一次函数综合专题
(完整版)《一次函数与几何图形综合》专题
《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。
一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。
1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。
中考数学专题《一次函数与几何综合》高分必刷原卷
(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
一次函数专题复习
一次函数专题复习专题一、函数定义1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.21 3、下列各曲线中不能表示y 是x 的函数是( )。
专题二、正比例函数1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( )A 、y=3x -2B 、y=(k+1)xC 、y=(|k|+1)xD 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数专题三、一次函数的定义1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。
3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数专题四、函数的增加性1.已知点A(x 1,y 1)和点B(x 2,y 2)在同一条直线y=kx+b 上,且k <0.若x 1>x 2,则y 1与y 2的关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.y 1与y 2的大小不确定2、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个O x y O x y O x y O x y专题五、一次函数与坐标系1.对于一次函数y=-2x+4,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. 1-B. 1C. 41- D. 41 4.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A .4 B .5 C .7 D .85、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,求的值?6、已知一次函数y=(a -2)x +2a 2-8求:(1)a 为何值时,一次函数的图象经过原点.(2)a 为何值时,一次函数的图象与y 轴交于点(0,10).专题六、待定系数法求一次函数解析式1. 若一次函数的图象经过点A(-3,0),B(0,1),则这个函数的解析式为 .2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;3、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总
函数的基本性质-中考数学重难点题型一次函数(专题训练)1.一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B 【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.2.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n>B .m n =C .m n <D .无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m<n .故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键3.已知一次函数y =kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k+3=3,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k+3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k+3=3,解得:k =0,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,3k+3=4,解得:k =13>0,∴y 随x 的增大而增大,选项D 不符合题意.故选:B .4.在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为()A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,1y =,∴一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.5.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为()A .-5B .5C .-6D .6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值.【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后得到的解析式为:2(3)1y x m =++-,化简得:25y x m =++,∵平移后得到的是正比例函数的图像,∴50m +=,解得:5m =-,故选:A .【点睛】本题主要考查一次函数图像的性质,根据“左加右减,上加下减”求出平移后的函数解析式是解决本题的关键.6.已知在平面直角坐标系xOy 中,直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是()A .y =x+2B .y =2x+2C .y =4x+2D .y =【分析】求得A 、B 的坐标,然后分别求得各个直线与x 的交点,进行比较即可得出结论.【解析】∵直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0)A 、y =x+2与x 轴的交点为(﹣2,0);故直线y =x+2与x 轴的交点在线段AB 上;B 、y =2x+2与x 轴的交点为(−2,0);故直线y =2x+2与x 轴的交点在线段AB 上;C 、y =4x+2与x 轴的交点为(−12,0);故直线y =4x+2与x 轴的交点不在线段AB 上;D 、y =与x 轴的交点为(−3,0);故直线y =与x 轴的交点在线段AB 上;故选:C .7.在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点,2B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n >C .m n ≥D .m n≤【答案】A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴322>∴m<n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.8.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .12y x =B .y x =C .32y x =D .2y x=【答案】D【分析】根据已知解析式求出点A 、B 的坐标,根据过原点O 且将AOB 的面积平分列式计算即可;【详解】如图所示,当0y =时,240x -+=,解得:2x =,∴()2,0A ,当0x =时,4y =,∴()0,4B ,∵C 在直线AB 上,设(),24C m m -+,∴12OBC C S OB x =⨯⨯△,12OCA C S OA y =⨯⨯△,∵2l 且将AOB 的面积平分,∴OBC OCA S S =△△,∴y C C OB x OA ⨯=⨯,∴()4224m m =⨯-+,解得1m =,∴()1,2C ,设直线2l 的解析式为y kx =,则2k =,∴2y x =;故答案选D.【点睛】本题主要考查了一次函数的应用,准确计算是解题的关键.9.如图,一次函数y x=的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A B.C.2D【答案】A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】=+的图像与x轴、y轴分别交于点A、B,解:∵一次函数y x令x=0,则,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x ,∴x ,又BD=AB+AD=2+x ,∴2+x=,解得:+1,∴x=+1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.10.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是().A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y 随x 增大而减小,当y=0时,x=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=−2x+3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.11.一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.【答案】32a <-【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.【详解】解: 一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<,解得:32a <-,故答案是:32a <-.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.12.若21x y +=,且01y <<,则x 的取值范围为______.【答案】102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.14.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …6-2-2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x=1代入y=8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x=1时,y=8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩,解得26k b =⎧⎨=⎩;(3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.15.在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x+b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y =kx+b (k≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x+b ,得1+b =2,解得b =1,∴一次函数的解析式为y =x+1;(2)把点(1,2)代入y =mx 求得m =2,∵当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =x+1的值,∴m≥2.16.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴−b+k=−2k=1,解得k=1b=3,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解y=x+3y=3x+1得x=1y=4,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:12+(4−1)2=10;(3)把y=a代入y=3x+1得,a=3x+1,解得x=a−13;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+a−13=0时,a=52,当12(a﹣3+0)=a−13时,a=7,当12(a−13+0)=a﹣3时,a=175,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.17.如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x 轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解析】(1)由y =−12x −1y =−2x +2解得x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x+2中,令y =0,则−12x ﹣1=0与﹣2x+2=0,解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=;(3)如图所示:自变量x 的取值范围是x <2.18.已知一次函数12y kx =+(k 为常数,k≠0)和23y x =-.(1)当k=﹣2时,若1y >2y ,求x 的取值范围;(2)当x<1时,1y >2y .结合图象,直接写出k 的取值范围.【解析】(1)当2k =-时,122y x =-+,根据题意,得223x x -+>-,解得53x <.(2)当x=1时,y=x−3=−2,把(1,−2)代入y 1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y 1>y 2;当0<k≤1时,y 1>y 2.∴k 的取值范围是:41k -≤≤且0k ≠.19.如图,已知过点B (1,0)的直线l 1与直线l 2:y=2x+4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.【解析】(1)∵点P (-1,a )在直线l 2:y=2x+4上,∴2×(-1)+4=a ,即a=2,则P 的坐标为(-1,2),设直线l 1的解析式为:y=kx+b (k≠0),那么02k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩.∴l 1的解析式为:y=-x+1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB=3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =1153211222⨯⨯-⨯⨯=.20.在平面直角坐标系xOy 中,直线l :y=kx+1(k≠0)与直线x=k ,直线y=-k 分别交于点A ,B ,直线x=k 与直线y=-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k=2时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.【解析】(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1).(2)由题意,A (k ,k 2+1),B (1k k--,-k ),C (k ,-k ),①当k=2时,A (2,5),B (-32,-2),C (2,-2),在W 区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1时,y=-k+1,则有k 2+2k=0,∴k=-2,当0>k≥-1时,W 内没有整数点,∴当0>k≥-1或k=-2时W 内没有整数点.。
中考考点复习之一次函数专题
中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。
4.理解正比例函数。
5.体会一次函数和二元一次方程的关系。
考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。
2023年中考数学考点总结+题型专训专题15 一次函数的应用与综合篇(原卷版)
知识回顾专题15一次函数的应用与综合1. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,k;与y轴的交点坐标公式为:()b ,0。
2. 一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
k 的取值 b 的取值 所在象限y 随x 的变化情况大致图像0>k0>b (图像交于y 轴正半轴)一二三象限y 随x 增大而增大0<b (图像交于y 轴负半轴)一三四象限0<k0>b (图像交于y 轴正半轴)一二四象限y 随x 减小而减小0<b (图像交于y 轴负半轴)二三四象限即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3. 一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
一次函数与几何综合培优练习专题
1一次函数与几何综合 专题练习题1. 如图,直线l 1的函数解析式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C.(1)求点D 的坐标;(2)求直线l 2的函数解析式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.2. 如图,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,直线y =-12x +1与x轴交于点C ,与y 轴交于点D ,两直线交于点E ,求S △BDE 和S 四边形AODE .3.如图,直线y =-43x +8分别交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线分别交x 轴、y 轴于C ,D 两点.(1)求点C 的坐标;(2)求直线CE 的解析式; (3)求△BCD 的面积.4. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC 交坐标轴于B ,C 两点,且∠CBA =45°.求直线BC 的解析式.5. 如图,A(0,4),B(-4,0),D(-2,0),OE ⊥AD 于点F ,交AB 于点E ,BM ⊥OB 交OE 的延长线于点M.(1)求直线AB 和直线AD 的解析式; (2)求点M 的坐标; (3)求点E ,F 的坐标.6. 如图,正方形OBAC 中,O(0,0),A(-2,2),B ,C 分别在x 轴、y 轴上,D(0,1),CE ⊥BD 交BD 延长线于点E ,求点E 的坐标.7. 如图,在平面直角坐标系中,A(0,1),B(3,12),P 为x 轴上一动点,则PA +PB最小时点P 的坐标为________.8. 如图,直线y =x +4与坐标轴交于点A ,B ,点C(-3,m)在直线AB 上,在y 轴上找一点P ,使PA +PC 的值最小,求这个最小值及点P 的坐标.9.(12分)如图,直角坐标系xOy 中,一次函数y =﹣x +4的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,3). (1)求m 的值及l 2的解析式;(2)①若点P(n,2)在△COA 的内部,求n 的取值范围;②求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.10如图,直线y =kx +b (k >0,b >0)与x 轴y 轴分别交于A ,B 两点,且经过点(12,b +5).(1)k = ;(2)若AB =OB +8,求b 的值;(3)在(2)的条件下,点M 为x 轴上一点,点N 为坐标平面内另一点,若以A ,B ,M ,N 为顶点的四边形是菱形,直接写出所有符合条件的点N 的坐标.。
初中一次函数集中专题训练100题-含答案
初中一次函数集中专题训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.对于一次函数y =3x ﹣1,下列说法正确的是( )A .图象经过第一、二、三象限B .函数值y 随x 的增大而增大C .函数图象与直线y =3x 相交D .函数图象与y 轴交于点(0,13) 2.下列各图象能表示y 是x 的一次函数的是( )A .B .C .D . 3.下列函数中,是一次函数的是( )A .y =1﹣xB .y =1xC .y =kx +1D .y =x 2+1 4.一条直线3y x =的图象沿x 轴向右平移2个单位,所得到的函数关系式是( ) A .22y x =+ B .32y x =- C .36y x =+ D .36y x =- 5.将直线y =﹣2x +1向上平移2个单位长度,所得到的直线解析式为( ) A .y =2x +1 B .y =﹣2x ﹣1C .y =2x +3D .y =﹣2x +3 6.已知一次函数()333m y m x -=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,则m 的值为( )A .-3B .-4C .4D .4或-4 7.一次函数y =3x ﹣2的图象经过的象限是( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限8.关于一次函数26y x =-,下列说法正确的是( )A .y 随x 的增大而减小B .图象交x 轴于点()0,6-C .点(1,2)在此函数的图象上D .图象经过第一、三、四象限 9.一次函数()23y m x m =-+-的图象不经过第二象限,则m 的值可以是( ) A .1 B .2 C .3 D .410.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .7二、填空题11.下列函数:①y =2x -8;①y =-2x +8:①y =2x +8;①y =-2x -8.其中,y 随x 的增大而减小的函数是____(填序号).12.若一次函数y=kx+2的图象经过点(2,10),则k 的值为________________. 13.将直线y x =-向上平移3个单位长度,平移后直线的解析式为________. 14.当a =______时,y =x 2a -1是正比例函数.15.根据图象,不等式kx >﹣x +3的解集是_____.16.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c=+⎧⎨=+⎩的解为______.17.把正比例函数3y x =-的图象向上平移2个单位长度,得到的函数图象的解析式是________.18.已知一次函数y=(m+2)x+3,若y 随x 值增大而增大,则m 的取值范围是________.19.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当①OBC 的面积为3时,点C 的坐标为______.20.甲、乙两名大学生去距学校36km 的某乡镇进行社会调查,他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车继续步行向前走,乙骑电动车按原路返回,取到相机后马上骑电动车追甲,在距乡镇13.5km 处追上甲并同车前往乡镇,若电动车速度始终不变,设甲与学校相距y 甲km ,乙与学校相距y 乙km ,甲离开学校的时间为x min ,y 甲,y 乙与x 之间的函数图象如图,则下列结论:①电动车的速度为0.9km/min ;①甲步行所用的时间为45min ;①甲步行的速度为0.15km/min .其中正确的是___________(只填序号).21.如图,已知函数2y x b =+与函数6y kx =-的图象交于点P ,则不等式62kx x b -<+的解集是______.22.当自变量x 的值满足_______时,直线2y x =-+上的点在x 轴下方.23.如果P (2,m ),A (1, 1), B (4, 0)三点在同一直线上,则m 的值为_________. 24.若函数y kx b =+的图像如图所示,则关于x 的不等式0kx b -+<的解集是______.25.如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-2.则下列结论:①m <0,n >0;①直线y =nx +4n 一定经过点(-4,0);①m 与n 满足m =2n -2;①当x >-2时,nx +4n >-x +m ,其中正确结论的个数是____个.26.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.27.如图,□OABC 的顶点A 在x 轴的正半轴上,点D (4,3)在对角线OB 上,反比例函数y =k x (k >0,x >0)的图像经过C 、D 两点.已知□OABC 的面积是283,则点B 的坐标为_____________.28.如图,在平面直角坐标系中,点1A ,2A ,3A ……都在x 轴上,点1B ,2B ,3B ……都在直线y x =上,11OA B ,112B A A △,212△B B A ,223B A A △,323B B A △……都是等腰直角三角形,且11OA =,则点2022B 的坐标是__________.三、解答题29.某商店销售A 、B 两种品牌书包.已知购买1个A 品牌书包和2个B 品牌书包共需550元;购买2个A 品牌书包和1个B 品牌书包共需500元.(1)求这两种书包的单价.(2)某校准备购买同一种品牌的书包(10)m m >个,该商店对这两种品牌的书包给出优惠活动:A 种品牌的书包按原价的八折销售;若购买B 种品牌的书包10个以上,则超出部分按原价的五折销售.①设购买A 品牌书包的费用为1w 元,购买B 品牌书包的费用为2w 元,请分别求出1w ,2w 与m 的函数关系式;②根据以上信息,试说明学校购买哪种品牌书包更省钱.30.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式; (2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由. (3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?31.如图,直线113:4l y x m =-+与y 轴交于点(0,6)A ,直线2:1l y kx =+分别与x 轴交于点(2,0)B -,与y 轴交于点C ,两条直线交点记为D .(1)m = ,k = ;(2)求两直线交点D 的坐标;(3)根据图像直接写出12y y <时自变量x 的取值范围.32.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点()1,2P 一个跳步后对应点()2,0P '.已知点()1,4A -,()2,3B . (1)求点A ,B 经过1个跳步后的对应点A ',B '的坐标.(2)求直线AB 经过一个跳步后对应直线的函数表达式.33.如图所示,OA ,BA 分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程s (米)与时间t (秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)如果甲、乙两名学生所行驶的路程记为s 甲,s 乙,试写出s 甲,s 乙与t 之间的函数关系式.(3)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?34.学校准备购进一批节能灯,已知2只A 型节能灯和5只B 型节能灯共需45元;4只A 型节能灯和3只B 型节能灯共需41元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元.(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.35.某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克2.5元.小王携带现金3 000元到该市场采购苹果,并以批发价买进.如果购进的苹果是x 千克,小王付款后剩余现金y 元.(1)试写出x 与y 之间的函数关系式,并指出自变量的取值范围;(2)画出函数图象,指出图象形状和终点坐标;(3)若小王以每千克3元的价格将苹果卖出,卖出x 千克后可获利润多少元? 36.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?37.如图,在平面直角坐标系中,函数883y x =-+的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得ABP AOM S S =△△,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.38.甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60km/h 的速度匀速行驶.(①)填空:①,?A B 两城相距_______km ; ①当02x ≤≤时,甲车的速度为_______km /h ;①乙车比甲车晚_______h 到达B 城;①甲车出发4h 时,距离A 城_______km ;①甲、乙两车在行程中相遇时,甲车离开A 城的时间为_______h ;(①)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式. (①)当1352x ≤≤时,两车所在位置的距离最多相差多少km ? 39.赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y (箱)与销售单价x (元)之间的函数关系式;(2)若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少40.如图,直线y =ax +b 与双曲线k y x=相交于两点A (1,2),B (m ,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax +b >k x的解集(直接写出答案) 41.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.42.如图,已知A (-3,n )、B (2,-3)是一次函数y kx b =+的图象和反比例函数m y x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求①AOB 的面积;(3)根据图象:直接写出使得 m kx b x+< 成立时,x 的取值范围; 43.已知关于x 、y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩. (1)若关于x 、y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩ 的解为13x y =-⎧⎨=⎩,直接写出原方程组的解为____________.(2)若2m n +=,且0x y >>,求32W x y =-的取值范围.44.已知:如图点(68)A ,在正比例函数图象上,点B 坐标为(12,0),连接AB ,10AO AB ==,点C 是线段AB 的中点,点P 在线段BO 上以每秒2个单位的速度由点B 向点O 运动,点Q 在线段AO 上由点A 向点O 运动,P Q 、两点同时运动,同时停止,运动时间为t 秒.(1)正比例函数的关系式为 ;(2)当1t =秒,且6OPQ S ∆=时,求点Q 的坐标;(3)连接CP ,在点P Q 、运动过程中,OPQ ∆与BPC ∆是否全等?如果全等,请求出点Q 的运动速度;如果不全等,请说明理由.45.先阅读材料,再解答问题:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d (2,1)P -到直线23y x =+的距离.解:由直线23y x =+可知:2,3k b ==.所以点(2,1)P -到直线23y x =+的距离为d === 求:(1)已知直线21y x =+与25y x =-平行,求这两条平行线之间的距离;(2)已知直线443y x =--分别交,x y 轴于,A B 两点,C 是以(2,2)C 为圆心,2为半径的圆,P 为C 上的动点,试求PAB ∆面积的最大值.46.平面直角坐标系中,直线y ax b =+与x 轴、y 轴分别交于点B 、C ,且a 、b 满足:3a =,不论k 为何值,直线:2l y kx k =-都经过x 轴上一定点A . (1)=a __________,b =__________;点A 的坐标为___________;(2)如图1,当1k =时,将线段BC 沿某个方向平移,使点B 、C 对应的点M 、N 恰好在直线l 和直线24y x =-上,请你判断四边形BMNC 的形状,并说明理由;(3)如图2,当k 的取值发生变化时,直线:2l y kx k =-绕着点A 旋转,当它与直线y ax b =+相交的夹角为45°时,求出相应的k 的值.47.如图,已知点A (2,-5)在直线1l :y =2x +b 上,1l 和2l :y =kx ﹣1的图象交于点B ,且点B 的横坐标为8.(1)直接写出b 、k 的值;(2)若直线1l 、2l 与y 轴分别交于点C 、D ,点P 在线段BC 上,满足14BDP BDC SS =,求出点P 的坐标;(3)若点Q 是直线2l 上一点,且①BAQ =45°,求出点Q 的坐标.48.如图,在平面直角坐标系中,直线AB :y =kx +b 交y 轴于点A (0,1),交x 轴于点B (3,0).平行于y 轴的直线x =1交AB 于点D ,交x 轴于点E ,点P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C 的坐标.参考答案:1.B【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】①一次函数y=3x﹣1,①该函数图象经过第一、三、四象限,故选项A错误,函数值y随x的增大而增大,故选项B正确;函数图象与y=3x互相平行,故选项C错误;函数图象与y轴交于点(0,﹣1),故选项D错误,故选:B.【点睛】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.B【分析】一次函数的图象是直线.【详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【点睛】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.3.A【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:A、y=1-x是一次函数,故此选项符合题意;B、y=1x是反比例函数,故此选项不符合题意;C、当k=0时不是一次函数,故此选项不符合题意;D、y=x2+1是二次函数,故此选项不符合题意.故选:A.【点睛】本题考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,函数y=3x的图象沿x轴向右平移2个单位,所得直线的解析式为y =3(x -2),即y =3x -6.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.D【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y =﹣2x +1上平移2个单位长度后所得直线的解析式为:y =﹣2x +12,即y =﹣2x +3故选:D .【点睛】本题考查了一次函数图象的平移规律,理解平移规律是解题的关键.6.C【分析】根据题意:可得y 随x 的增大而减小,31m -=,即可求解.【详解】解:①一次函数()333m y m x-=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >, ①y 随x 的增大而减小, ①31m -=,且30m < ,解得:4m =± ,且3m > ,①4m = .故选:C【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数图象上点的坐标特点,和一次函数的性质是解题的关键.7.C【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象经过哪几个象限.【详解】解:①一次函数y =3x ﹣2,k =3>0,b =﹣2<0,①该函数的图象经过第一、三、四象限,故选C .【点睛】本题主要考查一次函数图象性质,解决本题的关键是要熟练掌握一次函数图象的性质.8.D【分析】根据一次函数的图象和性质,逐项判断即可求解.【详解】解:A 、①20,60>-<,①y 随x 的增大而增大,故A 选项错误,不符合题意;B 、当0x =时,y =-6,①图象交y 轴于点()0,6-,故B 选项错误,不符合题意;C 、当1x =时,21642y =⨯-=-≠,故C 选项错误,不符合题意;D 、图象经过第一、三、四象限,故D 选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9.C【分析】根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:①()23y m x m =-+-的图象不经过第二象限,①2030m m ->⎧⎨-≤⎩, ①23m <≤.故选:C .【点睛】本题考查一次函数图象与系数的关系:由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.10.A【分析】把2x =-代入解析式即可.【详解】解:把2x =-代入23y x =+得,2(2)31y =⨯-+=-,故选:A .【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.11.①①【分析】根据一次函数(0)y kx b k =+≠的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小,可找出答案.【详解】①①①①①都是一次函数,①当y 随x 的增大而减小时,即0k <,①20k =>,①20k =-<,①20k =>,①20k =-<,①有①①满足,故答案为:①①.【点睛】本题考查一次函数的性质,掌握一次函数的增减性是解题的关键.12.4.【详解】试题解析:①一次函数y=kx+2的图象经过点(2,10),①10=2k+2,解得k=4.考点:一次函数图象上点的坐标特征.13.y =-x +3【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:将直线y =-x 向上平移3个单位长度,平移后直线的解析式为y =-x +3, 故答案为:y =-x +3.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键.14.1.【分析】根据正比例函数的定义可知2a-1=1,从而可求得a 的值.【详解】①y=x 2a-1是正比例函数,①2a-1=1,解得:a=1.故答案为1.【点睛】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a-1=1是解题的关键.15.1x >【分析】先根据函数图象得出交点坐标,根据交点的坐标和图象得出即可.【详解】解:根据图象可知:两函数的交点为(1,2),所以关于x 的一元一次不等式kx >﹣x +3的解集为1x >,故答案为:1x >.【点睛】本题主要考查一次函数与不等式,数形结合是解题的关键.16.13x y =⎧⎨=⎩【分析】首先求出P 点坐标,再根据两函数图象的交点坐标即为两函数组成的方程组的解.【详解】解:①直线y =x +2过点P (m ,3),①3=m +2,解得:m =1,①P (1,3),①方程组2y x y ax c =+⎧⎨=+⎩的解为13x y =⎧⎨=⎩. 故答案为:13x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数图象的关系.17.32y x =-+【分析】直线上下平移解析式时,要注意平移时k 的值不变,只有b 发生变化.【详解】解:根据题意,①正比例函数3y x =-的图象向上平移2个单位长度,①得到的函数图象的解析式是:32y x =-+;故答案为:32y x =-+.【点睛】本题要注意利用一次函数平移的特点,上加下减,比较基础.18.m >﹣2【详解】试题分析:根据一次函数的图象与系数的关系列出关于m 的不等式m+2>0,求出m 的取值范围m >﹣2.考点:一次函数图象与系数的关系19.()3,6-【分析】过点C 作CH ①x 轴于点H ,由题意易得1,3OB OA ==,然后根据①OBC 的面积可得点C 的纵坐标,进而问题可求解.【详解】解:过点C 作CH ①x 轴于点H ,如图所示:①直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,①令0x =时,则有y =-3,即OA =3, ①13OB OA =, ①1OB =,即()1,0B -,代入直线解析式得:03k =--,解得:3k =-;①直线AB 的解析式为33y x =--,①①OBC 的面积为3, ①132OB CH ⋅=, ①6CH =,即点C 的纵坐标为6,①336x --=,解得:3x =-,①()3,6C -;故答案为()3,6-.【点睛】本题主要考查一次函数与几何的综合,熟练掌握利用待定系数法求函数解析式是解题的关键.20.①①##①①【分析】①根据图象由速度=路程÷时间就可以求出结论;①先求出乙追上甲所用的时间,再加上乙返回学校所用的时间就是乙步行所用的时间; ①先根据第二问的结论求出甲步行的速度.【详解】解:①由图象,得18200.9÷=(km/min ),故①说法正确;①乙从学校追上甲所用的时间为:(3613.5)0.925-÷=(min ),①甲步行所用的时间为:202545+=(min ),故①说法正确;①由题意,得甲步行的速度为:(3613.518)450.1--÷=(km/min ),故①说法错误;综上,正确的是①①,故答案为:①①.【点睛】本题考查了一次函数的应用,速度与时间,追击问题,分析函数图象反应的数量关系是解题关键.21.2x >【分析】根据图象即可得出结论.【详解】解:由图象可知:在点P 的右侧,函数2y x b =+的图象在函数6y kx =-图象的上方①62kx x b -<+的解集是2x >故答案为:2x >.【点睛】此题考查的是一次函数与不等式,掌握利用图象解不等式是解题关键. 22.2x >【分析】直线y =-x +2上的点在x 轴下方时,应有-x +2<0,求解不等式即可.【详解】当直线2y x =-+上的点在x 轴下方,则y < 0,∴-x +2<0,解得:x >2,即当自变量x 的值满足x > 2时,直线2y x =-+上的点在x 轴下方,故答案为:2x >.【点睛】本题考查了一次函数与不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.23.23【详解】设直线的解析式为y =kx +b (k ≠0)①A (1,1),B (4,0)140k b k b +=⎧∴⎨+=⎩解得4313b k ⎧=⎪⎪⎨⎪=-⎪⎩①直线AB 的解析式为1433y x =-+ ①P (2,m )在直线上,1422333m ⎛⎫∴=-⨯+= ⎪⎝⎭. 24.6X <-【分析】观察函数图象得到即可.【详解】由图象可知函数y=kx+b 与x 轴的交点为(6,0),则函数y=-kx+b 与x 轴的交点为(-6,0),且y 随x 的增大而增大,①当x <-6时,-kx+b <0,所以关于x 的不等式-kx+b <0的解集是x <-6,故答案为:x <-6.【点睛】此题考查一次函数与一元一次不等式的关系,解题关键在于掌握从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.25.4【分析】①由直线y =−x +m 与y 轴交于负半轴,可得m <0;y =nx +4n (n ≠0)的图象从左往右逐渐上升,可得n >0,即可判断结论①正误;①将x =−4代入y =nx +4n ,求出y =0,即可判断结论①正误;①代入交点坐标整理即可判断结论①正误;①观察函数图象,可知当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,即nx +4n >−x +m ,即可判断结论①正误.【详解】解:①①直线y =−x +m 与y 轴交于负半轴,①m <0;①y =nx +4n (n ≠0)的图象从左往右逐渐上升,①n >0,故结论①正确;①将x =−4代入y =nx +4n ,得y =−4n +4n =0,①直线y =nx +4n 一定经过点(−4,0).故结论①正确;①①直线y =−x +m 与y =nx +4n (n ≠0)的交点的横坐标为−2,①当x =−2时,y =2+m =−2n +4n ,①m =2n −2.故结论①正确;①①当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,①当x >−2时,nx +4n >−x +m ,①()14n x m n +>-故结论①错误.故答案为:①①①.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象.解题的关键在于熟练掌握函数图象与性质.26.1x ≤【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2), ①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.27.(163,4) 【分析】由点D 坐标求出k =12,直线OB 的表达式为y =34x ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x,由平行四边形的面积公式列方程求出x 值即可解答.【详解】解:①反比例函数()0,0k y k x x =>>的图象经过点D (4,3), ①k =4×3=12,①反比例函数的表达式为12y x=, ①点D 在对角线OB 上, ①设直线OB 的表达式为y =mx ,①3=4m ,则m =34, ①直线OB 的表达式为y =34x , ①四边形ABCD 是平行四边形,①BC ①OA ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x, ①OABC 的面积是283, ①(x ﹣16x)·34x =283, 解得:x =163±, ①x >0,①x =163, ①点B 坐标为(163,4), 故答案为:(163,4).【点睛】本题考查待定系数法求函数解析式、反比例函数图象上点的坐标特征、平行四边形的性质、图形与坐标,一元二次方程的解法,熟练掌握反比例函数图象上点的坐标特征和平行四边形的性质是解答的关键.28.20212021(2,2)【分析】由11OA =得到点1B 的坐标,然后利用等腰直角三角形的性质得到点2A 的坐标,进而得到点2B 的坐标,然后再一次类推得到点2022B 的坐标.【详解】解:11,OA =∴点1A 的坐标为()1,0,11OA B 是等腰直角三角形,111,A B ∴=()11,1B ∴,112B A A 是等腰直角三角形,12121,A A B A ∴==212B B A 为等腰直角三角形,232A A ∴=,()22,2B ∴,同理可得,22331134(2,2),(2,2),,(2,2),n n n B B B --202120212022(2,2),B ∴故答案为:20212021(2,2).【点睛】本题考查了正比例函数图象上点的坐标特征、等腰直角三角形的性质,勾股定理的应用,解题的关键是通过等腰直角三角形的性质依次求出系列点B 的坐标找出规律. 29.(1)A 品牌书包单价为150元,B 品牌书包单价为200元(2)当1050m <<时,购买A 品牌书包更省钱;当50m =时,购买两种品牌书包花费相同;当50m >时,购买B 品牌书包更省钱【分析】(1)设A 品牌书包单价为x 元,B 品牌书包单价为y 元,根据所给等量关系列二元一次方程组,即可求解;(2)①根据优惠活动的规则列式即可;②分别计算12w w <,12w w =,12w w >得出m 的取值范围,即可得出结论.【详解】(1)解:设A 品牌书包单价为x 元,B 品牌书包单价为y 元,由题意知25502500x y x y +=⎧⎨+=⎩, 解得150200x y =⎧⎨=⎩, 即A 品牌书包单价为150元,B 品牌书包单价为200元;(2)解:①根据优惠活动的规则可知:10.8150120w m m =⨯⋅=,()210200102000.51001000w m m =⨯+-⨯⨯=+;②当12w w <时,1201001000m m <+,解得50m <, 又10m >,∴当1050m <<时,购买A 品牌书包更省钱;当12w w =时,1201001000m m =+,解得50m =,∴当50m =时,购买两种品牌书包花费相同;当12w w >时,1201001000m m >+,解得50m >,∴当50m >时,购买B 品牌书包更省钱.【点睛】本题考查二元一次方程组的应用,一次函数的应用,解一元一次不等式等知识点,解题的关键是理解题意,正确列出二次一次方程组及函数关系式.30.(1)y 甲=x +1500,y 乙=2.5x (2)选择乙印刷厂比较合算(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可; (3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,①y 甲>y 乙,①选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,①1500>1200,①选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.31.(1)6,12;(2)D 点坐标为(4,3);(3)>4x .【详解】试题分析:(1)将A (0,6)代入134y x m =-+即可求出m 的值,将B (−2,0)代入1y kx =+即可求出k 的值. (2)根据(1),得到两函数的解析式,组成方程组解求出D 的坐标;(3)由图可直接得出12y y <时自变量x 的取值范围.试题解析:(1)将A (0,6)代入134y x m =-+得,m =6; 将B (−2,0)代入1y kx =+得, 1.2k = (2) 联立12,l l 解析式,即364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:43x y =⎧⎨=⎩, 故D 点坐标为(4,3);(3)由图可知,在D 点右侧时,即4x >时,12y y <. 32.(1)()0,2A ',()3,1B ';(2)123y x =-+. 【分析】(1)根据坐标系中点平移坐标变化规律即可解答.(2)根据(1)点A ,B 经过1个跳步后的对应点A ',B '的坐标在直线AB 经过一个跳步后直线上.利用待定系数法即可求解【详解】解:(1)点()1,4A -经过1个跳步后对应点()0,2A ',点()2,3B 经过1个跳步后对应点()3,1B '.(2)设直线AB 经过一个跳步后对应直线A B ''的函数表达式为y kx b =+,由题意得:2132b k =⎧⎨=+⎩, ①13k =-,2b =. ①直线AB 经过一个跳步后对应直线A B ''的函数表达式为123y x =-+. 【点睛】本题考查了坐标与图形变化-平移和待定系数法求一次函数解析式,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键. 33.(1)12米;(2)s 乙=132t +12. (3)t<8秒;t=8;t>8秒. 【分析】(1)由图象可知,x =0时,y=12,即出发时乙在甲前面12米处.(2)因为甲的图象过点(0,0),(8,64),乙的图象过点(0,12),(8,64),利用待定系数法即可求解.(3)由图象可知它们的交点为(8,64),即8秒时两人相遇,再分别分析x <8和x >8时,两直线的位置即可求出答案.【详解】解:(1)出发时乙在甲的前面12米处.(2)学生甲所走的路程的图象是OA,设s 甲=k1t,当t =8时,s =64,①k1=8,①s甲=8t .学生乙所走路程的图象是BA ,设s甲=k2t+b,将点A (8,64)及点B(0,12)代入,可得2132k =,b =12, ①s甲=132t+12. (3)由图可知OA,BA 的交点A 的坐标是(8,64),则当t <8秒时,甲走在乙的后面;当t =8秒时,他们相遇;当t >8秒时,甲走在乙的前面.【点睛】本题主要考察函数图象信息分析,解决本题的关键是要熟练掌握分析函数图象的。
一次函数专题
一次函数【知识点】1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)考点例析考点1认识一次函数1.下列函数关系式:①y=-2x,②y=-2x,③y=-2x2,④y=3x,⑤y=2x-1.其中是一次函数的有()A.①⑤B.①④⑤C.②⑤D.②④⑤2.若一次函数y=kx+b,当x=-2时,y=7;当x=1时,y=-11,则k、b的值为()A.k=6,b=5B.k=-1,b=-5C.k=-6,b=-5D.k=1,b=53.据调查,某地铁自行车存放处在某星期天的存车量为4000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x辆,存车费总收入为y元,则y关于x的函数关系式为()A.y=0.10x+800(0≤x≤4000)B.y=0.10x+1200(0≤x≤4000)C.y=-0.10x+800(0≤x≤4000)D.y=-0.10x+1200(0≤x≤4000)4.若函数y=(n+2)x+(n2-4)是一次函数,则n__________;若函数y=(n+2)x+(n2-4)是正比例函数,则n__________.5.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?6.函数y=(m-2)x n-1+n是一次函数,则m、n应满足的条件是()A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=07.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确8.如图,在△ABC中,∠ABC与∠ACB的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.9.+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-12时,函数值y是多少?10.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.考点2一次函数的图象与性质1.(2014·东营)直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.(2014·资阳)一次函数y=-2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2014·温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)4.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是()A.m<0B.m>0C.m<2D.m>25.如果一次函数y=k x+b的图象经过第一、三、四象限,那么()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对7.已知一次函数y=(a+8)x+(6-b),求:(1)a、b为何值时,y随x的增大而增大?(2)a、b为何值时,函数与y轴交点在x轴上方?(3)a、b为何值时,图象过原点?10.(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()11.(2014·达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0B.k<0,b>0C.k>0,b≥0D.k<0,b≥012.(2014·娄底)一次函数y=kx-k(k<0)的图象大致是()13.(2014·巴中)已知直线y=mx+n,其中m、n是常数,且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限14.(2014·鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第__________象限.15.(2014·嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)的两点,则y1-y2__________0.(填“>”或“<”)16.如图是一个正比例函数的图象,把该图象向左平移1个单位长度,得到的函数图象的解析式为__________.17.已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.18.作出一次函数y=2x-1的图象,根据图象回答问题:(1)y的值随x的变化怎样变化?(2)当x取何值时,y>0,y=0,y<0?(3)指出图象与两坐标轴的交点坐标.19.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x-3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.挑战自我20.如图,点B是直线y=-x+8在第一象限的一动点,A(6,0),设△AOB的面积为S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)画出S与x之间函数关系式的图象;。
2022-2023学年人教版中考数学复习《一次函数综合解答题》专题提升训练(附答案)
2022-2023学年人教版中考数学复习《一次函数综合解答题》专题提升训练(附答案)1.直线y=kx﹣2与坐标轴所围图形的面积为3,点A(3,m)是直线y=kx﹣2上一点.(1)求点A的坐标;(2)点P在y轴上,且∠P AO=30°,直接写出点P坐标.2.在平面直角坐标系xOy中,一次函数y=kx+4(k<0)交x轴于点A,交y轴于点B.已知△ABO为等腰直角三角形.(1)请直接写出k的值为;(2)将一次函数y=kx+4(k≠0)中,直线y=﹣1下方的部分沿直线y=﹣1翻折,其余部分保持不变,得到的新图象记为图象G.已知在x轴有一动点P(n,0),过点P作x轴的垂线,交于点M,交图象G于点N.当点M在点N上方时,且MN<2,求n的取值范围;(3)记图象G交x轴于另一点C,点D为图象G上一点,点E为图象G的对称轴上一点.当以A,C,D,E为顶点的四边形为平行四边形时,则点D的坐标为.3.对于平面上A、B两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点A、B的“领域”.(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为.(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B,点A、B的“领域”的面积不超过16,直接写出m的取值范围.4.如图,一次函数y=x+3的图象分别与y轴,x轴交于点A,B,点P从点B出发,沿射线BA以每秒1个单位的速度运动,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OP A的面积为3,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?请直接写出t的值.5.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”,(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的面积为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD解析式.6.在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连接PQ,取PQ的中点,由所有这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(﹣2,2),D(1,2),E(1,0),F(﹣2,0).(1)若点O和线段CD的“中点形”为图形G,则在点H1(﹣1,1),H2(0,1),H3(2,1)中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标;若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M 与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.7.如图,在平面直角坐标系xOy中,已知点A(1,2),B(3,2),连接AB.若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是;(2)若点M(m,n)在直线y=﹣x+2上,且是线段AB的“临近点”,求m的取值范围;(3)若直线y=﹣x+b上存在线段AB的“临近点”,求b的取值范围.8.在平面直角坐标系xOy中,点P和图形W的中间点的定义如下:Q是图形W上一点,若M为线段PQ的中点,则称M为点P和图形W的中间点.C(﹣2,3),D(1,3),E(1,0),F(﹣2,0)(1)点A(2,0),①点A和原点的中间点的坐标为;②求点A和线段CD的中间点的横坐标m的取值范围;(2)点B为直线y=2x上一点,在四边形CDEF的边上存在点B和四边形CDEF的中间点,直接写出点B的横坐标n的取值范围.9.在平面直角坐标系xOy中,对于直线l及点P给出如下定义:过点P作y轴的垂线交直线l于点Q,若PQ≤1,则称点P为直线l的关联点,当PQ=1时,称点P为直线l的最佳关联点,当点P与点Q重合时,记PQ=0.例如,点P(1,2)是直线y=x的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy中,已知直线l1:y=﹣x+3,l2:y=2x+b.(1)已知点A(0,4),B(,1),C(2,3),上述各点是直线l1的关联点是;(2)若点D(﹣1,m)是直线l1的最佳关联点,则m的值是;(3)在(1)的条件下,点E在x轴的正半轴上,以OA、OE为边作正方形AOEF.若直线l2与正方形AOEF相交,且交点中至少有一个是直线l1的关联点,则b的取值范围是.10.对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义:记a=x+y,b=﹣y,将点M(a,b)与N(b,a)称为点P的一对“相伴点”.例如:点P(2,3)的一对“相伴点”是点(5,﹣3)与(﹣3,5).(1)点Q(4,﹣1)的一对“相伴点”的坐标是与;(2)若点A(8,y)的一对“相伴点”重合,则y的值为;(3)若点B的一个“相伴点”的坐标为(﹣1,7),求点B的坐标;(4)如图,直线l经过点(0,﹣3)且平行于x轴.若点C是直线l上的一个动点,点M与N是点C的一对“相伴点”,在图中画出所有符合条件的点M,N组成的图形.11.在平面直角坐标系xOy中,对于点P与▱ABCD,给出如下的定义:将过点P的直线记为l P,若直线l P与▱ABCD有且只有两个公共点,则称这两个公共点之间的距离为直线l P与▱ABCD的“穿越距离”,记作d(l P,▱ABCD).例如,已知过点O的直线l O:y=x与▱HIJK,其中H(﹣2,﹣1),I(1,﹣1),J(2,1),K(﹣1,1),如图1所示,则d(l O,▱HIJK)=2.请解决下面的问题:已知▱ABCD,其中A(1,2),B(3,2),C(t,4),D(t﹣2,4).(1)当t=3时,已知M(2,3),l M为过点M的直线y=kx+b.①当k=0时,d(l M,▱ABCD)=;当k=1时,d(l M,▱ABCD)=;②若d(l M,▱ABCD)=,结合图象,求k的值;(2)已知N(﹣1,0),l N为过点N的直线,若d(l N,▱ABCD)有最大值,且最大值为2,直接写出t的取值范围.12.数学课上,李老师提出问题:如图1,在正方形ABCD中,点E是边BC的中点,∠AEF =90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.经过思考,小聪展示了一种正确的解题思路.取AB的中点H,连接HE,则△BHE为等腰直角三角形,这时只需证△AHE与△ECF全等即可.在此基础上,同学们进行了进一步的探究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(不含点B,C)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程,如果不正确,请说明理由;(2)小华提出:如图3,如果点E是边BC延长线上的任意一点,其他条件不变,那么结论“AE=EF”是否成立?(填“是”或“否”);(3)小丽提出:如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为1,当E为BC边上(不含点B,C)的某一点时,点F恰好落在直线y=﹣2x+3上,请直接写出此时点E的坐标.13.定义:在平面直角坐标系中,对于任意P(x1,y1),Q(x2,y2),若点M(x,y)满足x=3(x1+x2),y=3(y1+y2),则称点M是点P,Q的“美妙点”.例如:点P(1,2),Q(﹣2,1),当点M(x,y)满足x=3×(1﹣2)=﹣3,y=3×(2+1)=9时,则点M(﹣3,9)是点P,Q的“美妙点”.(1)已知点A(﹣1,3),B(3,3),C(2,﹣2),请说明其中一点是另外两点的“美妙点”;(2)如图,已知点D是直线y=x+3上的一点.点E(3,0),点M(x,y)是点D、E的“美妙点”.①求y与x的函数关系式;②若直线DM与x轴相交于点F,当△MEF是以EF为直角边的直角三角形时,求点D的坐标.14.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为,即P'(3,6)(1)①点P(1,2)的“2属派生点”P′的坐标为;②若点P的“k属派生点”P′的坐标为(4,4),请写出一个符合条件的点P的坐标;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且OP=2PP′,则k 的值;(3)如图,点Q的坐标为(0,4),点A在函数的图象上,且点A是点B的“−1属派生点”,当线段BQ最短时,求A点坐标.15.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式.16.已知函数y =,请结合学习函数的经验,探究它的相关性质:(1)自变量x 的取值范围是 ;(2)x 与y 的几组对应值如下表,请补全表格:x… ﹣2.5 ﹣2 ﹣1.5 ﹣1 ﹣0.5 ﹣0.2 0.2 0.5 1 1.5 2 2.5 … y … 5.85 3.5 1.58 0 ﹣1.75 ﹣4.965.04 m n 2.92 4.56.65 …其中m = ,n = .(3)图中画出了函数的一部分图象,请根据表中数据,用描点法补全函数图象;(4)请写出这个函数的一条性质:;(5)结合图象,直接写出方程的所有实数根:.17.在平面直角坐标系xOy中,图形G的投影矩形定义如下:矩形的两组对边分别平行于x轴,y轴,图形G的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为k,我们称常数k为图形G的投影比.如图1,矩形ABCD为△DEF 的投影矩形,其投影k=.(1)如图2,若点A(1,3),B(3,5),则△OAB投影比的值为;(2)已知点C(4,0),在函数y=﹣2x+4(其中x>0)的图象上有一点D,若△OCD 的投影比k=2,求点D的坐标;(3)已知点E(3,2),点F(3,4),在直线y=x+1上有一动点P,若△PEF的投影比k<2,则点P的横坐标m的取值范围是(直接写出答案).18.在平面直角坐标系xOy中,对任意两点A(x A,y B)与B(x B,y B)的“识别距离”,给出如下定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB =|x A﹣x B|;若|x A﹣x B|<|y A﹣y B|,则A(x A,y A)与B(x B,y B)的“识别距离”D AB=|y A ﹣y B|;即D AB=max{|x A﹣x B|,|y A﹣y B|}.已知点A(1,0),点B(﹣1,4),(1)A、B两点之间的识别距离D AB=.(2)在图1中的平面直角坐标系中描出到点A的识别距离为2的点.(3)如图2,点C,点D,和点E分别是直线m,直线n,和直线p上的点,若点C、D、E到点A的识别距离最小,求出C、D、E的坐标.19.如图1,A、C是平面内的两个定点,∠BAC=20°,点P为射线AB上一动点,过点P 作PC的垂线交直线AC于点D.设∠APC的度数为x°,∠PDC的度数为y°.小明对x与y之间满足的等量关系进行了探究.下面是小明的探究过程,请补充完整:(1)如图1,当x=40°时,依题意补全图形;(2)在图2中,按照下表中x的值进行取点、画图、计算,分别得到了y与x的几组对应值,补全表格;x°406080100y°(3)在平面直角坐标系xOy中,①描出表中各组数值所对应的点(x,y);②通过研究①中点构成的图象,当y=50时,x的值为;(4)用含x的代数式表示y为:.20.有这样一个问题:探究函数y=的图象与性质.小华根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.m的值为;x﹣2﹣﹣1﹣1234…y0﹣m﹣1…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.(5)结合函数图象估计﹣x﹣4=0的解的个数为个.参考答案1.解:(1)直线y=kx﹣2,当x=0,则y=﹣2,当y=0,则x=,∴直线y=kx﹣2与坐标轴的交点坐标为(0,﹣2)和(,0),∵直线y=kx﹣2与坐标轴所围图形的面积为3,∴×|2|×||=3,解得k=±,∴直线的解析式为y=x﹣2或y=﹣x﹣2,把点A(3,m)代入y=x﹣2,得m=0,∴A(3,0),把点A(3,m)代入y=﹣x﹣2,得m=﹣4,∴A(3,0),∴点A的坐标为(3,0)或(3,﹣4);(2)①当点A的坐标为(3,0)时,如图,在Rt△POA中,∠P AO=30',∠POA=90°,OA=3,∴OP=,∴点P(0,)或点P(0.﹣);②当点A的坐标是(3,﹣4)时,如图,作PB⊥AO于B,AC⊥y轴于点C,则∠PBO=∠ACO=90°,AC=3.OC=4,AO==5,设PB=3a(a>0),∵∠POB=∠AOC,∴△PBO∽△ACO,∴,∴,∴PO=5a,∴PC=PO+OC=5a+4,∵∠P AO=30°,∴P A=2PB=6a,∵AC2+PC2=P A2,∴32+(5a+4)2=(6a)2,解得a=(负值不合题意,舍去),∴OP=,∴点P(0,);③当点A的坐标是(3,﹣4)时,如图,作PB⊥AO于B,AC⊥y轴于点C,则∠PBO=∠ACO=90°,AC=3.OC=4,AO==5,设PB=3a(a>0),∵∠POB=∠AOC,∴△PBO∽△ACO,∴,∴,∴PO=5a,∴PC=OC﹣PO=4﹣5a,∵∠P AO=30°,∴P A=2PB=6a,∵AC2+PC2=P A2,∴32+(4﹣5a)2=(6a)2,解得a=(负值不合题意,舍去),∴OP=,∴点P(0,).综上所述,点P的坐标为(0,)或(0,)或(0,).2.(1)对于一次函数y=kx+4(k<0),令x=0,则y=4,故点B(0,4),则OB=4,∵△ABO为等腰直角三角形,故OA=OB=4,故点A(4,0),将点A的坐标代入y=kx+4并解得k=﹣1,故答案为﹣1;(2)设图象的翻折点为R,当y=﹣1时,则﹣x+4=﹣1,解得x=5,即点R(5,﹣1),图象的对称轴为x=5,①当点P在对称轴左侧时,则图象G的解析式为:y=﹣x+4,∴点N在直线y=﹣x+4上运动.当M,N重合时,此时n有最小值为,当MN=2时,此时n有最大值,则根据题意有:,∴解得,∴;②当点P在对称轴右侧时,则图象G的解析式为:y=x﹣6,∴点N在直线y=x﹣6上运动.当MN=2时,此时n有最小值,则根据题意有:,∴解得n=12,当M,N重合时,此时n有最大值为16,∴12<n<16,综上,或12<n<16;(3)则设直线RC的表达式为y=x+b,将点R的坐标代入上式并解得:b=﹣6,故直线RC的表达式为y=x﹣6,令y=0,即x﹣6=0,解得x=6,故点C(6,0),①当AC是边时,当点D在点E的左侧时,则ED=AC=6﹣4=2,故点D的横坐标为5﹣2=3,当x=3时,y=﹣x+4=1,故点D(3,1),此时,点E(5,1),符合条件;当点E在点E的右侧时,同理可得,点D(7,1);②当AC是对角线时,如上图,则点D(5,﹣1),而点E(5,1),AD=CD=AE=EC=,故符合条件,故点D(5,﹣1);综上,点D的坐标为(5,﹣1)或(3,1)或(7,1),故答案为:(5,﹣1)或(3,1)或(7,1).3.解:(1)∵点A的坐标为(﹣1,1),点B的坐标为(3,3),∴AB==2,由题意可知,AB是正方形对角线的一半,∴正方形的边长为2,∴正方形的面积为40,∴顶点A、B的“领域”的面积为40;故答案为40;(2)①如图,∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,∴AB与x轴的所成锐角为45°,当点B在A左侧,设B(2﹣a,a),∴AB==a,∵点A、B的“领域”的面积为16,∴16=,∴a=2,∴点B(0,2),当点B在点A右侧,设B'(2+a,a)∴AB'=a,∵点A、B的“领域”的面积为16,∴16=,∴a=2,∴点B(4,2),综上所述:B(4,2)或B(0,2);②如图2,过点B作BM⊥AM,∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,∴AB与直线x=2的所成锐角为45°,∴BM=AM,设点B(a,﹣3a+2),∴AM=|m+3a﹣2|,BM=|2﹣a|∴AB=|2﹣a|,∵点A、B的“领域”的面积不超过16,∴≤16∴0≤a≤4,∵BM=AM,∴|m+3a﹣2|=|2﹣a|∴m=4﹣4a,或m=﹣2a,∴﹣12≤m≤4,或﹣8≤m≤0,综上所述:﹣12≤m≤4.4.解:(1)当x=0时,y=3,当y=0时,x=4,则A(0,3),B(4,0),∴AO=3,BO=4,设点P的坐标为(m,﹣m+3),∵△OP A的面积为3,∴×3×|m|=3,解得:m=±2,∴点P的坐标为(﹣2,)或(2,).(2)由题意可知BP=t,AP=5﹣t,当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.①当AP=AO时,则有5﹣t=3,解得t=2;或t﹣5=3,解得t=8;②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=;③当AO=OP时,过O作ON⊥AB,垂足为N,如图2,则NP=AN=AP=(5﹣t),∵S△AOB=∴ON=,∵OB2=ON2+NB2,∴16=+(t+﹣)2,∴t=综上可知当t的值为2、8、和时,△AOP为等腰三角形.5.解:(1)如图1∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB===4,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=2∴AC=4,BD=4∴以AB为边的“坐标菱形”的面积==8,故答案为:8;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°,过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),设直线CD解析式为y=kx+b,由题意可得或解得:或∴直线CD的表达式为:y=x+1或y=﹣x+3;6.解:(1)∵点C的坐标为(﹣2,2),点D的坐标为(1,2),∴线段OC的中点坐标为(﹣1,1),线段OD的中点坐标为(,1).∵﹣1=﹣1,﹣1<0<,∴点H1(﹣1,1),H2(0,1)在图形G上.故答案为:H1,H2.(2)∵C(﹣2,2),D(1,2),E(1,0),F(﹣2,0),A(2,0),∴线段AC的中点坐标为(0,1),线段AD的中点坐标为(,1),线段AE的中点坐标为(,0),线段AF的中点坐标为(0,0).依照题意,画出图形,如图1所示.∴点A和四边形CDEF的“中点形”是四边形,各定点的坐标分别为:(0,1),(,1),(,0),(0,0).(3)∵点B在直线y=2x上,且点B的横坐标为b,∴点B的坐标为(b,2b).∵C(﹣2,2),D(1,2),E(1,0),F(﹣2,0),A(2,0),∴线段BC的中点坐标为(b﹣1,b+1),线段BD的中点坐标为(b+,b+1),线段BE的中点坐标为(b+,b),线段BF的中点坐标为(b﹣1,b).依照题意,画出图形,如图2所示.∵图形M与四边形CDEF有公共点,∴或,解得:﹣1≤b≤0或1≤b≤2.7.解:(1)C(0,2),D(2,)是线段AB的“临近点”.理由是:∵点P到直线AB的距离≤1,A、B的纵坐标都是2,∴AB∥x轴,2﹣1=1,2+1=3,∴当横坐标1≤x≤3纵坐标1≤y≤3范围内时,该点是线段AB的“临近点”,∵D(2,),∴D(2,)是线段AB的“临近点”;∵C(0,2),A(1,2),∴AC=2﹣1=1,∴C(0,2)是线段AB的“临近点”.故答案为:C和D.(2)如图,设y=﹣x+2与y轴交于M,与A2B2交于N,易知M(0,2),∴m≥0,易知N的纵坐标为1,代入y=﹣x+2,可求横坐标为,∴m≤∴0≤m≤.(3)当直线y=﹣x+b与半圆A相切时,b=2﹣.当直线y=﹣x+b与半圆B相切时,b=2+.∴2﹣.8.解:(1)①∵点A的坐标为(2,0),∴点A和原点的中间点的坐标为(,),即(1,0).故答案为:(1,0).②如图1,点A和线段CD的中间点所组成的图形是线段C′D′.由题意可知:点C′为线段AC的中点,点D′为线段AD的中点.∵点A的坐标为(2,0),点C的坐标为(﹣2,3),点D的坐标为(1,3),∴点C′的坐标为(0,),点D′的坐标为(,),∴点A和线段CD的中间点的横坐标m的取值范围为0≤m≤.(2)∵点B的横坐标为n,∴点B的坐标为(n,2n).当点B和四边形CDEF的中间点在边EF上时,有,解得:﹣≤n≤0;当点B和四边形CDEF的中间点在边DE上时,有,解得:1≤n≤3.综上所述:点B的横坐标n的取值范围为﹣≤n≤0或1≤n≤3.9.解:(1)如图1,将点A(0,4)的纵坐标分别代入直线l1:y=﹣x+3,得:x=﹣1∴过点A垂直于y轴的直线与l1的交点横坐标是﹣1,0﹣(﹣1)=1,∴点A是直线l1的关联点;将点B(,1)的纵坐标分别代入直线l1:y=﹣x+3,得:x=2,∴2﹣=<1,∴点B是直线l1的关联点;将点C(2,3)的纵坐标分别代入直线l1:y=﹣x+3,得:x=0,∴过点A垂直于y轴的直线与l1的交点横坐标是0,2﹣0=2>1,∴点C不是直线l1的关联点;故答案为:A,B;(2)将点D的纵坐标分别代入直线l1:y=﹣x+3,得:x=3﹣m,∴过点D垂直于y轴的直线与l1的交点横坐标是3﹣m,∵点D(﹣1,m)是直线l1的最佳关联点,∴丨3﹣m﹣(﹣1)丨=丨4﹣m丨=1,解得:m=3或5,故答案为:3或5;(3)如图2,由图可得,直线l2的位置l3与l4之间或l5与l6之间时,符合要求,直线与l3正方形AOEF相交于A(0,4)时,b=4,直线l4与正方形AOEF相交于A(0,2)时,b=2,直线l5与正方形AOEF相交于F(4,4)时,b=﹣4,直线l6与正方形AOEF相交于E(4,0)时,b=﹣8,∴b的取值范围为2≤b≤4或﹣8≤b≤﹣4.故答案为:2≤b≤4或﹣8≤b≤﹣4.10.解:(1)∵Q(4,﹣1),∴a=4+(﹣1)=3,b﹣(﹣1)=1,∴点Q(4,﹣1)的一对“相伴点”的坐标是(1,3)与(3,1),故答案为:(1,3),(3,1);(2)∵点A(8,y),∴a=8+y,b=﹣y,∴点A(8,y)的一对“相伴点”的坐标是(8+y,﹣y)和(﹣y,8+y),∵点A(8,y)的一对“相伴点”重合,∴8+y=﹣y,∴y=﹣4,故答案为:﹣4;(3)设点B(x,y),∵点B的一个“相伴点”的坐标为(﹣1,7),∴或,∴或,∴B(6,﹣7)或(6,1);(4)设点C(m,﹣3),∴a=m﹣3,b=3,∴点C的一对“相伴点”的坐标是M(m﹣3,3)与N(3,m﹣3),当点C的一个“相伴点”的坐标是M(m﹣3,3),∴点M在直线m:y=3上,当点C的一个“相伴点”的坐标是N(3,m﹣3),∴点N在直线n:x=3上,即点M,N组成的图形是两条互相垂直的直线m与直线n,如图所示,11.解:(1)当t=3时,A(1,2),B(3,2),C(3,4),D(1,4),∴此时四边形ABCD为正方形,如图1所示,∵直线l M过点M(2,3),∴3=2k+b,即b=3﹣2k,∴①当k=0时,直线l M为y=3,由图知,此时d(l M,▱ABCD)=2,故答案为:2,当k=1时,直线l M为y=x+1,由图知,此时d(l M,▱ABCD)=2,故答案为:2,②由①知,直线l M为y=kx+3﹣2k,如图1②,设直线l M与AD交于点F,与BC交于点G,∴F(1,﹣k+3),G(3,k+3),过F作FH⊥BC于H,则FH=2,∵FG=,∴GH==1,∴k+3﹣(﹣k+3)=1,∴k=,由正方形的对称性可知,k=﹣也符合题意,故k的值为±;如图1③,设直线l M与CD交于点P,与AB交于点Q,∴P(,4),Q(,2),过Q作QN⊥CD于N,则QN=2,∵PQ=,∴PN==1,∴﹣=1,解得k=2,由正方形的对称性可知,k=﹣2也符合题意,故k的值为±2;综上,k的值为或±2;(2)如图2,设直线l N与CD边的交点为P,作PH⊥AB交AB延长线于H,由题知PB=,PH=2,∴BH==4,即P点坐标为(7,4),由题知P点在CD上,且不能与C点重合,∴7<t≤7+2,即7<t≤9.12.解:(1)仍然成立,如图2,在AB上截取BH=BE,连接HE,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵BH=BE,AB=BC,∴∠BHE=∠BEH=45°,AH=CE,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;(2)如图3,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA)∴AE=EF,故答案是:是;(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM==a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).13.解:(1)∵A(﹣1,3),B(3,3),C(2,﹣2),3×(﹣1+2)=3,3×(3﹣2)=3,∴点B是A、C的“美妙点”;(2)设点D(m,m+3),①∵M是点D、E的“美妙点”.∴x=3(3+m)=9+3m,y=3(0+m+3)=m+9,∴m=x﹣3,∴y=(x﹣3)+9=x+;②由①得,点M(9+3m,m+9),如图1,当∠MEF为直角时,则点M(3,6),∴9+3m=3,解得:m=﹣2;∴点D(﹣2,2);当∠MFE是直角时,如图2,则9+3m=m,解得:m=﹣,∴点D(﹣,);综上,点D(﹣2,2)或(﹣,).14.解:(1)①由题意得:1+=2,2×1+2=4,则点P'的坐标为P'(2,4),故答案为:(2,4);②设点P的坐标为P(a,b),由题意得:,可得4k=4,即k=1,∴a+b=4,当a=1时,b=4﹣a=3,此时点P的坐标为P(1,3),故答案为:(1,3)(答案不唯一);(2)由题意,设点P的坐标为P(c,0),且c>0则点P'的坐标为P′(c+,kc+0),即P'(c,kc),∴OP=c,PP'=|kc|=|k|c,∵OP=2PP',∴c=2|k|c,即2|k|=1,解得k=±,故答案为:±;(3)设点B的坐标为B(x,y),则点A的坐标为A(x﹣y,﹣x+y),∵点A在函数y=x+2+2的图象上,∴−x+y=(x−y)+2+2,整理得:y=x+2,则点B在直线y=x+2上,如图,过点Q作直线y=x+2的垂线,垂足为点B,则此时线段BQ最短,设直线y=x+2与x轴交于点C,与y轴交于点D,则C(﹣2,0),D(0,2),∴OC=OD,∴∠ODC=∠OCD=45°,DQ=2,∴∠BDQ=45°,∴BD=,过点B作BH⊥y轴于H,∴BH=DH=1,∴OH=3,∴B(1,3),∴点A的坐标为A(﹣2,2).15.解:(1)①如图:∵b=﹣2,∴点B的坐标为(﹣2,0),∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图:∴CG=AG=3,∴C(4,﹣1),设直线AC的表达式为:y=kx+b,则,解得:,∴直线AC的表达式为:y=﹣x+3,当点C在直线x=1左侧时,如图:∴CG=AG=3,∴C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b',则,解得:,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;16.解:(1)x≠0.故答案为:x≠0.(2)x=0.5时,m=0.25+2=2.25,x=1时,n=1+1=2,故答案为:2.25,1.(3)函数图象如图所示:(4)当x<0时,y随x的增大而减小.(5)观察图象可知方程的所有实数根为x=﹣0.5或1或1.8.故答案为:x=﹣0.5或1或1.8.17.解:(1)过点B分别作x轴、y轴的垂线,垂足为D、C,如答图1.则矩形ODBC为△OAB的投影矩形,∵B(3,5),∴BD=5,OC=3,∴△OAB的投影比k的值为.故答案为:.(2)∵点D在直线y=﹣2x+4上,∴设点D坐标为(m,﹣2m+4),m>0,分以下两种情况:①当0≤m≤2时,如答图2.作投影矩形OCQP,∵OC>QC,∴投影比k=,得m=1.故点D坐标为(1,2);②当2<m≤4时,如答图3.作投影矩形OCMN,∵OC>ON,∴投影比k=,得m=3.故点D坐标为(3,﹣2);③当m>4时,如答图4.作投影矩形OEDF,∵OE=m,OF=2m﹣4,∴OF>OE,∴投影比k=,解此方程无解.∴当m>4时,满足条件的点D不存在.综上所述,点D坐标为(1,2)或(3,﹣2).(3)令y=x+1中y=2,解得x=1.设点P坐标为(m,m+1).①当m≤1时,作投影矩形P AFB,如答图5所示.∵P A=3﹣m,F A=4﹣(m+1)=3﹣m,∴△PEF的投影比k=<2.∴m≤1符合题意;②当1<m<2时,作投影矩形CEFD,如答图6所示.∵EF=4﹣2=2,EC=3﹣m,EF>EC,∴△PEF的投影比k=,∵1<m<2,∴1<k<2.∴当1<m<2时符合题意;③当2<m<3时,作投影矩形GEFH,如答图7所示.∵EF=4﹣2=2,EG=3﹣m,EF>EG,∴△PEF的投影比k=,∵2<m<3,∴k>2,不符合题意;④当m>3时,作投影矩形EIPJ,如答图8所示.∵PI=m+1﹣2=m﹣1,EI=m﹣3,m﹣1>m﹣3,∴△PEF的投影比k=,当m>3时,k<2.符合题意.综上所述,点P的横坐标m的取值范围是m<2或m>3.故答案为:m<2或m>3.18.解:(1)∵==2,==4,∴<,∴D AB=max{|x A﹣x B|,|y A﹣y B|}==4.故答案为:4.(2)如图1,四边形EFGH边上的所有点均为到点A的识别距离为2的点.(3)【解法1】如图2,点C在直线m上,CQ⊥OA于Q,取点C与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=CQ,直线m经过原点O,设直线m解析式为y=kx,∵直线m经过(1,1),∴k=1∴直线m解析式为y=x,设点C(x C,y C),则y C=x C,根据识别距离的定义,得:1﹣x C=x C,解得:x C=,∴y C=,∴C(,);如图3,点D在直线n上,DQ⊥OA于Q,取点D与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=DQ,直线n经过(﹣2,1),(0,2),可求得直线n解析式为y=x+2,设D(x D,+2),则:1﹣x D=+2解得:x D=,∴y D=,∴D(,);如图4,直线p经过(1,﹣3),(2,﹣1),运用待定系数法可得:直线p解析式为:y =2x﹣5,设点E(x E,2x E﹣5),则:x E﹣1=0﹣(2x E﹣5),解得:x E=2,∴E(2,﹣1).综上所述,C(,),D(,),E(2,﹣1).【解法2】如图2,∵直线m经过(0,0),(1,1),∴直线m上的点横坐标=纵坐标,∵点C在直线m上,∴C(a,a),∴|a﹣1|=|a﹣0|,∴a﹣1=a或a﹣1=﹣a,解得:a=,∴C(,);如图3,∵直线n经过(0,2),(2,3),∴直线n上的点变化规律为横坐标±2,纵坐标±1,∴D(0+b,2+b),∴|b﹣1|=|2+b﹣0|,∴b﹣1=2+b或b﹣1=﹣(2+b),解得:b=6(舍去)或b=﹣,∴D(,);如图4,直线p经过(1,﹣3),(2,﹣1),∴直线n上的点变化规律为横坐标±1,纵坐标±2,∴E(1+k,﹣3+2k),∴|1+k﹣1|=|﹣3+2k﹣0|,∴k=2k﹣3或k=3﹣2k,解得:k=3(舍去)或k=1,∴E(2,﹣1);综上所述,C(,),D(,),E(2,﹣1).19.解:(1)依题意补全的图形如图1:(2)当x=40°时,即∠APC=40°,从图1看∠APD=90°,∠P AD=∠BAC=20°,∴∠PCD=∠P AD+∠APC=60°,则∠PDC=90°﹣60°=30°=y,同理可得:x=60时,y=10,x=80时,y=10,x=100时,y=30,故答案为:30,10,10,30;(3)①描点连线绘出函数图象如下(图2):②从图上看,当y=50时,x=20或120,故答案为20或120;(4)当x>70时,从图象看,函数为一次函数,设函数的表达式为y=kx+b,将(70,0)、(80,10)代入上式并解得,故函数的表达式为y=x﹣70;当x<70时,同理可得:函数的表达式为y=﹣x+70,故答案为:y=.20.解:(1)由题意得:x+2≥0且x≠0,解得x≥﹣2且x≠0,故答案为x≥﹣2且x≠0;1(2)当x=﹣1时,y===﹣1=m,故答案为﹣1;(3)描点连线绘出如下函数图象:(4)从图象看,在每个象限内,函数y随x增大而减小,故答案为在每个象限内,函数y随x增大而减小(答案不唯一);(5)在(3)的基础上,画出y=x+4的图象,从图象看,两个函数有1个交点,故答案为1.。
专题08 一次函数与方程、不等式的综合问题-2023年初中数学8年级下册同步压轴题(学生版)
专题08 一次函数与方程、不等式的综合问题 类型一、一次函数与方程综合例.如图,一次函数y kx b =+的图像与x 轴的交点坐标为()2,0-,则下列说法正确的有( ).A .y 随x 的增大而减小B .0k >,0b <C .当2x >-时,0y <D .关于x 的方程0kx b +=的解为2x =-【变式训练1】直线y =ax +b (a ≠0)过点A (0,2),B (1,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =2C .x =1D .x =3【变式训练2】如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 2【变式训练3】如图,一次函数y kx b =+的图象经过点()0,4,则下列结论正确的是( )A .图像经过一、二、三象限B .关于x 方程0kx b +=的解是4x =C .0b <D .y 随x 的增大而减小【变式训练4】一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式20kx b +>的解集是( )A .2x >-B .2x <-C .2x <D .2x >类型二、一次函数与不等式综合例.如图,已知函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是( )A .x >﹣2B .x <﹣2C .﹣2<x <0D .x >0【变式训练1】如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >2【变式训练2】如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.【变式训练3】如图,一次函数y =kx +b 与y =x +2的图象交于点P (m ,5),则关于x 的不等式kx +b >x +2的解集是______.【变式训练4】如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式kx ﹣1<x +b 的解集为______.课后训练1.已知不等式0ax b +<的解是2x >-,下列有可能是函数y ax b =+的图像的是( )A .B .C .D .2.如图所示为两个一次函数的图象,则关于x ,y 的方程1122y k x b y k x b =+⎧⎨=+⎩的解为________.3.函数y ax =和y kx b =+的图象相交于点()2,1A -,则方程ax kx b =+的解为______.4.已知一次函数y kx b =-(k 、b 为常数,且0k ≠,0b ≠)与13y x =的图象相交于点1(,)2M a ,则关于x 的方程1()3k x b -=的解为x =____________. 5.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点()1,2P ,则关于x 的不等式1x mx n +≥+的解集为______.6.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.7.数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()2,3P .根据图象可知,关于x 的不等式21x kx b ->+的解集是______8.如图,直线l 1:y 1=ax +b 经过(﹣3,0),(0,1)两点,直线l 2:y 2=kx ﹣2;①若l 1∥l 2,则k 的值为 _____;②当x <1时,总有y 1>y 2,则k 的取值范围是 ________.9.如图,一次函数y kx b =+的图象与x 轴交于点A (3,0),与y 轴交于点B (0,4),与正比例函数y ax =的图象交于点C ,且点C 的横坐标为2,则不等式ax kx b <+的解集为______.10.直线y=kx+b与直线y=5﹣4x平行,且与直线y=﹣3(x﹣6)相交,交点在y轴上,求直线y=kx+b对应的函数解析式.。
专题06一次函数常考重难点题型(十大题型)(原卷版)
专题06 一次函数常考重难点题型(十大题型)【题型1 函数与一次(正比例)函数的识别】【题型2 函数值与自变量的取值范围】【题型3 一次函数图像与性质综合】【题型4 一次函数过象限问题】【题型5 一次函数的增减性】【题型6 一次函数的增减性(大小比较问题)】【题型7一次函数图像判断】【题型8 一次函数图像的变换(平移与移动)】【题型9 求一次函数解析式(待定系数法)】【题型10 一次函数与一次方程(组)】【题型1 函数与一次(正比例)函数的识别】【解题技巧】(1)判断两个变量之间是否是函数关系,应考以下三点: (1)有两个变量: 2)一个变量的变化随另一个变量的变化而变化: (3)自变量每确定一个值,因变量都有唯一的值与之对应。
(2)判断正比例函数,需关于x的关系式满足:= (0),只要与这个形式不同,即不是正比例函数。
(3)一次函数必须满足k+b (0)的形式,其中不为0的任意值1.(2023春•右玉县期末)下列各曲线中不能表示y是x的函数的是()A.B.C.D.2.(2023春•临西县期末)下列函数中,y是x的一次函数的是()A.y=1B.C.y=2x﹣3D.y=x2 3.(2023春•潮阳区期末)下列函数中,表示y是x的正比例函数的是()A.y=2x+1B.y=2x2C.y2=2x D.y=2x 4.(2023春•武城县期末)已知y=(m﹣1)x|m|+4是一次函数,则m的值为()A.1B.2C.﹣1D.±1 5.(2023春•鼓楼区校级期末)正比例函数x的比例系数是()A.﹣3B.C.D.36.(2023春•南岗区校级期中)若函数y=2x2m+1是正比例函数,则m的值是.7.(2023春•岳阳楼区校级期末)已知函数y=(m﹣1)x+m2﹣1.(1)当m为何值时,y是x的一次函数?(2)当m为何值时,y是x的正比例函数?【题型2 函数值与自变量的取值范围】【解题技巧】:函数的取值范围考虑两个方面:(1)自变量的取值必须要使函数式有意义:(2)自量的取值须符合实际意义。
2022年九年级数学中考专题训练—一次函数的综合附解析
中考专题训练—一次函数的综合附解析1.已知,在平面直角坐标系中,直线l 的解析式为4y mx =-,它与y 轴交于点B .(1)若点(),0m 在直线l 上,求出直线l 的解析式;(2)当22x -≤≤时,函数值y 的最大值为m ,求m 的值;(3)若B 点关于x 轴的对称点为A ,过A 作AH l ⊥于点H ,令直线AH 与y 轴的夹角为α,当3045α︒≤≤︒时,直接写出m 的取值范围.2.已知一次函数y =kx +b 图像经过点A (2,0)、B (0,2),回答下列问题:(1)求一次函数解析式.(2)在函数y =kx +b 图像上有两个点(a ,2)、(b ,3),请说明a 与b 的大小关系.(3)以AB 为直角边作等腰直角△ABC ,点C 不与点O 重合,过点C 的反比例函数的解析式为y =kx,请直接写出点C 的坐标以及过点C 的反比例函数的解析式.(4)是否在x 轴上找一点C ,使S △ABC =2S △ABO ,若存在,写出点C 坐标若不存在,请说明理由.3.一次函数11y ax a =-+(a 为常数,且a ≠0).(1)若点(﹣1,3)在一次函数11y ax a =-+的图像上,求a 的值;(2)若0a >,当12x -≤≤时,函数有最大值5,求出此时一次函数1y 的表达式;(3)对于一次函数224y kx k =+-(0k ≠),若对任意实数x ,12y y >都成立,求k 的取值范围.4.随着信息技术的飞速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已成为我们日常学习的一种常用方式.现有某教学网站策划了A ,B 两种上网学习的月收费方式:设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为A y ,B y .收费方式月使用费/元包时上网时间/h超时费/(元/min )A 7250.01Bm n0.01(1)如图是B y 与x 之间函数关系的图像,请根据图像填空:m =___________,n =___________;(2)分别求出A y ,B y 与x 之间的函数关系式;(3)选择哪种方式上网学习合算,请说明理由?5.已知一次函数1y kx b =+的图像与反比例函数2my x=的图像交于第一、三象限内的A 、B 两点,其中点(1,4)A ,(2,)B n -.(1)求反比例函数和一次函数的解析式,画出一次函数与反比例函数的图像;并写出一次函数1y kx b =+的一条性质:;(2)过A 作AC x ⊥轴于点C ,连接BC ,求三角形ABC 的面积;(3)当12y y ≥时,请直接写出x 的取值范围.6.定义:如果在给定的自变量取值范围内,函数既有最大值,又有最小值,则称该函数在此范围内有界,函数的最大值与最小值的差叫做该函数在此范围内的界值.(1)当21x -≤≤时,下列函数有界的是______(只要填序号);①21y x =-;②2y x=-;③2y x 2x 3=-++.(2)当2m x m ≤≤+时,一次函数()12y k x =+-的界值不大于2,求k 的取值范围;(3)当2a x a ≤≤+时,二次函数223y x ax =+-的界值为94,求a 的值.7.已知函数12y x m =+,2y mx m =-+(m 为常数,0m ≠).(1)若点()1,1-在1y 的图象上,①求m 的值.②求函数1y 与2y 的交点坐标.(2)当0m >,且210y y <<时,求自变量x 的取值范围.8.2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y (元)与购买洗手液的数量x (瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为元/瓶,请直接写出y 与x 之间的函数关系式;(2)请求出a 的值;(3)如果该高校共有m 名教职工,请你帮王老师设计最省钱的购买方案.9.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点B ,交y 轴于点A ,3OA OB ==.(1)求直线AB 的解析式;(2)如图,点C 在OA 的延长线上,点D 在x 轴的负半轴上,连接CD 交直线AB 于点E ,点E 为线段CD 的中点,设点D 的横坐标为t ,点C 的纵坐标为d ,求d 与t 的函数解析式;(3)如图,在(2)的条件下,过点E 作EF x ⊥轴于点F ,点G 在OB 的延长线上,点M 为EB 的中点,连接MG 并延长交线段EF 于点H ,点N 在AB 的延长线上,连接NG 、DN 、CM ,MNG ∠为钝角,若,,2FG d ACM GDN MG NG =∠=∠=,求点G 的坐标.10.如图,在平面直角坐标系xOy 中,已知直线l 1:y=mx(m≠0)与直线l 2:y=ax+b(a≠0)相交于点A (1,2),直线l 2与x 轴交于点B (3,0).(1)分别求直线l 1和l 2的表达式;(2)过动点P (0,n )且平行于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 左方时,写出n 的取值范围.11.某工厂每天工作15个小时,生产线上生产出来的产品数量y (件)与时间x (小时)之间满足210180(09)810(915)x x x y x ⎧-+<≤=⎨<≤⎩;同时,2个包装小组对生产出来的产品进行装箱.(1)生产线生产4小时后,共有____件产品;(2)若每个包装小组每小时装箱20件,求等待装箱的产品最多时有多少件?(3)全部产品完成装箱需要多长时间?若要在15小时内完成产品全部装箱,那么从一开始就应该至少增加几个装箱小组?12.问题探究:嘉嘉同学根据学习函数的经验,对函数y =-2|x |+5的图象和性质进行了探究.下面是嘉嘉的探究过程,请你解决相关问题:(1)如图,嘉嘉同学在平面直角坐标系中,描出了以表中各对对应值为坐标的点,请你根据描出的点,画出该函数的图象:若A (m ,n ),B (6,n )为该函数图象上不同的两点,则m =;(2)观察函数y =-2|x |+5的图象,写出该图象的两条性质;(3)直接写出,当0<-2|x |+5≤3时,自变量x 的取值范围.13.随着国内疫情得到有效控制,某产品的销售市场逐渐回暖.某经销商与生产厂家签订了一份该产品的进货合同,约定一年内进价为0.1万元/台.根据市场调研得知,一年内该产品的售价y (万元/台)与签约后的月份数x (1≤x ≤12且为整数)满足关系式:0.050.40.2x y -+⎧=⎨⎩14412x x ≤<⎫⎬≤≤⎭.估计这一年实际每月的销售量p (台)与月份x 之间存在如图所示的变化趋势.(1)求实际每月的销售量p (台)与签约后的月份数x 之间的函数表达式;(2)求前4个月中,第几个月的利润为6万元?(3)请估计这一年中签约后的第几个月实际销售利润W 最高,最高为多少万元?14.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果y ′=(0)(0)y x y x ≥⎧⎨-<⎩,那么称点Q 为点P 的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)在点E (0,0),F (2,5),G (-1,-1),H (-3,5)中,的“关联点”在函数y =2x +1的图象上;(2)如果一次函数y =x +3图象上点M 的“关联点”是N (m ,2),求点M 的坐标;(3)如果点P 在函数y =-x 2+4(-2<x ≤a )的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,求实数a 的取值范围.15.问题:探究函数|2|1y x +=-的图象和性质小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y 与x 的几组对应值,请将表格补充完整:x …-5-4-3-2-10123…y…21mn-2-112…表格中m 的值为,n 的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量x 时,函数y 随x 的增大而增大;②当自变量x 的值为时,y =3;③解不等式|1|20x +-<的结果为16.问题:探究函数y =|x +1|﹣2的图象与性质.小明根据学习函数的经验,对函数y =|x +1|﹣2的图象与性质进行了研究.下面是小明的研究过程,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x …﹣5﹣4﹣3﹣2﹣10123…y…21﹣1m﹣1n2…其中,m =,n =;(2)在如图所示的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象,并写出该函数的两条性质;(3)在同一坐标系中直接画出函数y =|x |的图像,并说明它是由函数y =|x +1|﹣2如何平移得到的.17.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质的过程.小红对函数1(3)2(3)x x y x -<⎧=⎨≥⎩的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)请同学们把小红所列表格补充完整,并在平面直角坐标系中画出该函数的图象:(2)根据函数图象,以下判断该函数性质的说法,正确的有.①函数图象关于y 轴对称;②此函数无最小值;③当x <3时,y 随x 的增大而增大;当x ≥3时,y 的值不变.(3)若直线y =12x +b 与函数y =1(3)2(3)x x x -<⎧⎨≥⎩的图象只有一个交点,则b =.18.问题:探究函数y=|x﹣1|+1的图象与性质.小东根据学习一次函数的经验,对函数y=|x﹣1|+1的图象与性质进行了探究:(1)在函数y=|x﹣1|+1中,自变量x可以是任意实数,如表是y与x的几组对应值.x……﹣4﹣3﹣2﹣10n234……y……65432123m……①表格中n的值为,m的值为;②在平面直角坐标系中画出该函数的图象;(2)结合函数图象,写出该函数的两条性质.19.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.请同学们阅读探究过程并解答:在函数y=|x|﹣2中,自变量x可以是任意实数.(1)下表是y与x的几组对应值:x…﹣3﹣2﹣10123…y…10m﹣2﹣10n…m=_____,n=_____;在平面直角坐标系xOy中,描出表中各组对应值为坐标的点.并根据描出的点,画出该函数的图象;(2)根据函数图象可得:①当x=_____时,y有最小值为_____;②请写出该函数的一条性质;③如果y =|x |﹣2的图象与直线y =k 有两个交点,则k 的取值范围是_____.20.某同学对函数11||2y x =,21||22y x =-,31||12y x =+的图象和性质进行探究:无论x 为何值时,函数均有意义,所得自变量与函数的对应值如表.x …﹣3﹣2﹣10123…y 1… 1.510.500.51 1.5…y 2…﹣0.5﹣1m ﹣2﹣1.5﹣1﹣0.5…y 3…2.5n1.511.522.5…(1)表中m =,n =;(2)根据表中数据,补画函数图象位于y 轴左边的部分.(3)归纳函数1||2y x b =+的性质:①函数1||2y x b =+与y 轴交点坐标是;②当x时,y 随x 的增大而增大;当x时,y 随x 的增大而减小.(4)类比上述探究函数的图象与性质的过程,探究并写出函数||(0)y k x b k =+<的性质;①;②;.(5)对于函数1||62y x =-+,若函数值1y >,请直接写出自变量x 的取值范围:.参考答案:1.(1)直线的解析式为:y=2x-4或y=-2x-4;(2)43m=-或4m=;13m≤≤或13m-≤≤-【分析】(1)将点(m,0)代入y=mx-4,求出m的值,即可得直线l的解析式;(2)分三种情况:①当m<0时,②当m=0时,③当m>0时,根据一次函数的性质即可求解;(3)由y=mx-4可得它与:x轴交点C(m,0),分三种情况:①当m=0时,②当m>0时,③当m<0时,根据含30°角的直角三角形的性质即可求解.(1)∵点(m,0)在直线l上,代入解析式y=mx-4,得:240m-=,∴m=±2,∴直线的解析式为y=2x-4或y=-2x-4;(2)m<0时,y随着x的增大而减小,∴x=-2时,函数值y的值最大,最大值为m,∴m=-2m-4,∴43 m=-;m=0时,直线的解析式为y=-4,∴此种情况不存在;m>0时,随着x的增大而增大,∴x=2时,函数值y的值最大,最大值为m,∴m=2m-4,∴4m=综上,43m=-或4m=;(3)由题意可得,直线l 与y 轴交于点B (0,-4),∵点A 为B 点关于x 轴的对称点,∴A (0,4),设直线l 与x 轴交于点C ,当y =0时,mx -4=0,∴4x m =,∴4(,0)C m,m =0时,直线l 为y =-4,与x 轴平行,AH 即为y 轴,不满足题目条件的3045α︒≤≤︒,故0m ≠;0m >时,若30α=︒,则30BAH ∠=︒,∴60ABH ∠=︒,∴30OCB ∠=︒,∴OC =∴4m=解得3m =,若45α=︒,则45BAH ∠=︒,∴45ABH ∠=︒,∴4OC OB ==,∴44m=,解得1m =,∴当3045α︒≤≤︒1m ≤≤;0m <时,若30α=︒,则30BAH ∠=︒,∴60ABH ∠=︒,∴30OCB ∠=︒,∴OC =∴4m=-解得m =若45α=︒,则45BAH ∠=︒,∴45ABH ∠=︒,∴4OC OB ==,∴44m-=,解得1m =-,∴当3045α︒≤≤︒时,1m -≤≤-综上,当3045α︒≤≤︒时,m 1m ≤≤或1m -≤≤【点评】本题是一次函数综合题,考查了一次函数的性质,一次函数图像上点的坐标特征,含30°角的直角三角形的性质,利用分类讨论思想解决问题是本题的关键.2.(1)y =−x +2;(2)a >b ;(3)点C 的坐标为(2,4)或(4,2),过点C 的反比例函数的解析式为:y =8x;(4)存在,点C 坐标为(−2,0)或(6,0).【分析】(1)根据待定系数法求解即可;(2)根据一次函数的增减性判断即可;(3)画出图形,根据等腰直角三角形的性质求出符合题意的点C 的坐标,再利用待定系数法求出过点C 的反比例函数解析式;(4)根据2ABC ABO S S = 可知BC =2OB =4,然后分情况求解即可.(1)解:∵一次函数y =kx +b 图像经过点A (2,0)、B (0,2),∴202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩,∴一次函数解析式为y =−x +2;(2)∵一次函数y =−x +2中k =−1<0,∴y 随x 的增大而减小,∵2<3,∴a >b ;(3)∵OA =OB =2,∠AOB =90°,∴△AOB 为等腰直角三角形,如图,△CAB ,C AB ' ,C AB '' ,C AB ''' 都是以AB 为直角边的等腰直角三角形,∵△AOB 为等腰直角三角形,∴AOC '' ,BOC ''' 为等腰直角三角形,∴点C ''的坐标为(−2,0),点C '''的坐标为(0,−2),∵这两个点在坐标轴上,∴不符合题意;过点C 作CD ⊥x 轴于点D ,在△AOB 和△CDB 中,9045AOB CDB ABO CBD AB CB ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOB ≌△CDB (AAS ),∴BD =OB =2,CD =OA =2,∴点C 的坐标为:(4,2),设过点C 的反比例函数的解析式为:y =k x ,则k =4×2=8,则过点C 的反比例函数的解析式为:y =8x ,同理可得:点C '的坐标为:(2,4),过点C '的反比例函数的解析式为:y =8x,综上所述:点C 的坐标为(2,4)或(4,2),过点C 的反比例函数的解析式为:y =8x ;(4)存在,∵点C 在x 轴上,2ABC ABO S S = ,∴BC =2OB =4,∴当点C 在点B 的左侧时,点C 的坐标为(−2,0),当点C 在点B 的右侧时,点C 的坐标为(6,0),综上所述:点C 坐标为(−2,0)或(6,0).【点评】本题考查的是反比例函数、一次函数的综合运用、等腰直角三角形的性质、待定系数法、坐标与图形性质等知识,灵活运用数形结合思想与分类讨论思想是解题的关键.3.(1)1a =-(2)143y x =-(3)53k <且0k ≠【分析】(1)将点(﹣1,3)代入一次函数解析式,转化为关于a 的一元一次方程并求解即可;(2)由0a >时,y 随x 的增大而增大,可确定当2x =时,函数有最大值,然后代入函数解析式求解即可;(3)由题意可知,两直线应该平行,即有k a =,再根据12y y >列出不等式并求解即可.(1)解:将点(﹣1,3)代入一次函数11y ax a =-+,可得31a a =--+,解得1a =-;(2)∵0a >时,y 随x 的增大而增大,∴当2x =时,函数有最大值,即1=215y a a -+=最大,解得4a =,∴此时一次函数1y 的表达式为143y x =-;(3)由题意可知,0k a =≠,∴11y kx k =-+,∵对任意实数x ,12y y >都成立,∴124k k -+>-,解得53k <,∴k 的取值范围为53k <且0k ≠.【点评】本题主要考查了一次函数解析式与点的关系、一次函数的图像与性质、一次函数与不等式的综合应用等知识,熟练掌握一次函数的性质,灵活运用数形结合的思想分析问题是解题的关键.4.(1)10;50(2)()()70250.6825A x y x x ⎧≤≤⎪=⎨->⎪⎩;()()100500.62050B x y x x ⎧≤≤⎪=⎨->⎪⎩(3)当030x ≤<时,A B y y <,选择A 方式上网学习合算;当30x =时,A B y y =,选择两种方式上网学习一样;当30x >时,A B y y >,选择B 方式上网学习合算.理由见解析【分析】(1)观察函数图像,即可找出m 、n 的值;(2)分025x ≤≤和25x >两段来考虑A y 与x 之间的函数关系式,合并在一起即可得出结论;分050x ≤≤和50x >两段来考虑B y 与x 之间的函数关系式;(3)令10A y =求出x 的值,再结合710<、810->-,即可得出结论.(1)解:当0x =时,10y =,∴10m =,∵当50x =时,折线拐弯,∴50n =.故答案为:10;50.(2)解:当025x ≤≤时,7A y =,当25x >时,()725600.010.68A y x x =+-⨯⨯=-,∴A y 与x 之间的函数关系式为:()()70250.6825A x y x x ⎧≤≤⎪=⎨->⎪⎩;当050x ≤≤时,10B y =.当50x >时,()1050600.010.620B y x x =+-⨯⨯=-,∴B y 与x 之间的函数关系式为:()()100500.62050B x y x x ⎧≤≤⎪=⎨->⎪⎩.(3)解:当025x ≤≤时,7A y =,10B y =,∵710<∴A B y y <,∴选择A 方式上网学习合算,当2550x <≤时,A B y y =,即0.6810x -=,解得:30x =,∴当2530x <<时,A B y y <,选择A 方式上网学习合算,当30x =时,A B y y =,选择两种方式上网学习一样,当3050x <≤是,A B y y >,选择B 方式上网学习合算当50x >时,∵0.68A y x =-,0.620B y x =-,820->-∴A B y y >,∴选择B 方式上网学习合算.综上所述:当030x ≤<时,A B y y <,选择A 方式上网学习合算,当30x =时,A B y y =,选择两种方式上网学习一样,当30x >时,A B y y >,选择B 方式上网学习合算.【点评】本题考查一次函数的应用,得到两种收费方式的关系式是解决本题的关键.注意较合算的收费的方式应通过具体值的代入得到结果.5.(1)4y x=;y =2x +2;y 随x 的增大而增大(2)6(3)−2≤x <0或x ≥1【分析】(1)利用待定系数法即可求得函数的解析式;(2)利用三角形面积公式求得即可;(3)根据图像即可求得.(1)∵反比例函数2m y x=的图像过点(1,4)A ,(2,)B n -,∴m =1×4=−2n ,∴m =4,n =−2,∴反比例函数为4y x =,B (−2,−2),把点A (1,4),B (−2,−2)代入1y kx b =+得422k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +2,画出一次函数与反比例函数的图像,如图所示,一次函数y =2x +2的图像中,y 随x 的增大而增大,故答案为:y 随x 的增大而增大;(2)∵AC ⊥x 轴于点C ,A (1,4),B (−2,−2),∴AC =4,∴S △ABC =12×4×(1+2)=6;(3)由函数图像可得,当y 1≥y 2时,x 的取值范围是−2≤x <0或x ≥1.【点评】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数解析式以及三角形面积,正确利用数形结合分析是解题关键.6.(1)①③(2)21k -≤<-或10k -≤<,函数2y x =-(3)34-或14-【分析】(1)利用函数有意义时自变量x 的取值范围结合有界函数的定义判定;(2)分情况讨论,①k >0时;②k <0时,然后求出x =m 和x =m +2时的函数值,再结合有界函数与界高的定义列出方程求得k 的取值,最后得到一次函数的解析式;(3)先求得二次函数的对称轴,得到函数的增减性,从而求得a ≤x ≤a +2时的最大值与最小值,再结合界值为94求得a 的值.(1)解:函数21y x =-,∵2>0,∴y 随x 的增大而增大,;∵21x -≤≤,∴()min max 2215,2111y y =⨯--=-=⨯-=,∴①有界;函数2y x =-,-2<0,∴函数的图像在第二、第四象限,在每个象限内,y 随x 的增大而增大,212y ∴≥-=-或221y ≤-=∴②无界如图,函数2y x 2x 3=-++的称轴为()2121x =-=⨯-,∵-1<0,∴当1x ≤时,y 随x 增大而增大,21x -≤≤ ()()22min max 22235,12136y y ∴=--+⨯-+=-=+⨯+=,如图,∴③有界;故答案为:①③.(2)解:当x m =时,()12y k m =+-;当1x m =+时,()()112y k m =++-.①当10k +>时,即1k >-时,y 随x 的增大而增大,由题意得()()()122122k m k m ++--+-≤⎡⎤⎣⎦,解得,0k ≤.∴10k -≤<.②当10+<k 时,即1k <-时,y 随x 的增大而减小,由题意得()()()121222k m k m +--++-≤⎡⎤⎣⎦,解得,2k ≥-.∴21k -≤<-.∴k 的取值范围为21k -≤<-或10k -≤<.(3)解:∵()222233y x ax x a a =+-=+--,∴该抛物线开口向上,对称轴为22a x a =-=-.∴当x a >-时,y 随x 的增大而增大;当x a <-时,y 随x 的增大而减小.令x a =,得233y a =-;令2x a =+,得2381y a a =++;令x a =-,得23y a =--.①当a a -<,即0a >时,由题意得,()229381334a a a ++--=,解得732a =-(舍去);②当1a a a ≤-<+,即102-<≤a 时,由题意得,()22938134a a a ++---=,解得114a =-,274a =-(舍去);③当12a a a +≤-<+,即112a -<≤-时,由题意得,()2293334a a ----=,解得134a =-,234a =(舍去);④当2a a -≥+,即1a ≤-时,由题意得,()229333814a a a --++=,解得2532a =-(舍去).综上所述,a 的值为34-或14-.【点评】本题考查了二次函数的性质、一次函数与反比例函数图象上点的坐标特征、二次函数的增减性,解题的关键是熟练利用函数的性质进行分类讨论.7.(1)①3m =;②()0,3;(2)01x <<【分析】(1)①将点()1,1-代入12y x m =+求解即可;②令1y =2y ,即2333x x +=-+,求解即可;(2)根据210y y <<,建立不等式组,求解即可.(1)①将点()1,1-代入12y x m =+得,12m=-+解得3m =所以,m 的值为3;②3m = ∴123y x =+,233y x =-+令1y =2y ,即2333x x +=-+解得0x =3y ∴=∴函数1y 与2y 的交点坐标为()0,3;(2)210y y << 02mx m x m∴<-+<+ 0m >解得01x <<所以,自变量x 的取值范围为01x <<.【点评】本题考查了待定系数法求函数解析式,一次函数图象的交点坐标及函数图象上的点的特征,熟练掌握知识点是解题的关键.8.(1)4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)720a =元;(3)当100m <时选活动一:一律打9折合算;当100m =时选活动一:活动二均可,当100m >时选活动二合算.【分析】(1)利用购买100瓶费用400元,洗手液的单价为400÷100=4元/瓶,根据单价×件数=费用均可列出函数均可;(2)利用两函数值相等联立方程组 3.63.280a x a x =⎧⎨=+⎩,解方程组均可;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶分类三种情况两函数作差比较均可.【详解】解:(1)400元购买100瓶,洗手液的单价为400÷100=4元/瓶,19410y x =⨯⋅,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩,故答案为4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)联立 3.63.280a x a x =⎧⎨=+⎩,解得720{200a x ==,∴720a =;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶,当2200m <时,即100m <时选活动一:一律打9折合算;∵12 3.6242 1.6050y y m m m m -=⨯-⨯=-<≤,;()12 3.62 3.22800.880050100y y m m m m -=⨯-⨯-=-<<≤;当100m =时选活动一:活动二均可,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=-==;当100m >时选活动二合算,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=->>.【点评】本题考查列一次函数关系,利用一次函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计,掌握列一次函数关系的方法,利用函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计.9.(1)y=-x+3;(2)d=-t+6;(3)(6,0)【解析】(1)由题意可得A 、B 坐标,再利用待定系数法可得直线AB 的解析式;(2)由题意可得E 点坐标为(0.5t ,0.5d ),再根据E 在直线AB 上可得d 与t 的函数解析式;(3)由题意可得△ACM ∽△NDG ,再根据已知条件可得OG=2OB ,从而得到G 点坐标.【详解】解:(1)∵直线y=kx+b 交x 轴于点B ,交y 轴于点A ,OA=OB=3.∴A (0,3)、B (3,0),将A 、B 两点坐标代入y=kx+b 得:b=3,3k+b=0,∴k=-1,∴直线AB 的解析式为:y=-x+3;(2)由题意得:D (t,0)、C (0,d ),∵E 是CD 中点,∴E 为(,22t d ),又E 在直线AB 上,∴322d t =-+,整理得:d=-t+6,∴d 与t 的函数解析式:d=-t+6;(3)由已知得F 为(,02t ),∵点M 为EB 中点,∴M 点坐标为(6,44t d +),∵FG=d ,设G (x,0),∴x-0.5t=d ,∴x=0.5t+d ,又∵∠MNG 为钝角,∠ACM=∠GDN,MG=2NG∴△ACM ∽△NDG ,∴OG=2OB ,∴G 点坐标为(6,0).【点评】本题考查一次函数的应用,熟练掌握一次函数的性质和解析式的求法是解题关键.10.(1)直线l 1的表达式为y=2x ;(2)直线l 2的表达式为y=-x+3;(2)n 的取值范围是n<2.【分析】(1)利用待定系数法求直线l 1,l 2的表达式;(2)直线在点A 的下方时符合条件,根据图象写出结果.【详解】解:(1)∵点A (1,2)在l 1:y=mx 上,∴m=2,∴直线l 1的表达式为:y=2x ;∵点A (1,2)和B (3,0)在直线l 2:y=ax+b 上,∴a 230b a b +=⎧⎨+=⎩解得:a 13b =-⎧⎨=⎩,∴直线l 2的表达式为:y=-x+3;(2)由图象得:当点C 位于点D 左方时,n 的取值范围是:n <2.【点评】本题考查用待定系数法求解函数解析式、两直线平行和相交的问题,明确待定系数法只需把所给的点的坐标代入函数表达式列方程或方程组解出即可,同时利用数形结合的思想求n 的取值.11.(1)560(2)490件(3)20.25小时,至少增加1个包装小组【分析】(1)把4x =代入210180,y x x =-+从而可得答案;(2)设第x 小时后等待装箱的产品为W 件,可得40,W y x =-再建立函数关系式为()()21014009=81040915x x x W x x ì-+<£ïíï-<£î,再利用函数的性质可得到最大值;(3)由810400,x -=可得全部产品完成装箱需要20.25小时,设从开始就至少增加m 个包装小组,再列不等式()15202810,m ´+³从而可得答案.(1)解:当4x =时,2101801016720560y x x =-+=-´+=,所以生产线生产4小时后,共有560件产品;(2)解:设第x 小时后等待装箱的产品为W 件,则40,W y x =-()()21014009=81040915x x x W x x ì-+<£ï\íï-<£î当09x <≤时,()2210140107490,W x x x =-+=--+所以当7x =时,函数最大值为490,当915x <≤时,81040,W x =-40,k =-Q W 随x 的增大而减小,210450,W \£<所以等待装箱的产品最多时有490件(3)解:由810400,x -=解得:20.25x =,所以全部产品完成装箱需要20.25小时,设从开始就至少增加m 个包装小组,则()15202810,m ´+³解得:0.7m ³m 为整数,1m ∴=答:从开始就至少增加1个包装小组.【点评】本题考查的是一次函数与二次函数的综合应用,二次函数的性质,一元一次不等式的应用,理解题意,列出函数关系式与不等式是解本题的关键.12.(1)图见解析,6-(2)该图象的两条性质:1、函数25y x =-+的图象关于y 轴对称;2、当0x ≤时,y 随x 的增大而增大;当0x >时,y 随x 的增大而减小(3) 2.51x -<≤-或1 2.5x ≤<【分析】(1)将各点连接起来,画出该函数的图象;将点(6,)B n 代入函数的解析式求出n 的值,再将点(,)A m n 代入函数的解析式即可得;(2)分析函数的对称性和增减性即可得;(3)先求出0y =和3y =时,x 的值,再结合函数图象即可得.(1)解:将各点连接起来,画出该函数的图象如下:(,),(6,)A m n B n Q 为该函数图象上不同的两点,6m ∴≠,将点(6,)B n 代入25y x =-+得:6257n =-⨯+=-,将点(,7)A m -代入25y x =-+得:257m -+=-,解得6m =-或6m =(舍去),故答案为:6-.(2)解:该图象的两条性质:1、函数25y x =-+的图象关于y 轴对称;2、当0x ≤时,y 随x 的增大而增大;当0x >时,y 随x 的增大而减小.(3)解:对于函数25y x =-+,当0y =时,250x -+=,解得 2.5x =或 2.5x =-,当3y =时,253x -+=,解得1x =或1x =-,结合图象可知,当0253x <-+≤时, 2.51x -<≤-或1 2.5x ≤<.【点评】本题考查了一次函数的图象与性质、一次函数与不等式组,熟练掌握函数的图象与性质是解题关键.13.(1)()()540142124x 12x x p x ⎧-+≤⎪=⎨+≤≤⎪⎩<(2)第2月获利6万元(3)这一年中签约后的第1个月实际销售利润W 最高,最高为8.75万元【分析】(1)分段利用待定系数法求一次函数解析式当1≤x <4,p kx b =+,过点(0,40),(4,20)代入得40420b k b =⎧⎨+=⎩,当4≤x ≤12,p k x b 11=+,过点(4,20),(12,36),代入得11114201236k b k b +=⎧⎨+=⎩解方程组即可;(2)设利润用w 表示,根据每台利润(售价-进价)×销售台数列出w =(-0.05x +0.4-0.1)(-5x +40),然后求函数值即可;(3)根据销售利润=每台利润(售价-进价)×销售台数,得出销售利润w =()()()()()()0.050.40.1540140.2-0.12x 12412x x x x ⎧-+--+≤⎪⎨+≤≤⎪⎩<,分段确定函数的最值,再比较即可.(1)解:当1≤x <4,p kx b =+,过点(0,40),(4,20)代入得:40420b k b =⎧⎨+=⎩,解得:405b k =⎧⎨=-⎩,∴p x 540=-+,当4≤x ≤12,p k x b 11=+,过点(4,20),(12,36),代入得:11114201236k b k b +=⎧⎨+=⎩,解得:11212k b =⎧⎨=⎩,p x 212=+,∴()()540142124x 12x x p x ⎧-+≤⎪=⎨+≤≤⎪⎩<,(2)解:设利润用w 表示,w =(-0.05x +0.4-0.1)(-5x +40)当x =1,w =(-0.05+0.4-0.1)(-5+40)=8.75,当x =2,w =(-0.05×2+0.4-0.1)(-5×2+40)=6,当x =3,w =(-0.05×3+0.4-0.1)(-5×3+40)=3.75,当x =4,w =(-0.05×4+0.4-0.1)(-5×4+40)=2,第2月获利5万元(3)解:销售利润w =()()()()()()0.050.40.1540140.2-0.12x 12412x x x x ⎧-+--+≤⎪⎨+≤≤⎪⎩<,当x ≥4时,w =0.2x +1.2,k =0.2>0,w 随x 的增大而增大,当x =12时,w =3.6(万元),∵3.6<8.75,∴这一年中签约后的第1个月实际销售利润W 最高,最高为8.75万元,【点评】本题考查分段函数的解析式求法,函数图像获取信息与处理信息,待定系数法求函数解析式,销售利润=每台利润×台数,求函数值,函数的性质,掌握分段函数的解析式求法,函数图像获取信息与处理信息,待定系数法求函数解析式,销售利润=每台利润×台数,求函数值,函数的性质是解题的关键.14.(1)F、H(2)点M(-5,-2)(3)2≤<a【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,看是否在函数图象上,即可求解;(2)当m≥0时,点M(m,2),则2=m+3;当m<0时,点M(m,-2),则﹣2=m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束.都符合要求-4<y'≤4,只要求出关键点即可求解.(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,得到:F(2,5)和H(-3,-5)在函数y=2x+1图象上;(2)解:当m≥0时,点M(m,2),则2=m+3,解得:m=-1(舍去);当m<0时,点M(m,-2),-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:a=舍去负值),观察图象可知满足条件的a的取值范围为:2≤<a【点评】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.15.(1)0,-1(2)见解析(3)①>-1,②4或-6,③-3<x<1【分析】(1)把x=-3,-2分别代入y=|x+1|-2即可得到答案;(2)描出表中以各对对应值为坐标的部分点,然后连线;(3)根据函数图象和性质解决.(1)解:当x=-3时,y=|-3+1|-2=0,则m=0,当x=-2时,y=|-2+1|-2=-1,则n=-1.故答案为:0,-1.(2)函数图象如图所示.(3)①当自变量x >-1时,函数y 随x 的增大而增大;②当自变量x 的值为4或-6时,y =3;③解不等式|x +1|-2<0的结果为-3<x <1.故答案为:>-1,4或-6,-3<x <1.【点评】本题主要考查了一次函数的性质,一次函数与一元一次不等式,函数图象点的坐标的求法、函数图象的画法以及看函数图象,熟练掌握函数图象点的坐标的求法、函数图象的画法以及看函数图象是解决本题关键.16.(1)2-,1;(2)图见解析;当1x <-时,y 随x 的增大而减小;当1x =-时,函数有最小值2-;(3)图见解析,y x =是由函数|2|1y x +=-向左平移1个单位,再向下平移2个单位平移得到的【分析】(1)将x =﹣1,x =2分别代入函数y =|x +1|﹣2即可求m 、n 的值;(2)根据表中的数据,描点连线即可,观察函数图像,写出函数图像的两条性质即可;(3)描点法画出函数y =|x |的图像,然后观察图像求解即可.【详解】解:(1)1x =-时,1122m =--+=-,2x =时,1122n =+-=,故答案为2-,1;(2)函数图像如下图:。
专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)
专题三函数的综合问题专题三函数综合问题(一次函数+反比例函数)一、以一次函数为背景的综合问题例题(2021·黑龙江·哈尔滨市第十七中学校二模)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣34x+3分别交x轴,y轴于点A,B.∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上的一点(不与B,D重合),过点P作PC⊥BD交x轴于点C.设点P 的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,BC的延长线交DE于点F,连AP,若sin∠BAP 10OF的长.练习题1.(2021·吉林双阳·二模)如图,在平面直角坐标系中,两条直线分别为y=2x,y=kx,且点A在直线y=2x上,点B在直线y=kx上,AB∥x轴,AD⊥x轴,BC⊥x轴垂足分别为D 和C,若四边形ABCD为正方形时,则k=()A .14B .12C .23D .22.(2021·山东槐荫·二模)如图,点B ,C 分别在直线y =2x 和直线y =kx 上,A 、D 是x 轴上两点,若四边形ABCD 是长方形,且AB :AD =1:3,则k 的值是( )A .23B .25C .27D .293.(2021·山东广饶·二模)如图,在平面直角坐标系xOy 中,菱形OABC 满足点O 在原点,点A 坐标为(2,0),∠AOC =60°,直线y =﹣3x +b 与菱形OABC 有交点,则b 的取值范围是___.4.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A 的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC =::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.5.(2021·广东深圳·三模)定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.6.(2021·山东·济宁学院附属中学一模)如图,在平面直角坐标系xOy 中,ABCO Y 的顶点A ,B 的坐标分别是(6,0)A ,(0,4)B .直线l 经过坐标原点,并与AB 相交于点D .(1)直接写出C 点的坐标______.(2)若DOA BOC ∠=∠,试确定点D 的坐标及直线l 的解析式.(3)在(2)的条件下,动点P 在直线l 上运动,以点P 为圆心,PB 的长为半径的P e 随点P 运动,当P e 与ABCO Y 的边相切时,求出P e 的半径.7.(2022·辽宁·东北育才实验学校模拟预测)如图,已知直线l 1:y =2833x +与直线l 2:y =﹣2x +16相交于点C ,l 1、l 2分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与点B 重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原地出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,直接写出S 关于t 的函数关系式,并写出相应的t 的取值范围.8.(2021·浙江·诸暨市暨阳初级中学一模)如图,直线483y x =−+分别与x 轴,y 轴相交于点A ,点B ,作矩形ABCD ,其中点C ,点D 在第一象限,且满足AB ∶BC =2∶1.连接BD . (1)求点A ,点B 的坐标.(2)若点E 是线段AB (与端点A 不重合)上的一个动点,过E 作EF ∥AD ,交BD 于点F ,作直线AF .①过点B 作BG ⊥AF ,垂足为G ,当BE =BG 时,求线段AE 的长度.②若点P 是线段AD 上的一个动点,连结PF ,将△DFP 沿PF 所在直线翻折,使得点D 的对应点D ¢落在线段BD 或线段AB 上.直接写出线段AE 长的取值范围.9.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒. ①当1t =时,CPQ V 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.10.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=−+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE V 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF V 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠−∠=︒,求点K 的坐标.二、反比例函数的综合问题例题(2021·广东·珠海市紫荆中学三模)如图1,在平面直角坐标系xOy 中,线段AB 在x 轴的正半轴上移动,且AB =1,过点A 、B 作y 轴的平行线分别交函数y 1=1x (x >0)与y 2=3x(x >0)的图象于C 、E 和D 、F ,设点A 的横坐标为m (m >0).(1)D 点坐标 ;F 点坐标 ;连接OD 、OF ,则△ODF 面积为 ;(用含m 的代数式表示)(2)连接CD 、EF ,判断四边形CDFE 能否是平行四边形,并说明理由;(3)如图2,经过点B 和点G (0,6)的直线交直线AC 于点H ,若点H 的纵坐标为正整数,请求出整数m 的值. 练习题1.(2021·河北·高阳县教育局教研室模拟预测)如图是反比例函数3y x =和7y x=−在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点A ,B ,点P 在x 轴上.则点P 从左到右的运动过程中,△APB 的面积是( )A .10B .4C .5D .从小变大再变小2.(2021·山东滨州·一模)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x在第一象限内的图象经过点A ,与BC 交于点F ,则点F 的坐标为( )A .611,6120)B .61+1,6120)C .6146120− D .61﹣946120− 3.(2021·山东济南·二模)如图,在平面直角坐标系中,菱形ABCD 的对称中心恰好是原点O ,已知点B 坐标是32,2⎛⎫− ⎪⎝⎭,双曲线y =6x经过点A ,则菱形ABCD 的面积是( )A .2B .18C 252D .254.(2021·广东深圳·三模)如图,在反比例函数y =4x (x >0)的图象上有动点A ,连接OA ,y =k x (x >0)的图象经过OA 的中点B ,过点B 作BC ∥x 轴交函数y =4x 的图象于点C ,过点C 作CE ∥y 轴交函数y =kx的图象于点D ,交x 轴点E ,连接AC ,OC ,BD ,OC 与BD 交于点F .下列结论:①k =1;②S △BOC =32;③S △CDF =316S △AOC ;④若BD =AO ,则∠AOC =2∠COE .其中正确的是( )A .①③④B .②③④C .①②④D .①②③④5.(2021·江苏扬州·一模)如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数12y x=的图象恰好经过CD 的中点E ,则OA 的长为______.6.(2021·福建·厦门五缘实验学校二模)如图,在平面直角坐标系中,反比例函数y kx=(k >0)的图象与半径为5的⊙O 交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是______.7.(2021·江苏常州·二模)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标. 8.(2021·山东菏泽·三模)如图,反比例函数()0ky k x=≠的图像过等边BOC V 的顶点B ,2OC =,点A 在反比例函数的图象上,连接AC ,AO .(1)求反比例函数()0ky k x=≠的表达式; (2)若四边形ACBO 的面积是33A 的坐标.9.(2021·吉林·三模)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线ky x=(x >0)的图象交BC 于点D ,若BD =32.求反比例函数的解析式及点F 的坐标.10.(2022·广东江门·一模)反比例函数y 1=1k x(k 1>0)和y 2=22(0)k k x >在第一象限的图象如图所示,过原点的两条射线分别交两个反比例图象于A ,D 和B ,C(1)求证:AB ∥CD ;(2)若k 1=2,S △OAB =2,S 四边形ABCD =3,求反比例函数y 2=2k x(k 2>0)的解析式. 11.(2021·湖北恩施·模拟预测)如图,在平面直角坐标系中,点A ,D 分别是x 轴、y 轴上的一动点,以AD 为边向外作矩形ABCD ,对角线BD ∥x 轴,反比例函数(0)ky k x=>图象经过矩形对角线交点E .(1)如图1,若点A 、D 坐标分别是(6,0),(0,2),求BD 的长;(2)如图2,保持点D 坐标(0,2)不变,点A 向右移移动,当点C 刚好在反比函数图象上时,求点A 坐标及k 的值.12.(2021·广东·汕头市潮南实验学校一模)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x=>的图象经过BC 边上的中点D ,交AB 于点E .(1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.13.(2021·重庆北碚·模拟预测)有这样一个问题:探究函数y =bx ax ++2的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行例研究,已知当x =2时,y =7,0x =时,y =﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为,m=,n=.根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m 3413﹣37n113…;①该函数图象是中心对称图形,它的对称中心是原点.②该函数既无最大值也无最小值.③在自变量的取值范围内,y随x的增大而减小.(3)请结合(1)中函数图象,直接写出关于x的不等式2220x axx b+−−≥+的解集.(保留1位小数,误差不超过0.2)14.(2021·广东·二模)如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A⊥y轴于点A,PB⊥x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P (6,3),求△PCD 的面积;(2)在(1)的条件下,当PG 平分∠CPD 时,求点G 的坐标;(3)如图2,若点G 是OP 与CD 的交点,点M 是线段OP 上的点,连接MC 、MD .当∠CMD =90°时,求证:MG =12CD .15.(2021·广东珠海·一模)如图,在平面直角坐标系中,O 为坐标原点,点B 在x 轴正半轴上,四边形OACB 为平行四边形,3cos AOB?(0)k y k x=>的图象在第一象限内过点A ,且经过BC 边的中点F ,连接AF ,OF .(1)当3OA = (2)在(1)的条件下,求点F 的坐标; (3)证明:ΔΔOAF AFC ∽.三、一次函数与反比例函数的综合问题例题(2021·江苏·苏州市吴中区碧波中学一模)如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图象于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为()1,3.(1)直接写出点C 的坐标(____,______),求k 、m 的值:(2)求直线12y kx =+函数(0)m y x x =>图象的交点坐标;(3)直接写出不等式1(0)2m kx x x >+>的解集. 练习题1.(2021·四川成都·一模)如图,在同一平面直角坐标系中,反比例函数y =kx 与一次函数y =kx ﹣k (k 为常数,且k ≠0)的图象可能是( )A .B .C .D .2.(2021·湖北荆门·中考真题)在同一直角坐标系中,函数y kx k =−与(0)||ky k x =≠的大致图象是( )A.①②B.②③C.②④D.③④3.(2022·湖北武汉·模拟预测)如图,直线y=x+8分别交x、y轴于A、B两点,交双曲线kyx =,若CD=3(AC+BD),则k的值为()A.﹣6B.﹣7C.﹣8D.﹣94.(2021·广东·深圳市罗湖区翠园初级中学二模)将反比例函数y=4x的图象绕坐标原点O逆时针旋转30°,得到如图的新曲线A(﹣3,3,B 332,32)的直线相交于点C、D,则△OCD的面积为()A .3B .8C .3D 3325.(2018·山东青岛·中考模拟)如图,反比例函数y =kx (x <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为-3,-1.则关于x 的不等式kx <x +4(x <0)的解集为( )A .x <-3B .-3<x <-1C .-1<x <0D .x <-3或-1<x <06.(2021·山东临沂·一模)在平面直角坐标系xOy 中,已知一次函数0y ax b a +≠=()与反比例函数ky x=的图象交于点1A m (,)和()2,1B −−,点A 关于x 轴的对称点为点C .(1)求这两个函数的表达式. (2)直接写出关于x 的不等式kax b x+≤的解.(3)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E ,且3045CED ︒≤∠≤︒,直接写出点E 的横坐标t 的取值范围.7.(2021·山东青岛·一模)如图,直线y 1=k 1x +b 与双曲线y 2=2k x在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)分别求出直线和双曲线的解析式;(2)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,当△PED 的面积最大时,请直接写出此时P 点的坐标为 . 8.(2021·广东清远·二模)如图,一次函数y 1=k 1x +4与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C .(1)求一次函数与反比例函数的表达式;(2)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标;(3)点M 是y 轴上的一个动点,当△MBC 为直角三角形时,直接写出点M 的坐标.9.(2021·湖南·株洲市芦淞区教育教学研究指导中心模拟预测)如图1,点(08)(2)A B a ,、,在直线2y x b =−+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求E 点坐标; ②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.10.(2021·四川·叙州区双龙镇初级中学校模拟预测)如图1,在平面直角坐标系中,直线l 1:y =kx +b (k ≠0)与双曲线()0my m x=≠交于点A (a ,4a )(a >0)和点B (﹣4,n ),连接OA ,OB ,其中17OA =(1)求双曲线和直线l 1的表达式; (2)求△AOB 的面积;(3)如图2,将直线l 1:y =kx +b 沿着y 轴向下平移得到直线l 2,且直线l 2与双曲线在第三象限内的交点为C ,若△ABC 的面积为20,求直线l 2与y 轴的交点坐标.11.(2021·山东潍坊·二模)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象与直线2y x =−交于点(4,)A m .(1)求k ,m 的值;(2)已知点(P n ,)(0)n n >,过点P 作平行于x 轴的直线,交直线2y x =−于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N . ①当2n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM …,结合函数的图象,直接写出n 的取值范围. 12.(2021·四川南充·一模)如图,直线y =kx +b 与x 轴交于点A ,与y 轴交于点B ,与双曲线y =ax(x <0)交于C (﹣8,1),D (﹣m ,m 2)两点.(1)求直线和双曲线的解析式;(2)比较AC 和BD 的大小,直接填空:AC BD ;(3)写出直线对应函数值大于双曲线对应函数值自变量x 的取值范围,直接填空: . 13.(2021·山东临沂·一模)如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD .(1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标. 14.(2021·广东·东莞市南开实验学校一模)如图,一次函数y=k 1x +1的图象与反比例函数22(0)k y k x=> 点的图象相交于A 、B 两点,点C 在x 轴正半轴上,点D (1,-2 ),连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x 的取值范围; (3)设点P 是直线AB 上一动点,且S △OAP =12S 菱形OACD ,求点P 的坐标.15.(2021·山东济南·三模)已知点A (0,4),将点A 先向右平移1个单位长度,再向上平移2个单位长度,对应点B 恰好落在反比例函数(0)ky k x=>的图象上.过点B 的直线l 的表达式为y =mx +n ,与反比例函数图象的另一个交点为点C ,分别交x 轴、y 轴于点D 、点E .(1)求反比例函数表达式;(2)若线段BC =2CD ,求△BOD 的面积;(3)在(2)的条件下,点P 为反比例函数图象上B 、C 之间的一点(不与B 、C 重合),PM⊥x 轴交直线l 于点M ,PN ⊥y 轴交直线l 于点N ,请分析EM •DN 是否为定值,并说明理由.16.(2021·广东阳江·一模)如图,一次函数y =kx +b (k ≠0)与反比例函数(0,0)m y m x x=≠>交于A (4,12),B (1,2),AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数值大于反比例函数值;(2)求一次函数的解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△BDP ∽△ACP ,求点P 的坐标.17.(2021·广东佛山·二模)如图,一次函数y =k 1x +b 与反比例函数y =2k x图象交于点B (﹣1,6)、点A ,且点A 的纵坐标为3.(1)填空:k 1= ,b = ;k 2= ;(2)结合图形,直接写出k 1x +b >2k x时x 的取值范围; (3)在梯形ODCA 中,AC ∥OD ,且下底DO 在x 轴上,CD ⊥x 轴于点D ,CD 和反比例函数的图象交于点M ,当梯形ODCA 的面积为12时,求此时点M 坐标.18.(2021·广东梅州·一模)已知一次函数y =kx +b 与反比例函数y =m x的图象交于A (﹣3,2)、B (1,n )两点.(1)求一次函数和反比例函数的表达式;(2)△AOB 的面积为 ;(3)直接写出不等式kx +b >m x的解 ; (4)点P 在x 的负半轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.19.(2021·江苏南通·中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=−的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=−+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =−≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.。
一次函数与反比例函数综合题中考专题
一次函数与反比例函数综合题中考专题1、在图中,点D位于双曲线上,AD垂直于x轴,垂足为A。
点C位于AD上,CB平行于x轴并与曲线相交于点B。
直线AB与y轴相交于点F。
已知AC:AD=1:3,点C的坐标为(2,2)。
1)求该双曲线的解析式;2)求△OFA的面积。
1)由于点D位于双曲线上,且AD垂直于x轴,垂足为A,因此双曲线的中心点为O(0,0)。
又因为AC:AD=1:3,所以点A的坐标为(0,6)。
设双曲线的方程为y=a/x,由于点B位于双曲线上,且CB平行于x轴,因此点B的坐标为(2,2a/2)。
由于直线AB与y轴相交于点F,因此直线AB的方程为x=2/F。
将点A和B代入直线AB的方程,得到F=3.因此,直线AB的方程为x=2/3.将点A和B的坐标代入双曲线的方程,得到2a=18,因此双曲线的方程为y=9/x。
2)由于△OFA为直角三角形,因此△OFA的面积为(1/2)×OF×OA=(1/2)×3×6=9.2、在图中,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC。
1)求k的值;2)若△BCD的面积为12,求直线CD的解析式;3)判断AB与CD的位置关系,并说明理由。
1)由于点D位于双曲线上,因此6k=1,解得k=1/6.2)由于点C位于双曲线第三象限上,且过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC,因此点A的坐标为(6,0),点B的坐标为(0,1/6)。
设直线CD的方程为y=ax+b,由于点C的坐标为(x,0),点D的坐标为(0,y),因此直线CD的方程为y=-x/6+2.3)因为直线AB的斜率为-1/6,直线CD的斜率为-1/6,所以AB与CD平行。
又因为点B在直线CD的上方,点A在直线CD的下方,所以AB与CD相交。
3、在图中,已知反比例函数y=k/x的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,x=k的图像上另一点C(n,1/2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数综合
一、一次函数中交点、面积问题
【例1】已知,如图,直线x y 28-=与y 轴交于点A ,与x 轴交于点B ,直线b x y +=与y 轴交于点C ,与x 轴交于点D ,如果两直线交于点P ,且AC :CO=3:5(AO >CO ).
(1)求点A 、B 的坐标;
(2)求四边形COBP 的面积S .
【变式练习1】如图,在平面直角坐标系xoy 中,已知一次函数4+-=x y 的图象与过点A (0,2)、B (-3,0)的直线交于点P ,与x 轴、y 轴分别相交于点C 和点D .
(1)求直线AB 的函数表达式及点P 的坐标;
(2)连接AC ,求△PAC 的面积.
【变式练习2】如图,直线6+=kx y 与x 轴、y 轴分别交于E ,F ,点E 坐标为(-8,0),点A 的坐标为(-6,0),P (x ,y )是直线6+=kx y 上的一个动点.
【例2】如图,已知直线2+-=x y 与x 轴、y 轴分别交于点A 和点B ,另已知直线)0(≠+=k b kx y 经过点C (1,0),且把△AOB 分成两部分.
(1)若△AOB 被分成的两部分面积相等,求k 和b 的值;
(2)若△AOB被分成的两部分面积比为1:5,求k和b的值.
【变式练习1】如图,△AOB为正三角形,点B坐标为(2,0),过点C(-2,0)作直线l交AO于D,交AB于E,且使△ADE和△DCO的面积相等,求直线l的函数解析式.
(2)是否存在经过点E的直线l将正方ABCD分成面积相等的两部分?若存在,求出直线l的解析式;若不存在,请说明理由.
二、一次函数中动点、存在问题
(2)若点C (x ,0)在线段OA 上运动(不与点0、点A 重合),求△ABC 面积y 关于x 的函数解析式,并写出自变量x 的取值范围;
(3)在x 轴上是否存在点C ,使△ABC 为等腰三角形?若存在请直接写出点C 的坐标;若不存在,请说明理由.
三、一次函数中最值、规律问题
【例1】一次函数b kx y +=的图象与x 、y 轴分别交于点A (2,0),B (0,4).
(1)求该函数的解析式;
(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC+PD 的最小值,并求取得最小值时P 点的坐标.
【变式练习】已知四边形OABC 是边长为4的正方形,分别以OA 、OC 所在的直线为x 轴、y 轴,建立如图1所示的平面直角坐标系,直线l 经过A 、C 两点.
(1)求直线l 的函数表达式;
(2)若P 是直线l 上的一个动点,请直接写出当△OPA 是等腰三角形时点P 的坐标;
(3)如图2,若点D 是OC 的中点,E 是直线l 上的一个动点,求使OE+DE 取得最小值时点E 的坐标.
【例2】在直角坐标系中,正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n-1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数b kx y +=的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点1B 的坐标为(1,1),点2B 的坐标为(3,2),则点n A 的坐标为 ,n B 的坐标是 .
【变式练习1】如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线x y =和x y -=分别交于A 1,A 2,A 3,A 4…,则点30A 的坐标是( )
A。