市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析]当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧ 90(0≤x ≤0.2),-50x +100(0.2<x ≤2). (2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2). 当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时;当0.2≤x ≤2时,f (x )=50x (2-x )≤50,当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。
2015年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(文科)及答案
2015年高考数学真题分类汇编 专题01 集合与常用逻辑用语 文1.【2015高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2【答案】D【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D.考点:集合运算【名师点睛】对集合运算问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.2.【2015高考重庆,文1】已知集合{1,2,3},B {1,3}A ==,则A B =( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}【答案】C【解析】由已知及交集的定义得A B ={1,3},故选C.【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细.3.【2015高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.【考点定位】1.充分条件、必要条件;2.不等式的性质.【名师点睛】本题主要考查充分条件和必要条件.解答本题时要根据不等式的性质,采用特殊值的方法,对充分性与必要性进行判断.本题属于容易题,重点考查学生对不等式的性质的处理以及对条件的判断.4.【2015高考重庆,文2】“x 1=”是“2x 210x -+=”的( )(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.【考点定位】充要条件.【名师点睛】本题考查充要条件的概念和判断,采用推出法进行判断,本题属于基础题,注意推理的正确性.5.【2015高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.【考点定位】1.一元二次不等式的解法;2.集合的交集运算.【名师点睛】本题主要考查集合的交集运算.利用解一元二次不等式确定集合P 的范围,从而进行两个集合的交集运算.本题属于容易题,要注意不等式解的准确性.6.【2015高考天津,文1】已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B=()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B =()ð,故选B. 【考点定位】本题主要考查集合的交集与补集运算.【名师点睛】集合是高考中的高频考点,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.7.【2015高考天津,文4】设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.【考点定位】本题主要考查不等式解法及充分条件与必要条件.【名师点睛】本题考查的知识点有两个,一是绝对值不等式的解法,与本题有关的结论是:若0a >,则()()f x a a f x a <⇔-<<,另一个是充分条件与必要条件,与本题有关的结论是:对于非空集合,A B ,若A 是B 的真子集,则x A ∈是x B ∈的充分不必要条件.8.【2015高考四川,文1】设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3} 【答案】A9.【2015高考山东,文1】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .【考点定位】1.集合的基本运算;2.简单不等式的解法.【考点定位】1.集合的基本运算;2.简单不等式的解法.【名师点睛】本题考查集合的基本运算及简单不等式的解法,不等式中出现一次因式积的形式,降低了不等式求解的难度.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.10.【2015高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.11.【2015高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( ) A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N =,故答案选A .【考点定位】集合间的运算.【名师点睛】1.本题考查以不等式为基础的集合间的运算,解不等式时注意原式意义的范围.2.本题属于基础题,高考常考题型,注意运算的准确性.12.【2015高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,,【解析】∵{}6,5,1=B C U ,∴()U A C B ={}1,∴选B . 【考点定位】本题主要是考查了集合的交集、补集运算.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.13.【2015高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C【解析】{}1M N =,故选C .【考点定位】集合的交集运算. 【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误. 14.【2015高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .【考点定位】命题的四种形式.【名师点睛】本题考查命题的四种形式,解答本题的关键,是明确命题的四种形式,正确理解“否定”的内容.本题属于基础题,是教科书例题的简单改造.15.【2015高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.【考点定位】充要关系【名师点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件;②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件.16.【2015高考福建,文2】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( ) A .{}0 B .{}1 C .{}0,1,2 D {}0,1【答案】D【解析】由交集定义得{}0,1M N =,故选D .【考点定位】集合的运算.【名师点睛】本题考查集合的交集运算,理解交集的含义是正确解答的前提,属于基础题.17.【2015高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题.【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.18.【2015高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则A B =( ) A .{}32x x -<< B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,A B 为图中阴影部分,即{}32x x -<<,故选A.【考点定位】集合的交集运算. 【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误. 19.【2015高考安徽,文3】设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .【考点定位】本题主要考查充分、必要条件的判断.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.20.【2015高考湖南,文11】已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A(U B ð)={1,2,3}. 【考点定位】集合的运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意检验集合的元素是否满足互异性,否则容易出错.21.【2015高考上海,文2】设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U .【考点定位】集合的运算.【名师点睛】先求B C U ,再求)(B C A U .集合的运算是容易题,应注意用描述法表示集合应注意端点值是否取号.【2015高考上海,文15】设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ).A. 充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A【考点定位】复数的概念,充分条件、必要条件的判定.【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.。
江苏省2015届高考数学模拟试题分类汇编:第1章-集合与简易逻辑
目录(基础复习部分)第一章 集合与简易逻辑 (1)第01课 集合 (1)第02课 逻辑联结词和四种命题 (4)第03课 充分条件与必要条件 (6)集合与简易逻辑第01课 集合1. 设集合{}1,0,1A =-,{}0,1,2,3B =,则A B I = ▲ .{}0,12. 已知集合{}11,cos ,,1,2A B θ⎧⎫==⎨⎬⎩⎭若,A B =则锐角θ= ▲ 3. 若集合2{|lg(2)}A x y x x ==-,{}|2,0x B y y x ==>,则集合A B =I (1,2).4. 设集合},40{},21{≤≤=≤≤-=x x B x x A 则=B A I . [0,2]5. 已知全集{}1,3,5,7,9U =,{}{}1,5,9,3,5,9A B ==,则()U A B U ð的子集个数为▲ .26. 集合{}1,2的子集个数为 ▲ .47. 已知{1, 3, 4}A =,{3, 4, 5}B =,则A B =I ▲ .答案:{}3, 4; (苏锡常镇一模)已知集合{}{}11,0A x x B x x =-<<=>,则A B =I .{}01x x <<(苏锡常镇二模)已知集合{}{}{}1,1,3,2,21,1a A B A B =-=-=I ,则实数a 的值是 ▲ 1已知集合{}|21,A x x k k ==-?Z ,{}|13B x x =-#,则A B =I .{-1,1,3}(南通调研一)已知集合{2,1}A =--,{1,2,3}B =-,则A B =I .{-1}(南京盐城模拟一)1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ .答案:1(苏州期末)已知集合{|22}A x x =-<<,{|1}B x x =≤,则A B =I .(2,1]-3π(扬州期末)集合A={-1,0,2},B={x||x|<1},则A I B=_____. {0}(镇江期末)设全集U =Z ,集合M ={1,2},P ={2-,1-,0,1,2},则U P M I ð= ▲ . }{2,1,0--(苏北四市期末)已知集合{0,1,2,3}A =,{2,3,4,5}B =,则A B U 中元素的个数为 ▲ .6(淮安宿迁摸底)已知集合{}0,1,3M =,{}3,N x x a a M==∈,则M N I = ▲ .{}0,3(盐城期中)若集合{}0,1A =,集合{}0,1B =-,则A B =U ▲ . {}0,1,1-(泰州二模)已知集合{}1,2,4A =,{},4B a =,若{1,2,3,4}A B =U ,则A B =I ▲ . {4} (南通调研二)设集合{}11 0 3 2A =-,,,,{}2 1B x x =≥,则A B =I ▲ . 【答案】{}1 3-,(南通调研三)设集合A ={3,m },B ={3m ,3},且A =B ,则实数m 的值是 ▲ .【答案】0(苏北三市调研三)已知集合(1,3]A =-,{2,4}B =,则A B I = ▲ .{2}(盐城三模)已知集合{}210A x x =-=,集合[0,2]B =,则A B =I ▲ . {}1 (南师附中四校联考)设集合{}1,1A k =-,{}2,3B =,且{}2A B =I ,则实数k 的值为▲ .3(金海南三校联考)已知集合A ={-1,0,2},B ={x |x =2n -1,n ∈Z},则A ∩B = .{-1}(前黄姜堰四校联考)已知集合{}{}221,280x A x B x x x =≤=--≤,则A B =I ▲ . [2,0]-(栟茶中学学测一) 已知集合{}1,21A a =-+,集合{}4,3B =-,且{}3A B =I ,则a = ▲ .1(栟茶中学学测一)满足条件M ∪{1,2}={1,2,3}的集合M 的个数是 ▲ .4(南通四模) 已知集合 A ={2,5},B ={ x | 1 ≤ x ≤ 3 },则 A B = ▲ .{2}(南通中学期中) 已知全集{0,1,2,3}U =,集合{0,1},{1,2,3}A B ==则()U A B =I ð .【知识点】集合及其运算A1【答案】{2,3}15.(本小题满分14分)设集合2{|(4)40,}A x x a x a a =-++=∈R ,2{|45}B x x x =+=.(1)若A B A =I ,求实数a 的值;(2)求A B U ,A B I .解:{|(4)()0}A x x x a =--=, {1,4}B =. ………………………2分(1)因为A B A =I ,所以A B ⊆,所以1a =或4a =. ……………………………………………………5分(2)若1a =,则{1,4}A B ==,所以{1,4}A B =U ,{1,4}A B =I ; …………………………………8分 若4a =,则{4}A =,所以{1,4}A B =U , {4}A B =I . ………11分 若14a ≠、,则{4,}A a =,所以{1,4,}A B a =U ,{4}A B =I . ………14分(新海期中)已知⎭⎬⎫⎩⎨⎧>---=01731|x x x A ,{}0,044|22>≤-+-=m m x x x B , (1)若3=m ,求A B I ;(2)若A B B =U ,求实数m 的取值范围.解:(1)若3=m ,()[]2,7,1,5A B ==-,………………………………………4分 (]52,=∴B A I .………………………………………………6分(2)[]m m B m +-=∴>2,2,0Θ…………………………………………………8分又A B B =U ,502272≥⇒⎪⎩⎪⎨⎧>≤-≥+⇒⊆∴m m m m B A即实数m 的取值范围为[)∞+,5……………………………………………14分(启东中学月考一)已知集合}0)]4()][1([|{},1121|{<+-+-=++-==a x a x x B x x y x A .分别根据下列条件,求实数a 的取值范围. (1)A B A =⋂; (2)φ≠⋂B A【知识点】集合及其运算A1查集合的端点间的大小关系,求得实数a 的取值范围.(2)求出当A ∩B=φ时实数a 的取值范围,再取补集,即得所求.第02课 逻辑联结词和四种命题命题P :“若 b =,则a b c 、、成等比数列”,则命题P 的否命题是假(填“真”或“假”之一)命题.若命题"02,"2≤++∈∃m mx x R x 是假命题,则实数m 的取值范围是 . ()0,1“0x ∀>,1x +>”的否定是 ▲ .0,x $>使1x +(扬州期末)命题p :x ∀∈R ,“2230x x +-≥”,命题p 的否定:_____. x ∃∈R ,0322<-+x x(盐城期中)命题“若a b >, 则22a b >”的否命题为 ▲ . 若a b ≤, 则22a b≤ (盐城期中)已知函数32|2|(1)()ln (1)x x x x f x x x ⎧--+<=⎨≥⎩,若命题“t R ∃∈,且0t ≠,使得()f t kt ≥”是假命题,则实数k 的取值范围是 ▲ . 1(,1]e(南通调研二)命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤(栟茶中学学测二)下列有关命题的说法正确的是 ▲ .②③①命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”;②已知0>x 时,0)()1(<'-x f x ,若ABC ∆是锐角三角形,则)(cos )(sin B f A f >; ③命题“若x y =,则sin sin x y =”的逆否命题为真命题;④命题“x R ∃∈使得210x x ++<”的否定是:“x R ∀∈均有210x x ++>”. (南通中学期中) 命题:“2,20x R x x m ∃∈++≤”的否定是 .【知识点】命题及其关系A2【答案】2,20x R x x m ∀∈++>(南通中学期中) 已知:p 实数x 满足22430x ax a -+<, 其中0a >;:q 实数x 满足2<x≤3(1) 若1,a = 且p q ∧为真, 求实数x 的取值范围;(2) 若p 是q 的必要不充分条件, 求实数a 的取值范围.【知识点】命题及其关系、充分条件、必要条件A2【答案】(1)23x <<(2) 12a <≤【解析】(1)p :由原不等式得,(x-3a )(x-a )<0,∵a >0为,所以a <x <3a ; 当a=1时,得到1<x <3;q :实数x 满足2<x≤3;若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是23x <<.(2) p 是q 的必要不充分条件,即q ⇒p ,且p ⇒/q ,设A ={}()x p x , B ={}()x q x , 则A ⊃≠B , 又(2,3]B =,A =(,3)a a ; 所以有2,33,a a ≤⎧⎨<⎩解得12;a <≤所以实数a 的取值范围是12a <≤.(南师附中)有下面四个判断:①命题“设a 、b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;②若“p 或q ”为真命题,则p 、q 均为真命题;③命题“∀a 、b ∈R ,a 2+b 2≥2(a -b -1)”的否定是“∃a 、b ∈R ,a 2+b 2≤2(a -b -1)”;④若函数f (x )=ln ⎝⎛⎭⎫a +2x +1的图象关于原点对称,则a =3. 其中正确的有 ▲ 个.解析 对于①:此命题的逆否命题为“设a 、b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,①错误;“p 或q ”为真,则p 、q 至少有一个为真命题,②错误;“∀a 、b ∈R ,a 2+b 2≥2(a -b -1)”的否定是“∃a 、b ∈R ,a 2+b 2<2(a -b -1)”,③错误;对于④:若f (x )的图象关于原点对称,则f (x )为奇函数,则f (0)=ln(a +2)=0,解得a =-1,④错误.答案 0(南通一中期中) 给出下列四个命题(1)命题“x R ∀∈,cos 0x >”的否定是“x R ∃∈,cos 0x …”;(2)若2()21f x ax x =++只有一个零点,则1a =;(3)命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;(4)对于任意实数x ,有()()f x f x -=,()()g x g x -=-,且当0x >时,()0f x '>,()0g x '>, 则当0x <时,()()f x g x ''>;(5)在ABC ∆中,“45A >o ”是“sin 2A >”的充要条件。
第一章集合与简易逻辑A
第一章集合与简易逻辑考纲要求1.集合(1)理解集合、子集、交集、并集、补集的概念.(2)了解空集和全集的意义.(3)了解属于、包含、相等关系的意义.(4)掌握有关术语和符号,并会用它们正确表示一些简单集合.(5)掌握简单的绝对值不等式的解法.2.简易逻辑(1)理解逻辑联结词“或”、“且”、“非”的含义.(2)理解四种命题及其相互关系.(3)掌握充分条件、必要条件及充要条件的意义.3.考情分析本章内容是每年高考必考内容之一,一般在高考中为2道小题,占10分左右.其中对集合的概念、运算以及充要条件的判断的考查力度较大,考题多以较为容易的选择题或是填空题形式出现,但是偶尔也出现以集合为载体的解答题.随着新课程改革的进行,近年来给出新运算或概念的集合问题又成为了高考的热点.高考中,对集合的考查除了常规的考查集合概念和运算外,还增加了以集合问题为载体来考查解不等式、线性规划等知识的题目,其中涉及分类讨论思想、数形结合思想的运用,体现了集合问题的综合性.在给出新运算或是新性质的集合问题中,更多的是融入了高等数学的内容,其背景新颖、难度适中,是当今高考的趋势.第一讲集合的概念与运算回归课本1.集合中的元素有三个明显的特征:(1)确定性;(2)互异性;(3)无序性.2.元素与集合的关系有属于和不属于两种.3.集合与集合之间有三种关系:(1)子集(包含与被包含)定义:A⊆B⇔如果任意x∈A,那么x∈B;(2)真子集定义:A B⇔A⊆B,且B中至少有一元素不属于A(规定:空集是任何一个非空集合的真子集);(3)相等:A=B⇔A⊆B且B⊆A.4.集合的运算涉及交、并、补集.(1)交集定义:A∩B={x|x∈A且x∈B};(2)并集定义:A∪B={x|x∈A或x∈B};(3)补集定义:设U为全集,A⊆U,由U中不属于A的元素组成的集合叫做集合A 在U 中的补集,记∁UA ,即∁UA ={x |x ∈U 且x ∉A };(4)基本性质:①A ∩A =A ;②A ∪A =A ;③A ∩B =B ∩A ;④A ∪B =B ∪A ;⑤(A ∩B )∩C =A ∩(B ∩C );⑥(A ∪B )∪C =A ∪(B ∪C );⑦A ∩∅=∅;⑧A ∪∅=A ;⑨∁U (∁UA )=A ;⑩∁U (A ∪B )=(∁UA )∩(∁UB );⑪∁U (A ∩B )=(∁UA )∪(∁UB ).考点陪练1.(2010·浙江)设P ={x |x <4},Q ={x |x 2<4},则( )A .P ⊆QB .Q ⊆PC .P ⊆∁R QD .Q ⊆∁R P2.(2010·江西)若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B =( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅3.若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=21log 21x x A ,则A 的补集是( ) A .(-∞,0]∪⎝ ⎛⎭⎪⎫22,+∞ B.⎝ ⎛⎭⎪⎫22,+∞ C .(-∞,0]∪⎣⎢⎡⎭⎪⎫22,+∞ D.⎣⎢⎡⎭⎪⎫22,+∞4.如果全集U =R ,集合A ={x |x 2-2x >0},B ={x |y =ln(x -1)},则图中的阴影部分表示的集合是( )A .(-∞,0)∪(1,+∞)B .(-∞,0]∪(1,2)C .(-∞,0)∪(1,2)D .(-∞,0)∪(1,2]5.设集合M ={1,2,4},N ={x |x 2-6x +8≤0},那么下列结论正确的是( )A .M ∩N =MB .M ⊆(M ∩N )C .(M ∩N )⊆MD .M ∩N =N类型一 集合的基本概念解题准备:1.若题中含有字母,得出后必须检验是否满足集合元素的互异性.2.分类讨论应注意:不重复、不遗漏、分类标准一致.【典例1】 已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,求实数a 的值.类型二集合间的关系解题准备:①判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系;②已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn图帮助分析;③方程ax=b的解的确定:当a≠0时,方程有唯一实数根x=b a ;当a=b=0时,方程的根有无穷多个,任意实数都是它的根;当a=0且b≠0时,方程无实数根.【典例2】设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=15,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.类型三集合的基本运算解题准备:①在处理集合的交、并、补运算时,为了使其直观形象有利于计算,应注意数形结合思想的运用;②注意等价转化思想在解题中的运用,如:A∩B=A⇔A⊆B,A∪B=A⇔B⊆A等.【典例3】若集合A={x|x2-2x-8<0},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁UB);(2)若A∩B=∅,求实数m的取值范围;(3)若A∩B=A,求实数m的取值范围.类型四集合与其它知识的交汇问题解题准备:对一些含参数的集合问题,常需要进行分类讨论.【典例4】已知集合A={x|0<ax+1≤5},集合B={x|-12<x≤2}.(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.探究:若将上例中的集合A改为{x|a+1≤x≤2a-1},其它条件不变,如何求解第(1)、(2)两题?快速解题技法:已知集合M={(x,y)|y-1=k(x-1),x、y∈R},集合N={(x,y)|x2+y2-2y=0,x、y∈R},那么M∩N中( )A.不可能有两个元素 B.至多有一个元素C.不可能只有一个元素 D.必含无数个元素快解:集合M是过点(1,1)的一条直线,集合N是圆心为(0,1),半径为1的圆,如图所示,由于直线的斜率存在,故直线与圆必有两个交点.。
2015年高中数学高考真题分类汇编理科数学A单元 集合与常用逻辑用语
数 学A 单元 集合与常用逻辑用语A1 集合及其运算1.A1[2015·广东卷] 若集合M ={x |(x +4)(x +1)=0},N ={x |(x -4)(x -1)=0},则M ∩N =( )A .{1,4}B .{-1,-4}C .{0}D .∅1.D [解析] M ={x |(x +4)(x +1)=0}={-4,-1},N ={x |(x -4)(x -1)=0}={1,4},∴M ∩N =∅.9.A1[2015·湖北卷] 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .309.C [解析] 集合A 表示如图所示的所有实心圆表示的点,集合B 表示如图所示的所有实心圆和所有空心圆表示的点,集合A B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去点(-3,-3),(-3,3),(3,-3),(3,3)之外的所有整点(横坐标与纵坐标都为整数的点),即集合A B 表示如图所示的所有实心圆、所有空心圆以及所有⊙表示的点,共45个.故A B 中元素的个数为45.故选C.1.A1[2015·江苏卷] 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.1.5 [解析] 因为A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.1.A1[2015·全国卷Ⅱ] 已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}1.A [解析] 因为B ={x |-2<x <1},所以A ∩B ={-1,0},故选A.20.D5,A1[2015·北京卷] 已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=⎩⎪⎨⎪⎧2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…).记集合M ={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;(3)求集合M 的元素个数的最大值.20.解:(1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.由a n +1=⎩⎪⎨⎪⎧2a n ,a n ≤18,2a n -36,a n>18可归纳证明对任意n ≥k ,a n 是3的倍数. 如果k =1,则M 的所有元素都是3的倍数.如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数,从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由a 1≤36,a n =⎩⎪⎨⎪⎧2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n =2,3,…). 因为a 1是正整数,a 2=⎩⎪⎨⎪⎧2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数.因此当n ≥3时,a n ∈{12,24,36},这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数.因此当n ≥3时,a n ∈{4,8,16,20,28,32},这时M 的元素个数不超过8.当a 1=1时,M ={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M 的元素个数的最大值为8.1.A1[2015·福建卷] 若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅1.C [解析] A ={}i ,-1,-i ,1,所以A ∩B ={}1,-1.1.A1[2015·山东卷] 已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)1.C [解析] ∵A ={x |1<x <3},∴A ∩B =(2,3) .1.A1[2015·陕西卷] 设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]1.A [解析] 由题得集合M ={0,1},N =(0,1],所以M ∪N =[0,1].1.A12015·四川卷设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( )A .{x |-1<x <3}B .{x |-1<x <1}C .{x |1<x <2}D .{x |2<x <3}1.A [解析] 因为集合A ={x |-1<x <2},B ={x |1<x <3},所以A ∪B ={x |-1<x <3}.1.A1[2015·天津卷] 已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}1.A [解析] ∁U B ={2,5,8},A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5},故选A.1.A12015·浙江卷已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]1.C [解析] P ={x |x ≤0或x ≥2},∁R P ={x |0<x <2},则(∁R P )∩Q =(1,2),故选C.6.A1[2015·浙江卷] 设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ).( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立6.A [解析] 命题①显然成立,由下图亦可知d (A ,C )表示的区域不大于d (A ,B )+d (B ,C )表示的区域,故命题②也成立,故选1.A1[2015·重庆卷] 已知集合A ={1,2,3},B ={2,3},则( )A .A =B B .A ∩B =∅C .A BD .B A1.D [解析] 由子集的概念知B A ,故选D.A2 命题及其关系、充分条件、必要条件3.A2[2015·安徽卷] 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] 由2x >1,得x >0.记P ={x |1<x <2},Q ={x |x >0},则P 是Q 的真子集,因此P ⇒Q ,反之Q ⇒/ P ,即p 是q 成立的充分不必要条件,故选A.5.A2、N4、D3[2015·湖北卷] 设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A [解析] 当p 成立,即a 1,a 2,…,a n 成等比数列时,a 1a 2=a 2a 3=…=a n -1a n,满足柯西不等式(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )≥(a 1a 2+a 2a 3+…+a n -1a n )2等号成立的条件,故(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+ a n -1a n )2,即q 成立;但当q 成立时,不一定非要a 1,a 2,…,a n 成等比数列,如:当a 1=1,a 2=a 3=…=a n =0时,q 成立,但不满足a 1,a 2,…,a n 成等比数列.所以p 是q 的充分条件,但不是q 的必要条件.故选A.4.A2,G4[2015·北京卷] 设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] 当m ⊂α,m ∥β时,不能确定平面α与β平行;当α∥β时,根据平面与平面平行的性质,可以推出m ∥β.7.A2,G4,G5[2015·福建卷] 若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.B [解析] 若m ⊥α,l ⊥m ,则l ⊂α或l ∥α;若m ⊥α,l ∥α,则l ⊥m .故选B.2.A2[2015·湖南卷] 设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.C [解析] 由集合的运算知,A ∩B =A ⇔A ⊆B ,故选C.6.A2、C6[2015·陕西卷] “sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.A [解析] sin α=cos α时,cos 2α=cos 2α-sin 2α=0,反之cos 2α=0时,sin α=±cos α,故“sin α=cos α”是“cos 2α=0”的充分不必要条件.8.A2,B6,B7[2015·四川卷] 设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.B [解析] 当3a >3b >3时,有a >b >1,从而有log a 3<log b 3,充分性成立;取a =13,b =3,此时log a 3<log b 3,但不满足a >b >1,从而3a >3b >3不成立,即必要性不成立.故选B.4.A2、E2、E3[2015·天津卷] 设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.A [解析] 由|x -2|<1,解得1<x <3;由x 2+x -2>0,解得x >1或x <-2.由1<x <3可以推出x >1或x <-2,反之,不成立,所以“|x -2|<1”是“x 2+x -2>0 ”的充分不必要条件.故选A.4.A2[2015·重庆卷] “x >1”是“log 12(x +2)<0”的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.B [解析] 由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分而不必要条件.A3 基本逻辑联结词及量词3.A3[2015·全国卷Ⅰ] 设命题p :∃n ∈N ,n 2>2n ,则綈p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n3.C [解析] 特称命题的否定是全称命题,故选C.12.A3、C3[2015·山东卷] 若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.12.1 [解析] ∵y =tan x 在区间⎣⎡⎦⎤0,π4上单调递增,∴y =tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4的最大值为tan π4=1. 又∵“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,∴m ≥1. 4.A3[2015·浙江卷] 命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( )A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 04.D [解析]图1-2A4 单元综合12.[2015·上饶一模] 给出下列四个命题:①方程3x -2+|y +1|=0的解集是⎩⎨⎧⎭⎬⎫23,-1; ②集合{}x ∈Z |x 3=x 用列举法表示为{-1,0,1};③集合M ={y |y =x 2+1}与集合P ={(x ,y )|y =x 2+1}表示同一集合;④集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪2x >12,B ={x |log 2x <1},则A ∩B =(-1,2). 其中真命题的个数为( )A .1B .2C .3D .412.A [解析] ①方程的解集应写成⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫23,-1,故①错;②正确;③集合M ={y |y ≥1},集合P 表示抛物线y =x 2+1上所有点的集合,故③错;④集合A ={x |x >-1},B ={x |0<x <2},则A ∩B ={x |0<x <2},故④错.故选A.14.[2015·丽水一模] 设全集U =R ,集合A ={x ∈R |x 2-2x -3>0},B ={x ∈R ||x -a |>3},则∁U A =________;若(∁U A )∩B =∅,则实数a 的取值范围是________ .14.[-1,3] [0,2] [解析] 由已知得A ={x |x 2-2x -3>0}={x |x <-1或x >3},则∁U A ={x |-1≤x ≤3}.又B ={x |x <a -3或x >a +3},所以若(∁U A )∩B =∅,则⎩⎪⎨⎪⎧a +3≥3,a -3≤-1,解得0≤a ≤2.8.[2015·马鞍山质检] 下列说法中,正确的是( )A. 命题“若am 2<bm 2,则a <b ”的逆命题是真命题B. 命题“∃x 0∈R ,x 20-x 0>0”的否定是“∀x ∈R ,x 2-x ≤0”C. p ∨q 为真命题,则命题p 和命题q 均为真命题D. 已知x ∈R ,则“x >1”是“x >2”的充分不必要条件8.B [解析] 因为原命题的逆命题为“若a <b ,则am 2<bm 2”,当m =0时不成立,所以逆命题为假命题,故选项A 错;特称命题的否定是全称命题,并把结论否定,故选项B 正确;若p ∨q 为真命题,则p ,q 至少有一个为真命题,故选项C 错;若x >1成立,则x >2不一定成立,故选项D 错.故选B.6.[2015·东北三省四市联考] 下列说法中正确的个数是( )①“x =1”是“x 2-3x +2=0”的充分不必要条件;②命题“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”;③若p :∀x ∈[)1,+∞,lg x ≥0,q :∃x 0∈R ,x 20+x 0+1<0,则p ∨q 为真命题.A .0B .1C .2D .36.D [解析] 由x =1,得x 2-3x +2=0,反之,若x 2-3x +2=0,则x =1或x =2,故①正确;全称命题的否定是特称命题,易知②正确;因为p 是真命题,q 是假命题,所以p ∨q 是真命题,故③正确.故选D.。
高考数学复习笔记1第一章 第一节 集合
数学一轮总复习 第一章 集合与简易逻辑第一节 集合【考纲要求】【知识网络】【考点梳理】 一.集合的概念:集 合集 合 表 示 法集 合 的 关 系集 合 的 运 算 描 述 法图 示 法列 举 法 相 等 包 含 交 集并 集 补 集子集、真子集1.一般的,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集。
集合通常用大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、…… 2.集合中元素特征(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序. 3.集合的分类:根据集合所含元素个属不同,可把集合分为如下几类: (1)把不含任何元素的集合叫做空集Ф (2)含有有限个元素的集合叫做有限集 (3)含有无穷个元素的集合叫做无限集 注:应区分Φ,}{Φ,}0{,0等符号的含义 4、常用数集(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N *或N + (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N *或N +,Q 、Z 、R 等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z *二.集合的表示法:1.列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};2.描述法:例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 3.韦恩图: 4.区间法:三.集合间的基本关系:1.元素与集合的关系,用∈或∉表示;属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A 不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 要注意“∈”的方向,不能把a ∈A 颠倒过来写.2.集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B 时,称A 是B 的真子集。
优化方案高考理科数学北师大一轮复习练习:第1章 集合与常用逻辑用语 第2讲知能训练轻松闯关 含答案
1.(2015·高考上海卷)下列不等式中,与不等式x +8x 2+2x +3<2解集相同的是( )A .(x +8)(x 2+2x +3)<2B .x +8<2(x 2+2x +3)C.1x 2+2x +3<2x +8 D.x 2+2x +3x +8>12解析:选B.依题意,注意到x 2+2x +3=(x +1)2+2≥2>0,因此不等式x +8x 2+2x +3<2等价于x+8<2(x 2+2x +3),故选B.2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2B .-2C .-12D.12解析:选B.根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a ,所以a =-2,故选B. 3.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2] 解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;①当x >0时,-x +2≥x 2,所以0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图像,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2016·广东省联合体联考)已知函数f (x )=⎩⎪⎨⎪⎧|3x -4|,x ≤2,2x -1,x >2,则使f (x )≥1的x 的取值范围为( )A.⎣⎡⎦⎤1,53 B.⎣⎡⎦⎤53,3C .(-∞,1)∪⎣⎡⎭⎫53,+∞ D .(-∞,1]∪⎣⎡⎦⎤53,3解析:选D.不等式f (x )≥1等价于⎩⎨⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎡⎦⎤53,3,故选D.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]. 6.若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值范围是( ) A .(-2,2] B .(-2,2) C .(-∞,-2)∪[2,+∞) D .(-∞,2] 解析:选A.原不等式等价于(m -2)x 2+2(m -2)x -4<0,①当m =2时,对任意的x 不等式都成立;②当m -2<0时,Δ=4(m -2)2+16(m -2)<0, 所以-2<m <2,综合①②,得m 的取值范围是(-2,2].7.(2016·合肥一模)已知函数f (x )=⎩⎪⎨⎪⎧-|x +1|,x ≤0,x 2-1,x >0,则不等式f (x )<0的解集为________.解析:若x >0,由f (x )<0得x 2-1<0,解得0<x <1.若x ≤0,由f (x )<0得-|x +1|<0,解得x ≤0且x ≠-1,综上不等式的解为x <1且x ≠-1,即不等式的解集为(-∞,-1)∪(-1,1). 答案:(-∞,-1)∪(-1,1)8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. 解析:原不等式即(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a. 答案:⎩⎨⎧x ⎪⎪⎭⎬⎫a <x <1a 9.(2016·九江一模)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是________.解析:不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),所以g (x )<g (4)=-2,所以a <-2.答案:(-∞,-2) 10.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围为________. 解析:把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4),则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立不等式解得x <1或x >3. 答案:{x |x <1或x >3}11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫12<x <2. (1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎫-3,12. 12.某同学要把自己的计算机接入因特网,现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱? 解:假设一次上网x (x <17)小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为1.7+(1.7-0.1)+ (1.7-0.2)+…+[1.7-(x -1)×0.1]=x (35-x )20(元).由x (35-x )20>1.5x (0<x <17),整理得x 2-5x <0,解得0<x <5,故当0<x <5时,公司A 收费低于公司B 收费,当x =5时,A ,B 两公司收费相等,当5<x <17时,公司B 收费低,所以当一次上网时间在5小时以内时,选择公司A 的费用少;为5小时时,选择公司A 与公司B 费用一样多;超过5小时小于17小时时,选择公司B 的费用少.1.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则有( )A .a =3,b =4B .a =3,b =-4C .a =-3,b =4D .a =-3,b =-4解析:选D.法一:由题意得集合A ={x |x <-1或x >3},又A ∪B =R ,A ∩B =(3,4],所以集合B 为{x |-1≤x ≤4},由一元二次不等式与一元二次方程的关系,可得a =-3,b =-4. 法二:易知A ={x |x <-1或x >3},又A ∩B =(3,4],可得4为方程x 2+ax +b =0的一个根,则有16+4a +b =0,经验证可知选项D 正确.2.(2016·南京、盐城模拟)已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是________.解析:f (x )=⎩⎨⎧1,x ≥0,-1-2x -1,x <0,其图像如图所示:由图可知:不等式f (x 2-2x )<f (3x -4)等价于⎩⎪⎨⎪⎧x 2-2x <0x 2-2x <3x -4,解得⎩⎪⎨⎪⎧0<x <2,1<x <4,即1<x <2,所以不等式的解集为(1,2).答案:(1,2) 3.(2016·西安交大附中模拟)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解:法一:f (x )=(x -a )2+2-a 2,此二次函数图像的对称轴为x =a .①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1,所以a 的取值范围是[-3,1].4.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a ,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .。
2015高考数学试题分类选编(集合与简易逻辑)
高考数学试题分类选编(集合与简易逻辑)一、选择题1.(重庆)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件.那么p 是q 成立的:()(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件2.(北京)设全集是实数集R ,M x x {|}22,N x x {|}1,则N M 等于()(A ){|}x x 2(B ){|}x x 21(C ){|}x x 1(D ){|}x x 213.(天津)设集合6,5,4,3,2,1P ,62x R x Q ,那么下列结论正确的是()(A )P Q P (B )QQ P (C )Q Q P (D )Q P P4.(四川云南吉林黑龙江)M =4|2x x ,N =032|2x x x ,则集合MN=()(A ){2|x x } (B ){3|x x }(C ){21|x x } (D ){32|x x }5.(湖北)设集合P =01|m m ,Q =m R 044|2mx mx 对任意实数x 恒成立,则下列关系中成立的是()(A )P Q (B )Q P (C )P =Q (D )P Q =6.(湖北)设A =15|k x x ,k N,B =x x |≤6,x Q ,则A B 等于()(A ){1,4} (B ){1,6} (C ){4,6} (D ){1,4,6}7.(陕西广西海南西藏内蒙古)设集合M =1|),{(22y x y x ,x R ,y R },N =0|),(2y x y x ,x R ,y R ,则集合N M 中元素的个数为()(A )1 (B )2 (C )3 (D )48.(山东山西河南河北江西安徽)设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误..的是()(A )(C I A )B =I (B )(C I A )(C I B )=I(C )A (C I B )=(D )(C I A )(C I B )=C I B9.(陕西广西海南西藏内蒙古)不等式311x 的解集为()。
2015年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(理科)及答案
专题一 集合与常用逻辑用语1.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,选A.【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.2.【2015高考广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅,故选A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.3.【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C.【考点定位】本题主要考查特称命题的否定【名师点睛】全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.4.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于0,否则很容易出现错误.5.【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列; q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A【考点定位】等比数列的判定,柯西不等式,充分条件与必要条件.【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.6.【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件【答案】A 【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.【考点定位】不等式解法与充分条件、必要条件.【名师点睛】本题主要考查不等式的解法、充分条件与必要条件相关问题,将含绝对值不等式与一元二次不等式和解法、充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题7.【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA 【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.9.【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .【考点定位】充分必要条件.【名师点晴】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:A ={x |x 满足条件p },B ={x |x 满足条件q },(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件.本题易错点在于解对数不等式时没有考虑对数的定义域.10.【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】由已知得{}21B x x =-<<,故{}1,0AB =-,故选A . 【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.11.【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U AB =ð,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.12.【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A【考点定位】1.指数运算;2.充要条件的概念.【名师点睛】对于指对数运算问题,需要记住常见的等式关系,如0112,22,1log ,0log 1a a a ====,进而转化成同底的问题进行计算;充要关系的判断问题,可以分为由“:12p x <<”推证“:0q x >”以及由“:0q x >”推证“:12p x <<”.13.【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【答案】C 【解析】因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423A B x x x x x x =<<<<=<<.故选:C.【考点定位】1、一元二次不等式;2、集合的运算.【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,本题属基础题,要求学生最基本的算运求解能力.14.【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.15.【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =ð,故选C.【考点定位】1.解一元二次不等式;2.集合的运算.【名师点睛】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.16.【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 .【答案】1【考点定位】1、命题;2、正切函数的性质.【名师点睛】本题涉及到全称命题、正切函数的性质、不等式恒成立问题等多个知识点,意在考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,此题属中档题.17.【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______.【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.18.【2015高考湖南,理2】.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】试题分析:由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件和结论,然后找出条件和结论之间的推出或包含关系.19.【2015高考上海,理1】设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【考点定位】集合运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥。
2015高考数学考前冲刺30天:专题01 集合与简易逻辑(解析版)
专题01 集合与简易逻辑 【2015高考考纲解读】 1.考查求几个集合的交、并、补集. 2.通过给定的新材料考查阅读理解能力和创新解题的能力. 3.“命题及其关系”主要考查四种命题的意义及相互关系. 4.“简单的逻辑联结词”主要考查逻辑联结词“或”“且”“非”的含义,能用“或”“且”“非”表述相关的数学内容. 5.“全称量词与存在量词”主要考查对含有一个量词的命题进行否定. 6.考查对充分条件、必要条件、充要条件等概念的理解. 【难点突破】 难点1 集合的运算 1.设I是全集,非空集合P、Q满足PQI,若含P、Q的一个运算表达式,使运算结果为空集,则这个运算表达式可以是_______;如果推广到三个,即PQRI,使运算结果为空集,则这个运算表达式可以是_______.(只要求写出一个表达式). 2.设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?,证明此结论. 难点2 逻辑在集合中的运用 1.已知不等式:①|x+3|>|2x|;②;③2x2+mx-1<0. 若同时满足①、②的x也满足③,求m的取值范围; 若满足③的x至少满足①、②中的一个,求m的取值范围. 2.集合A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当a取什么实数时,A∩B ?和A∩C=?同时成立. 难点3 集合的工具性 1.已知{an}是等差数列,d为公差且不为零,a1和d均为实数,它的前n项和为Sn,设集合A={(an,)|n∈N*},B={(x,y)|x2-y2=1,x,y∈R},试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明. (1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上; (2)A∩B中至多有一个元素; (3)当a1≠0时,一定有A∩B≠?. 2.设M是满足下列两个条件的函数f(x)的集合:①f(x)的定义域是[-1,1];②若x1,x2∈[-1,1],则|f(x1)-f(x2)|≤4|x1-x2|.试问: (1)定义在[-1,1]上的函数g(x)=x2+3x+2005是否属于集合M?并说明理由; (2)定义在[-1,1]上的函数h(x)=4sinx+2006是否属于集合M?并说明理由. 3.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人? 难点4 真假命题的判断 1.已知p、q为命题,命题“(p或q)”为假命题,则 ( )A.p真且q真B.p假且q假C.p,q中至少有一真D.p,q中至少有一假 2.已知p:|1-≤2,q:x2-2x+1-m2≤0(m>0),若﹂p是﹂q的必要而不充分条件,求实数m的取值范围. 难点5 充要条件的应用 1.设符合命题p的所有元素组成集合A,符合命题q的所有元素组成集合B,已知q的充分不必要条件是p,则集合A、B的关系是 ( ) A.AB B.A B C.B A D.A=B 2.00).若綈p是綈q的必要不充分条件,求实数m的取值范围. ∴实数m的取值范围是[9,+∞). 【题后反思】解此类题的关键是利用等价命题进行命题的等价转化,例如:如果p是q的充分不必要条件,那么綈p是綈q的必要不充分条件.同理,如果p是q的必要不充分条件,那么綈p是綈q的充分不必要条件;如果p是q的充要条件,那么綈p是綈q的充要条件. 【变式】已知集合M=,N={y|y=4x-2x+1},U=R,如图所示,则图中阴影部分表示的集合是( ). A. B. C. D.? 【易错点点睛】 易错点1 集合的概念与性质 1.设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是 ( ) A.M=P B.PM C.MP D.CUP=? 2.设P、Q为两个非空实数集合,定义集合P+Q={a+b|aP,bQ},若P{0,2,5},Q={1,2,6},则P+Q中元素的个数是() A.9 B.8 C.7 D.6 3.(2013模拟题精选)设f(n)=2n+1(nN),P={l,2,3,4,5},Q={3,4,5,6,7},记={nN|f(n) P},={nN|f(n) 则(CN) (CN)等于 ( ) A.{0,3} B.{1,7} C.{3,4,5} D.{1,2,6,7} 4.设A、B、I均为非空集合,且满足ABI,则下列各式中错误的是 ( ) A.(CIA)B=I B.(CIA) (CIB)=I C.A(CIB)=? D.(CIA)(CIB)=CIB 【特别提醒】 1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|xP},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题. 2.注意空集?的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=?或A? 两种可能,此时应分类讨论. 【变式探究】 1 全集U=R,集合M={1,2,3,4},集合N=,则M(CUN)等于 ( ) A.{4} B.{3,4} C.{2,3,4} D. {1,2,3,4} 2.设M={x|x4a,a∈R},N={y|y=3x,x∈R},则 ( ) A.M∩N=? B.M=NC. MND. MN 3.已知集合A={0,2,3},B={x|x=ab,a、b∈A且a≠b},则B的子集的个数是( ) A.4 B.8 C.16 D.15 4.设集合M={(x,y)|x=(y+3)·|y-1|+(y+3),-≤y≤3},若(a,b)∈M,且对M中的其他元素(c,d),总有c≥a,则a=_____. 易错点 2 集合与不等式 1.集合A=,B={x|x-b|<a=,若“a=1”是“A∩B≠?”的充分条件,则b的取值范围是( ) A.-2≤b<2 B.-2<b≤2 C.-3<b<-1 D.-2<b<2 2.(1)设集合A={x|4x-1≥9,x∈R},B={x|≥0,x∈R},则A∩B=_____. 3.已知f(x)=(x∈R)在区间[-1,1]上为增函数. (1)求实数a的值所组成的集合A; (2)设关于x的方程f(x)=的两根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由. 【特别提醒】 讨论参数a的范围时,对各种情况得出的参数a的范围,要分清是“或”还是“且”的关系,是“或”只能求并集,是“且”则求交集. 【变式探究】 1 设[x]表示不超过x的最大整数,则不等式[x]2-5[x]+6≤0的解集为 ( ) A.(2,3) B.[2,3] C.[2,4] D.[2,4] 2 已知不等式|x-m|<1成立的充分非必要条件是,则实数m的取值范围是 ( ) A. B. C. D. 3.已知集合A={x|(x-2)[x-(3a+1)]<0=, B={x|}. (1)当a=2时,求A∩B; (2)求使BA的实数a的取值范围. 易错点 3 集合的应用 1.ω是正实数,设Sω={θ|f(x)=cos[ω(x+θ)]是奇函数},若对每个实数a,Sω∩(a,a+1)的元素不超过2个,且有a使Sω∩(a,a+1)含2个元素,则ω的取值范围是_____. 2.设函数f(x)=-(x∈R),区间M=[a,b](ab”是“a2>b2”的充分条件;④“a<5”是“a0,设P:函数y=cx在R上单调递减;Q:不等式x+|x-2c|>1的解集为R,如果P和Q有且仅有一个正确,求c的取值范围. 【特别提醒】 1.在判断一个结论是否正确时,若正面不好判断,可以先假设它不成立,再推出矛盾, 这就是正难则反. 2.求解范围的题目,要正确使用逻辑连结词,“且”对应的是集合的交集,“或”对应的是集合的并集. 【变式探究】 1 已知条件P:|x+1|>2,条件q:5x-6>x2,则p是q的 ( ) A.充要条件 B.充分但不必要条件C.必要但不充分条件D.既非充分也非必要条件 2 已知命题p:函数log0.5(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是减函数.若p 或q为真命题,p且q为假命题,则实数a的取值范围是( ) A.a≤1 B.a0且c<0 C.b0的解集相同;命题q:,则命题p是命题g的 ( ) A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件 【特别提醒】 (1)要理解“充分条件”“必要条件”的概念:当“若p则q”形式的命题为真时,就记作pq 称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假. (2)要理解“充要条件”的概念,对于符号“”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等. (3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质. (4)从集合观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条依. (5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性). 【变式探究】 1 设ab、是非零向量,则使a·b=|a||b|成立的一个必要非充分条件是 ( ) A.a=b B.a⊥b C.a∥b D.a=λb(>0) 2若条件甲:平面α内任一直线平行于平面β,条件乙:平面α∥平面β,则条件甲是条件乙的 ( ) A.充分不必要条件 B.必要不充分条件 C. 充要条件 D.既不充分又不必要条件 答案:C 解析:甲乙可以互推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考数学分类练习一:集合与简易逻辑主编:宁永辉 主编单位:永辉中学生学习中心一、选择题(一共30道题目,每小题3分,一共90分)1、已知全集}4,3,2,1,0{=U ,集合}3,2,1{=A ,}4,2{=B ,则=⋃B A C u ( ) A 、}4,2,1{ B 、}4,3,2{ C 、}4,2,0{ D 、}4,3,2,0{ 【解析】:本题考查的是集合的交集、并集、补集的计算。
【知识点回顾】:集合的交集、并集、补集的计算。
(1)、交集:把两个集合中的相同元素放在一起组成一个新的的集合,这个新的集合为这两个集合的交集。
用“B A ⋂”来表示。
(2)、并集:把两个集合中的所有元素放在一起,相同的元素只保留一个,组成的新的集合为这两个集合的并集。
用“B A ⋃”来表示。
(3)、补集:把全集中除了这个集合的元素元素放在一起组成一个新的集合,这个新的集合为这个集合的补集。
用“A C u ”其中U 为全集。
【本题解析】:根据补集的计算法则得到:}4,0{=A C u 根据并集的计算法则得到:}4,2,0{}4,2{}4,0{=⋃=⋃B A C u2、若R a ∈,则2>a 是0)2)(1(>--a a 的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 【解析】:本题考查的简易逻辑中的充分必要条件。
【知识点回顾】:(1)、充分必要条件的判断方法:①、q p ⇒,则p 为q 的充分条件;q p ⇒,则p 为q 的不充分条件。
②、p q ⇒,则p 为q 的必要条件;p q ⇒,则p 为q 的不必要条件。
(2)、大范围和小范围之间的关系:小范围可以推导出大范围,但大范围却不能推导出小范围。
【本题解析】:解不等式:20)2)(1(>⇒>--a a a 或2<a2>a 或1<a 是2>a 的大范围,2>a 是2>a 或1<a因为:22>⇒>a a 或1<a ,充分性成立2>a 或1<a ⇒2>a ,必要性不成立所以:2>a 是0)2)(1(>--a a 的充分不必要条件。
3、已知集合R U =,集合}032|{2≥--∈=x x R x A ,求=A C u ( )A 、),3()1,(+∞⋃--∞B 、),3[]1,(+∞⋃--∞C 、)3,1(-D 、]3,1[-【解析】:本题考查的是补集的运算。
【本题解析】:解不等式:30322>⇒≥--x x x 或1-<x]3,1[-==A C A C R u4、“所有能被2整除的数都是偶数”这个命题的否定是 ( ) A 、所有不能被2整除的数都是偶数; B 、所有能被2整除的数都不是偶数; C 、存在一个不能被2整除的数是偶数; D 、存在一个能被2整除的数不是偶数; 【解析】:本题考查的是含有量词的命题的否定。
【知识点回顾】:含有量词命题的否定方法:第一步:全称量词变为存在量词,存在量词变为全称量词; 第二步:结论变为否定。
【本题解析】:原命题中含有的量词为“所有”属于全称量词 命题否定中应该改为存在量词“存在一个”。
结论变为否定,把都是偶数,变为不是偶数。
所以命题的否定:“存在一个能被2整除的数不是偶数”。
5、已知集合}01|),{(=+-=y x y x A ,集合}02|),{(22=+-=y x x y x B ,则B A ⋂的元素个数是 ( )A 、0个B 、1个C 、2个D 、无数个 【解析】:本题考查的直线与圆的位置关系。
【知识点回顾】:直线与圆的位置关系的判断方法: 方法一:利用一元二次方程式的判别式进行判断:直线方程:b kx y += 圆的方程:022=++++F Ey Dx y x 把直线方程b kx y +=代入圆的方程中022=++++F Ey Dx y x 得到:0)()21()1(0)()(22222=+++++++⇒=++++++F Eb b x Ek kb x k F b kx E Dx b kx x求一元二次方程的判别式∆。
(1)、0>∆,有两个交点,直线与圆相交; (2)、0<∆,没有交点,直线与圆相离; (3)、0=∆,有一个交点,直线与圆相切;方法二:利用圆心到直线的距离与圆的半径之间的大小关系:直线:0=++C By Ax ,圆:222)()(r b y a x =-+-圆心到直线的距离:22||BA C Bb Aa d +++=(1)、r d >,直线与圆相离,没有交点;(2)、r d =,直线与圆相切,只有一个交点; (3)、r d <,直线与圆相交,有两个交点。
【本题解析】:1)1(022222=+-⇒=+-y x y y x ,是一个圆心为)0,1(半径为1的圆。
圆心到直线的距离为:2)1(1|101|22=-++-=d因为:圆心到直线的距离大于半径 所以:直线和圆相离,没有公共点。
6、命题“若πα43=,则02cos =α”的否命题为 ( ) A 、“若πα43≠,则02cos =α” B 、“若02cos =α,则πα43=” C 、“若πα43≠,则02cos ≠α” D 、“若02cos =α,则πα43≠” 【解析】:本题考查的是四大命题。
【知识点回顾】:四大命题的概念:(1)、否命题:如果有两个命题,其中一个命题的条件是另外一个命题条件的否定,它的结论是另外一个命题结论的否定,那么这两个命题互为否命题,其中一个叫做原命题,另一个叫做这个原命题的否命题。
(2)、逆命题:如果有两个命题,其中一个命题的条件是另外一个命题的结论,它的结论是另外一个命题的条件,那么这两个命题互为逆命题,其中一个叫做原命题,另一个叫做这个原命题的逆命题。
(3)、逆否命题:如果有两个命题,其中一个命题的条件是另外一个命题结论的否定,它的结论是另外一个命题条件的否定,那么这两个命题互为逆否命题,其中一个叫做原命题,另外一个叫做这个原命题的逆否命题。
【本题解析】:根据否命题的定义,需要对原命题的条件和结论都变为否定就可以了。
原命题:“若43πα=,则02cos =α” 否命题:“若43πα≠,则02cos ≠α” 7、设全集}9,8,7,6,5,4,3,2,1,0{=U ,}4,3,2{=A ,集合C 满足U B A C u ⊆⊆,集合B 可能的个数为 ( )A 、6个B 、7个C 、8个D 、9个 【解析】:本题考查的是集合之间的关系和集合子集个数的计算。
【知识点回顾】:(1)、集合之间的关系:B A ⊆指的是A 集合中的所有元素在B 集合都可以找得到。
(2)、集合子集个数的计算:一个集合的元素个数为n ,这个集合的子集个数为n2。
【本题解析】:根据补集的运算法则得到:}9,8,7,6,5,1,0{=A C u因为:B A C u ⊆ 所以:B 集合中一定有:9,8,7,6,5,1,0六个元素 因为:U B ⊆ 所以:U 中剩余的三个元素4,3,2有可能在集合B 中 这问题就和求集合}3,2,1{的子集个数变为了同一个问题 所以集合B 可能的个数为823=。
8、下列命题中,真命题的是 ( ) A 、0,00≤∈∃x eR x B 、22,x R x x >∈∀C 、0=+b a 的充要条件是1-=abD 、1,1>>b a 是1>ab 的充分条件 【解析】:本题是一个命题真假性判断的问题。
【本题解析】:A.因为:指数函数的值域为),0(+∞ 所以:0,>∈x e R x ,0,00≤∈∃x eR x 是假命题B.当3=x 的时候,8223==x,9322==x ,所以:22x x< ,B 选项错误 C.当00=+⇒==b a b a 的时候,因为:分母不能为0,所以充分性不成立01=+⇒-=⇒-=b a a b ab必要性成立,所以为必要不充分条件 D.11,1>⇒>>ab b a 所以充分性成立1>ab 推导之后得不到:1,1>>b a 所以必要性不成立所以:为充分不必要条件。
9、已知集合}11)(|{xx f x A -==,集合)}1ln()(|{x x g x B +==,则B A ⋂( ) A 、}1|{>x x B 、}1|{<x x C 、}11|{<<-x x D 、∅ 【解析】:本题考查的是函数的定义域,以及集合交集的计算。
【知识点回顾】:(1)、函数的定义域求法:第一步:根据五大限制条件找出函数解析式中的限制条件,列出不等式; 第二步:解不等式或者不等式组,所求的解为函数定义域。
求定义域的五大限制条件:①、分母不等式于0;②、偶次根号下大于等于0;③、对数函数的上底大于0;④、一个式子的0次方,这个式子不等于0;⑤、正切函数的角度不等于)(2Z k k ∈+ππ。
(2)、集合的交集:两个集合中的相同元素组成的新的集合为这两个集合的交集。
如果两个集合都是不等式解组成的集合,两个不等式解在数轴上的公共部分为交集。
【本题解析】:}11)(|{x x f x A -==,求函数xx f -=11)(的定义域。
根据偶次根号下大于等于0,分母不等于0得到:101<⇒>-x x 所以:集合)1,(-∞=A)}1ln()(|{x x g x B +==,求函数)1ln()(x x g +=的定义域。
根据对数函数上底大于0得到:101->⇒>+x x 所以:集合),1(+∞-=B所以:)1,1(),1()1,(-=+∞-⋂-∞=⋂B A10、设集合}5,4,3,2,1{=U ,}3,1{=A ,}4,3,2{=B ,则=⋂)()(B C A C u u ( ) A 、}5{ B 、}2{ C 、}4,2{ D 、}4,3,2,1{ 【解析】:本题考查的是补集,交集的运算,或者集合交并补集运算的基本关系。
【知识点回顾】:(1)、集合的补集:一个集合的补集是全集中除了该集合的元素,由其他元素组成的集合。
(2)、集合的交集:两个集合中的相同元素组成的集合,为两个集合的交集。
(3)、集合的并集:两个集合中的所有元素组成的集合,为两个集合的并集。
(4)、集合交并集运算规律:运算规律一:)()()(B A C B C A C u u u ⋃=⋂ 运算规律二:)()()(B A C B C A C u u u ⋂=⋃【本题解析】:解法一:根据集合的并集运算:}5,1{},5,4,2{==B C A C u u 根据集合的交集运算得到:}5{}5,1{}5,4,2{=⋂=⋂B C A C u u 解法二:根据集合交并集运算规律:)(B A C B C A C u u u ⋃=⋂ 根据集合并集的运算:}4,3,2,1{}4,3,2{}3,1{=⋃=⋃B A 根据集合补集的运算:}5{)(=⋃B A C u11、“2|1|<-x 成立”是“0)3(<-x x 成立”的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件【解析】:本题考查基本不等式的解法,充分必要条件的概念,推导的基本规律。