初三反比例函数知识点
反比例函数中考知识点总结
反比例函数一、基础知识1.定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kxy =1-,xy=k(k 为常数,o k ≠)2.反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
3.反比例函数的图像即是中心对称图形(对称中心是原点),也是轴对称图形(对称轴是x y =或x y -=)。
4.反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
5.反比例函数性质如下表:6. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 7.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
8. 反比例函数的应用反比例函数常考题型一、反比例函数的概念例1下面函数中,哪些是反比例函数? (1)3x y -=(2)x y 8-=(3)54-=x y (4)15-=x y (5).81=xy (6) (7)(8)xy =21 (9)(10)(11) (12)y =x +4 (13) 5x y =x y 2-=25+=x y x y 23-=31+=xy 21y x =变式1:若y 与-2x 成反比例函数关系,x 与成正比例,则y 与z 的关系 ( ) A .成正比例函数 B .成反比例函数 C .成一次函数 D .不能确定 变式2:若梯形的下底长为,上底长为下底长的,高为,面积为60,则与的函数关系是____________.变式3:当m 取什么值时,函数是反比例函数?变式4: 函数y= 3x 的自变量x 的取值范围是___________;当x <0时,y 随x 的增大而().二、反比例函数的图像与性质例1:如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则()A .1=SB .2=SC .3=SD .S 的值不确定变式1:反比例函数xky =的图像上有一点),(n m P ,其坐标是关于t 的一元二次方程032=+-k t t 的两根,且P 到原点的距离为13,则该反比例函数的解析式为______.变式2:如图,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ;过C 作y 轴的垂线,垂足为D.记AOB Rt ∆的面积为1S ,COD Rt ∆的面积为2S ,则1S 与2S 的关系是( ). (A )1S >2S (B)1S <2S (C )1S =2S (D )1S 与2S 的大小关系不能确定.(武汉市中考题)变式3:(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )3zx 13y y x 23)2(m xm y --=(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )三、反比例函数应用例1、某地上年度电价为0.8元,年用电量为1亿度。
初三数学反比例函数知识点归纳
初三数学反比例函数知识点归纳
反比例函数是指函数的变量之间的关系满足倒数的关系。
1. 反比例函数的定义:如果函数y=k/x,其中k是一个非零常数,x≠0,则y与x的关系是反比例关系,称为反比例函数。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形状,即一个双曲线。
曲线在第一象限和第三象限分别向无穷大和无穷小逼近,且过原点。
3. 反比例函数的性质:
- 当x逐渐增大(或减小)时,y逐渐减小(或增大)。
- 当x=0时,函数无定义。
- 当y=k/x中的k为正数时,函数在第一象限、第三象限为正值;当k为负数时,函数在第二象限、第四象限为负值。
- 反比例函数的图像关于y轴和x轴对称。
4. 反比例函数的图像特征:
- 具有一个渐进线,即曲线在接近y轴和x轴时,趋于无穷大或无穷小。
- 曲线在x轴和y轴上有渐进截距。
- 曲线在y轴上有一个渐近良好的对称轴。
5. 反比例函数的应用:
- 反比例函数常用于描述两个变量的关系,如速度与时间、产量与工人、密度与体积等。
- 反比例函数也可以用来解决实际问题中的问题,如求出满足特定条件的变量值。
总结起来,反比例函数是数学中一种特殊的函数形式,其定义和性质都与倒数有关,反比例函数的图像呈现出一种特殊的形
状,具有特定的渐进线和渐近截距,常用于描述两个变量的关系和解决实际问题。
初三反比例函数知识点
初三反比例函数知识点初三数学中,反比例函数是一个非常重要的知识点。
它是函数的一种特殊形式,与正比例函数相对应。
反比例函数在数学和实际生活中都有着重要的应用。
本文将详细介绍反比例函数的定义、性质、图像和应用。
1. 反比例函数的定义反比例函数是指形如f(x) = k/x的函数,其中k是常数,x不等于0。
在反比例函数中,当x增大时,f(x)的值减小;当x减小时,f(x)的值增大。
可以看出,反比例函数是一个曲线,它的图像可以用一个双曲线表示。
2. 反比例函数的性质反比例函数有一些重要的性质值得我们关注。
2.1. 定义域和值域:反比例函数的定义域是除了0的所有实数,值域是除了0的所有实数。
2.2. 对称轴:反比例函数的对称轴是y轴。
2.3. 渐近线:反比例函数有两条渐近线,即x轴和y轴。
2.4. 单调性:反比例函数在定义域上是单调递减的。
2.5. 零点:当输入变量x等于0时,反比例函数的值为无穷大。
3. 反比例函数的图像反比例函数的图像是一个双曲线。
双曲线有两个分支,分别趋近于渐近线,与坐标轴的相交点是它的零点。
当x趋近于正无穷大或负无穷大时,函数值趋近于0。
4. 反比例函数的应用反比例函数在实际生活中有很多重要的应用。
4.1. 比例定理:反比例函数可以用来描述许多与比例有关的问题。
比如,在购买商品时,如果商品的价格和数量成反比,那么我们可以使用反比例函数来计算购买不同数量商品时的总花费。
4.2. 速度和时间的关系:在汽车行驶过程中,速度和时间成反比例关系。
当速度增大时,时间减小;当速度减小时,时间增大。
反比例函数可以帮助我们计算汽车行驶的时间。
4.3. 电路中的电阻和电流关系:在电路中,电阻和电流成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
反比例函数可以帮助我们计算电路中的电流。
4.4. 功率和电压关系:在电路中,功率和电压成反比例关系。
当电压增大时,功率减小;当电压减小时,功率增大。
(完整版)中考——反比例函数知识点【经典】总结
反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。
x ⑷函数的取值是一切非零实数。
y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。
x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。
九年级数学反比例函数知识点
九年级数学反比例函数知识点数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
下面是整理的九年级数学反比例函数知识点,仅供参考希望能够帮助到大家。
九年级数学反比例函数知识点(1)反比例函数:如果(k是常数,k≠0),那么y叫做x的反比例函数。
(2)反比例函数的图象:反比例函数的图象是双曲线。
(3)反比例函数的性质①当k0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小。
②当k0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大。
③反比例函数图象关于直线y=±x对称,关于原点对称。
(4)k的两种求法①若点(x0,y0)在双曲线上,则k=x0y0。
②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S⊥AOB。
(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数,则当k1k20时,两函数图象无交点;当k1k20时,两函数图象有两个交点,由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称。
初中数学有理数知识点1、正整数、负整数和零统称整数;正分数和负分数统称分数;整数和分数统称有理数。
2、规定了原点、正方向和单位长度的直线叫做数轴。
在数轴上的数,左边的比右边的大,从左到右分别为负数、零、正数。
3、正负号不同,值相同的数叫相反数,零的相反数是零。
4、数轴上表示的数a到原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值零。
5、两个负数比较,绝对值大的反而小。
6、有理数加减法法则:①同号两数相加,取相同符号,绝对值相加。
②绝对值不同的异号两数相加,取绝对值大的数的符号,并用较大数绝对值减去较小数绝对值。
③互为相反数的两个数相加得零。
④一个数与零相加,仍得这个数。
7、有理数加法运算律:①交换律:a+b=b+a②结合律:(a+b)+c=a+(b+c)8、有理数减法法则:减去一个数等于加上这个数的相反数。
初三反比例函数知识点
初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
初三-数学--反函数
反比例函数考点1:反从例函数的意义及其图象和性质一、考点讲解:1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=kx(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.2.反比例函数的概念需注意以下几点:(1)k 为常数,k ≠0;(2)kx中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数;(4)因变量y 的取值范围是y ≠0的一切实数. 3.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质(见下表)①当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.4.画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是x ≠0,因此,不能把两个分支连接起来;(2)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势. 二、经典例题剖析:【例题1-1】函数y= kx与y=kx+k 在同一坐标系的图象大致是图 1-5-l 中的( )【例题1-2】若M (-12 ,y 1),N (-14 ,y 2),P (12 ,y 3)三点都在函数y= kx (k <0))中的图象上,则y 1,y 2,y 3,的大小关系为()A .y 2 >y 3>y 1B 、y 2>y 1>y 3C .y 3 >y 1>y 2D 、y 3>y 2>y 1【例题1-3】点P 既在反比例函 数y=- 3x (x >0)的图象上,又在一次函数y =-x —2的图象上,则P 点的坐标是( , )三、针对性训练:1.若反比例函数y=-2/x 的图象经过(a ,-a ),则a 的值为( ) A . 2 B .- 2 C .± 2 D .±22.已知一次函数y= kx+b 的图象经过第一、二、四象限,则y= kbx反比函数的图象在( ) A .第一、二象限 B .第三、四象限 C .第一、三象限 D .第二、四象限3.函数y=-4x的图象与x轴交点的个数是()A.0个B.l个C.2个D.不能确定4.三角形的面积为1时,底y与高x之间满足的的数系的图象是图1-5-5中的()5.已知力F,物体在力的方向上通过的距离s,力F所做的功W,三者之间有以下关系式成立:W=Fs,则当W为定值时,F与s的图象大致是图1-5-6中的()6 若函数y=25(2)kk x--是反比例函数,则k=___.7 点A(a,4)在函数y= 8x的图象上,则a的值为___8 函数y= 3x的自变量x的取值范围是___________;当x<0时,y随x的增大而___.9如图1-5-7所示为反比例函数y= kx的图象,那么k ____10 已知函数y=(m2-1)21m mx--,当m=_____时,它的图象是双曲线.11 如图l-5-10所示,正比例函数y =kx(k>0)与反比例函数y= 2/X的图象交于A、C两点,过A点作为x轴的垂线,垂足为B,过C点作x 轴的垂线,垂足为D,求S四边形ABCD.考点2:反比例函数的解析式求法一、考点讲解:1.反比例函数的确定方法:由于在反比例函数关系式y= kx中,只有一个待定系数k,确定了k的值,也就确定了反比例函数.因此,只需给出一组x、y的对应值或图象上点的坐标,代入y= kx中即可求出k的值,从而确定反比例函数的关系式.2.用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:y= kx(k≠0)②根据已知条件(自变量与函数的对应值)列出含k的方程;③由代人法解待定系数k的值;④把k值代人函数关系式y= kx中二、经典例题剖析:【例题2-1】写出一个图象位于一、三象限的反比例函数的表达式y=_________【例题2-2】老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第三象限;丙:在每个象限内,y随x的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数【例题2-3】如图1-5-11所示,一次函数y=kx+b 的图象与反比例函数y= kx (k ≠0)的图象交于M 、N 两点.⑴求反比例函数和一次函数的解析式;⑵根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.三、针对性训练:1.如图1-5-l2所示,函数图象①②③的关系式应为( )56.,2,256.,2,2A y y x y x B y x y x y x =-=+=-==-+= 56.,2,256.,2,2C y x y x y x D y x y x y x =-=-+==-=-=-2.已知点(x 1,-1),(x 2,-254),(x 3,-25),在函数y=8x -的图象上,则下列关系式正确的是()A .x 1<x 2< x 3.B .x 1>x 2>x 3C .x 1>x 3>x 2D .x 1 < x 3 < x 23.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y =-x 的图象,请同学们观察有什么特点,并说出来.同学甲:与直线y =-x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5,请你根据同学甲和同学乙的说法写出反比例函数的解析式4.如图1-5-l3所示,已知一次函数 y= kx +b (k ≠(1)的图象与x 轴、y 轴分别交于 A 、B 两点,且与反比例函数 y=mx(m ≠0)的图象在第一象限交于 C 点,CD 垂直于x 轴,垂足为 D .若OA=OB= OD =1.(1)求点 A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.5.如图1-5-14所示,△AOC 的面积为6,且CB :BA=3:1,求过点A 的双曲线的表达式.6.如图1-5-15所示,一次函数的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数的图象交于C 、D 两点.如果A 点的坐标为(2,0),点 C 、D 分别在第一、三象限,且 OA=OB=AC=BD .试求一次函数和反比例函数的解析式.考点3:用反比例函数解决实际问题一、考点讲解:1、反比例函数的应用注意事项:⑴反比例函数在现实世界中普遍存在,在应用反比例函数知识,解决实际问题时,要注意将实际问题转化成数学问题;⑵针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
初三反比例函数知识点
初三反比例函数知识点初三反比例函数知识点一一、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k1/xxy=ky=kx^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=k\x(k为常数且k0,x0)若y=k/nx此时比例系数为:k/n二、函数式中自变量取值的范围①k0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k1/xxy=ky=kx^(-1)y=k\x(k为常数(k0),x不等于0)三、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K0)。
四、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PMPN=|y||x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
五、反比例函数性质有哪些?1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
九年级反比例知识点总结
九年级反比例知识点总结九年级数学中,反比例是一个重要的知识点,它在数学和实际生活中都具有很大的应用价值。
下面将对九年级反比例的相关知识进行总结和归纳。
一、反比例的定义反比例是指两个变量之间的关系,当一个变量的值增大时,另一个变量的值减小,而且它们之间的乘积是一个常数。
常常用符号表示为y=k/x,其中k为反比例常数。
二、反比例的图象特征1. 如果两个变量x和y成反比例关系,那么它们的图象一定经过原点(0,0)。
2. 当x>0时,y>0;当x<0时,y<0。
即,变量x和y的符号是相反的。
3. 根据反比例关系,当$x\neq0$时,对于k的取值,y=k/x(x≠0)的图像是一条通过原点且不包含坐标轴的曲线,称为反比例曲线。
三、反比例的性质1. 反比例的定理:设y=k/x为反比例函数,若已知x1对应的y1,那么x1和y1必须满足y1=k/x1。
即,y1=kx1的值与k的值相等,反比例的乘积k是一个常数。
2. 反比例的乘法性质:设y=k/x为反比例函数,若已知x1对应的y1和x2对应的y2,那么(x1·x2)对应的y1·y2,即k=(x1·x2)·(y1·y2)。
3. 反比例的比例性质:设y=k/x为反比例函数,若已知x1对应的y1,那么x2对应的y2的值可通过比例关系求得,即x1/y1=x2/y2。
四、反比例的应用反比例在实际生活中有很多应用,如工作时间和完成一项工作的效率、物品的价格和购买物品的数量、行驶距离和行驶的时间等。
通过反比例的知识,我们可以更好地理解这些问题,并能够运用数学方法进行计算和解决。
五、反比例的计算方法1. 已知反比例函数y=k/x中的k和x的值,可以计算出y的值。
例如,已知k=3,x=5,可以计算出y=3/5=0.6。
2. 在已知一组反比例的x和y值的情况下,我们可以通过列出等式来求解反比例常数k。
例如,已知x=4,y=6,列出等式y=k/x,代入x和y的值得到6=k/4,解得k=24。
反比例函数知识点总结
反比例函数知识点总结一、反比例函数定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、图象特征1. 反比例函数的图象是一组双曲线。
2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。
3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。
4. 双曲线的对称轴是 y 轴。
三、性质1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。
2. 反比例函数的值域为全体实数 R。
3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。
4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。
5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。
四、运算法则1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。
2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。
3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。
4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /y2 = (k1 / k2) * (x2 / x1)。
五、实际应用反比例函数在物理学、经济学、生物学等领域有广泛的应用。
例如,在电路分析中,电流与电阻的关系可以由欧姆定律表示为 I = V/R,其中 V 为电压,I 为电流,R 为电阻,这可以看作是反比例函数的一个特例。
六、常见问题及解析1. 问题:如何确定反比例函数的定义域和值域?解析:反比例函数的定义域为除去 0 的所有实数,即 (-∞, 0) ∪ (0, +∞)。
九年级数学反比例函数知识点归纳总结
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
初三反比例知识点总结数学
初三反比例知识点总结数学一、反比例的性质和规律1. 反比例函数的定义反比例函数是指一个变量的变化导致另一个变量的变化与之成反比的函数。
通常表示为y=k/x,其中k是常数。
2. 反比例函数的图像特点反比例函数的图像呈现出一种特殊的曲线,即双曲线。
当x无限增大时,y趋于0;当x无限接近于0时,y趋于无穷大。
3. 反比例函数的性质(1)当x增大时,y减小;当x减小时,y增大。
(2)当x1>x2时,y1<y2;当x1<x2时,y1>y2。
4. 反比例函数与直线的关系反比例函数的图像在第一象限内有一条反比例函数的零点在原点的直线。
其斜率为常数k,而且直线关于原点对称。
二、反比例函数的应用1. 反比例函数在实际中的应用反比例函数在实际生活中有很多应用,比如说人均时间和工作效率、工程材料的数量和造价、飞机的飞行时间和速度、光合作用的速率和光照强度等。
这些都可以用反比例函数来表示并解决实际问题。
2. 反比例函数的解决问题在解决实际问题中,可以使用反比例函数来理解和分析问题,比如说通过反比例函数计算出两个变量之间的关系,由此得出一个变量的值;或者通过反比例函数的特性分析出两个变量之间的变化规律。
三、反比例函数的解析式与图像的绘制1. 反比例函数的解析式反比例函数的一般形式为y=k/x,其中k是比例系数。
在实际问题中,可以根据已知条件求出k,然后写出反比例函数的解析式。
2. 反比例函数的图像绘制绘制反比例函数的图像时,可以取三个以上的点,并将这些点连成光滑的曲线。
反比例函数的图像总是呈现出一种双曲线的形状,且与x轴和y轴都有渐近线。
四、反比例函数的解决问题1. 反比例函数的基本解法(1)一元一次反比例函数问题的解法:可以通过列方程,代入已知条件,解出未知量的值。
(2)一元二次反比例函数问题的解法:可以通过列方程,利用二次函数的解法来求得未知量的值。
2. 反比例函数问题的实例分析通过反比例函数的性质、规律,可以应用到各种实际问题中,比如有关时间、速度、数量、工作效率等各种问题。
初三数学:《反比例函数》知识点归纳
初三数学:?反比例函数?知识点归纳
反比例函数的定义
定义:形如函数y=k/x(k为常数且k0)叫做反比例函数 ,其中k叫做比例系数 ,x是自变量 ,y是自变量x的函数 ,x的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x称为反比例函数 ,其中k0 ,其中X是自变量 ,
1.当k0时 ,图象分别位于第一、三象限 ,同一个象限内 ,y随x的增大而减小;当k0时 ,图象分别位于二、四象限 ,同一个象限内,y随x的增大而增大。
2.k0时 ,函数在x0上同为减函数、在x0上同为减函数;k0时 ,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是:x
y的取值范围是:y0。
4..因为在y=k/x(k0)中 ,x不能为0 ,y也不能为0 ,所以反比例函数的图象不可能与x轴相交 ,也不可能与y轴相交。
但随着x无限增大或是无限减少 ,函数值无限趋近于0 ,故图像无限接近于x轴
5.反比例函数的图象既是轴对称图形 ,又是中心对称图形 ,它有两条对称轴y=x y=-x(即第一三 ,二四象限角平分线) ,对称中心是坐标原点。
反比例函数的一般形式
一般地 ,如果两个变量x、y之间的关系可以表示成
1 / 1。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反比例函数最全知识点
反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。
反比例函数知识点归纳(重点)
中考复习反比例函数基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.。
反比例函数九年级知识点
反比例函数九年级知识点反比例函数是初中数学中的一个重要知识点。
在九年级学完正比例函数后,学生通常会在课堂上接触到反比例函数的概念和性质。
接下来,我们将深入探讨反比例函数及其应用。
一、反比例函数的定义反比例函数是指函数中的两个变量之间存在着一种特殊的关系:当一个变量的值增大时,另一个变量的值就会减小,反之亦然。
其数学表达形式为 y = k / x,其中 k 是比例常数,而 x 和 y 分别表示自变量和因变量。
二、反比例函数的性质1. 定义域和值域对于反比例函数 y = k / x,自变量x 可以取任意不为0的实数,因变量 y 的值域为全体实数。
2. 对称中心反比例函数的图像关于第一象限、第二象限、第三象限和第四象限的坐标轴有对称性,且交点为(1, k)。
3. 单调性当自变量 x 变大时,因变量 y 逐渐减小;当自变量 x 变小时,因变量 y 逐渐增大。
因此,反比例函数是单调函数。
4. 渐近线对于反比例函数 y = k / x,当自变量 x 趋于正无穷大或负无穷大时,因变量 y 趋于0。
因此,反比例函数的图像与 x 轴和 y 轴分别有两条渐近线。
三、反比例函数的图像反比例函数的图像呈现出一条平面上的双曲线。
根据反比例函数的性质,我们可以知道,当自变量取较小的正数时,函数的值较大;当自变量取较大的正数时,函数的值较小。
图像的左侧和右侧都逐渐靠近 x 轴,说明函数值趋于无穷大。
而当自变量 x 离 0 越远时,函数值越接近于 0。
四、反比例函数的应用反比例函数广泛应用于各个领域,如物理学、经济学和生物学等。
以下是几个常见的应用示例:1. 电阻和电流欧姆定律规定电阻大小与通过电流的大小成反比例关系。
当电流增大时,电阻减小,反之亦然。
这种关系可以用反比例函数来描述。
2. 速度和时间在实际的物理运动中,速度与所用时间成反比例关系。
当速度增大时,所用时间减小,反之亦然。
反比例函数可以用来描述运动物体在不同速度下所用的时间。
初三数学反比例函数知识点及举例
反比例函数学问梳理学问点l. 反比例函数的概念重点:驾驭反比例函数的概念 难点:理解反比例函数的概念一般地,假如两个变量x 、y 之间的关系可以表示成xk y =或1〔k 为常数,0k ≠〕的形式,那么称y 是x 的反比例函数。
反比例函数的概念需留意以下几点:〔1〕k 是常数,且k 不为零;〔2〕xk 中分母x 的指数为1,如22y x =不是反比例函数。
〔3〕自变量x 的取值范围是0x ≠一实在数.〔4〕自变量y 的取值范围是0y ≠一实在数。
学问点2. 反比例函数的图象及性质重点:驾驭反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xk y =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象及x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但恒久不及坐标轴相交。
画反比例函数的图象时要留意的问题:〔1〕画反比例函数图象的方法是描点法;〔2〕画反比例函数图象要留意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。
〔3〕由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别表达出无限的接近坐标轴,但恒久不能到达x 轴和y 轴的改变趋势。
反比例函数的性质xky =)0k (≠的变形形式为k xy =〔常数〕所以: 〔1〕其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
〔2〕假设点()在反比例函数xk y =的图象上,那么点〔〕也在此图象上,故反比例函数的图象关于原点对称。
〔3〕当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 学问点3. 反比例函数解析式的确定。
重点:驾驭反比例函数解析式的确定 难点:由条件来确定反比例函数解析式〔1〕反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xk y =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xk y =中即可求出k 的值,从而确定反比例函数的关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三反比例函数知识点
反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质
反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像
反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:
1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用
反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,
当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反
比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效
率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比
例关系。
根据欧姆定律,电阻等于电压与电流的比值,当电压一定时,电流和电阻成反比。
四、反比例函数的解题方法
在解决反比例函数相关问题时,可以采用以下步骤:
1. 确定函数关系:根据问题中给出的条件,确定函数关系为反
比例函数。
2. 确定常数k:根据给出的条件,确定常数k的值。
常数k是反比例函数的关键属性之一,也是问题求解的重要依据。
3. 求解变量:根据问题中给出的已知条件和所求目标,通过方
程求解未知变量。
4. 检查和解释:对解得的结果进行检查,确保在问题的范围内。
解释结果的含义,对问题做出合理解释。
五、总结
反比例函数是初中数学中的一个重要概念,学好和应用反比例函
数能够帮助我们更好地理解函数的性质和图像,并能够解决与数量关
系有关的实际问题。
在学习过程中,我们需要掌握反比例函数的定义
和性质,了解其图像及应用方法,并能够熟练运用解题方法。
通过不
断练习和探索,我们可以更好地理解和应用反比例函数,提高数学思
维和问题解决能力。