一次函数综合练习及答案

合集下载

一次函数和几何综合题含答案

一次函数和几何综合题含答案

一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

一次函数综合练习附答案

一次函数综合练习附答案

一次函数综合练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列函数①5y x =-;②21y x =-+;③2y x =;④162y x =+;⑤21y x =-中,是一次函数的有( ) A .1个 B .2个C .3个D .4个【答案】C2.在下列各图象中,y 不是x 函数的是( )A .B .C .D .【答案】B3.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A5.已知方程()00kx b k +=≠的解是3x =,则函数()0y kx b k =+≠的图象可能是( )A.B.C.D.【答案】C6.如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是()A.m>-3 B.m>0 C.m>-1 D.m<3【答案】C7.小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m【答案】C8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【答案】D二、填空题9.已知一次函数y=2x+m的图象是由一次函数y=2x﹣3的图象沿y轴向上平移8个单位得到的,则m=_____.【答案】5.10.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.【答案】8011.在同一平面直角坐标系中,函数y1=kx+b与y2=mx+n的图象如图所示,则关于x 的不等式kx+b≥mx+n的解集为__.【答案】x≥212.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第___象限.【答案】一.13.甲、乙两人分别从A 、B 两地出发,相向而行.图中的1l ,2l 分别表示甲、乙离B 地的距离()km y 与甲出发后所用时间()h x 的函数关系图象,则甲出发_______小时与乙相遇.【答案】1.414.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________. 53三、解答题15.已知13y x =-+,234y x =-,当x 取哪些值时,12y y >?你是怎样做的?与同伴交流. 【答案】74x <,见解析. 16.(1)在同一直角坐标系内画出函数2y x =-+,2y x =+的图象,这两个图象有怎样的位置关系?(2)函数32y x =-+,32y x =+的图象又有怎样的位置关系?一般地,你有怎样的猜想?【答案】(1)图见解析,这两个图象关于y 轴对称;(2))这两个图象关于y 轴对称;一般地,函数y kx b =+和y kx b =-+的图象关于y 轴对称.17.某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y (千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y 与x 的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【答案】(1)y =﹣10x +300;(2)能在保质期内销售完这批蜜柚,理由见解析 18.为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.19.如图,在平面直角坐标系中,点A B ,的坐标分别为3(,0)2-,3(,1)2,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【答案】(1)3(;(2)332y =+ 20.如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ) (1)求b ,m 的值(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别相交于C ,D ,若线段CD 长为2,求a 的值【答案】(1)-1;(2)53或13.21.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得利润700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案,方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【答案】(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm23.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q 与t 的关系式; ②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远. 【答案】①Q =100﹣6t ;② 70L ;③25003km . 24.在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只,该厂的生产能力是:若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只,已知生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.若设该厂在这次任务中生产了A 型口罩x 万只.(1)该厂生产A 型口罩可获利润 万元,生产B 型口罩可获利润 万元.(2)设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A 型和B 型口罩的只数?最短时间是几天?【答案】(1)0.5x ;1.5-0.3x ;(2)y=0.2x+1.5,1.8≤x≤4.2;(3)安排A 型:4.2万只,B 型:0.8万只,最大利润是2.34万元;(4)生产A 型1.8万只,生产B 型3.2万只,最短时间是7天。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。

5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。

CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。

一次函数综合题(难度较大)带答案

一次函数综合题(难度较大)带答案

一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。

一次函数综合测试卷试题及含答案.docx

一次函数综合测试卷试题及含答案.docx

精品文档一次函数测试题一、填空(10× 3′=30′)1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是。

2、若函数y= - 2x m+2是正比例函数,则m 的值是。

3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。

4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。

5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。

6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函数的表达式是 ______________。

7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是____。

8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m)的函数关系式是 __________。

9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。

10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。

二、选择题 (10×3′=30′)11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次xy函数的有()( A) 4 个( B) 3 个(C)2 个( D) 1 个112、下面哪个点不在函数 y 2 x 3 的图像上()O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1)13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第13题图)( A)1111 2222 14、下列一次函数中,随着增大而减小而的是()( A)y 3x(B)y 3x 2( C)y 3 2x(D)y3x 215、已知一次函数y=kx+b的图象如图所示,则 k,b的符号是 ()(A) k>0 ,b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0(第 15 题图)16、函数 y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么 m的取值范围是 ()( A)3()3()()1 m B 1 m C m 1 D m4417、一支蜡烛长 20 厘米 ,点燃后每小时燃烧 5 厘米 ,燃烧时剩下的高度 h (厘米 )与燃烧时间 t (时)的函数关系的图象是 ()(A)(B)(C)(D)18、下图中表示一次函数y= mx+n与正比例函数 y= mnx(m ,n 是常数,且 mn<0)图像的是 ( ).19. 一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于113A. 2B.2C.2D.以上答案都不对20. 某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示 .由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.280三、计算题(21、22、25 各 8 分, 23、24、26 各 12 分)21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4) ,且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知 y - 2 与 x 成正比,且当 x=1 时, y= - 6(1)求 y 与 x 之间的函数关系式(2)若点 (a,2)在这个函数图象上,求a 的值1 23、已知一次函数y=kx+b的图象经过点 (- 1, - 5),且与正比例函数y=2 x 的图象相交于点 (2, a),求(1)a 的值(2)k, b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。

一次函数综合练习(全等三角形,勾股定理)答案

一次函数综合练习(全等三角形,勾股定理)答案

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

一次函数与几何综合(通用版)(含答案)

一次函数与几何综合(通用版)(含答案)

一次函数与几何综合(通用版)试卷简介:一次函数与几何综合一、单选题(共10道,每道10分)1.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移与x轴,y轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:由题意可求得直线AB的解析式为y=-2x+2,AB∥CD.由DB=DC,DO⊥BC可得,OC=OB=1,∴C(-1,0).由AB∥CD可设直线CD的解析式为y=-2x+b,把C点坐标代入可得,b=-2,∴直线CD的函数解析式为y=-2x-2.试题难度:三颗星知识点:一次函数图象与几何变换2.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B 经过的路径长为( )A. B.C. D.5答案:D解题思路:如图,延长AC交x轴于点B′.则点B,B′关于y轴对称,CB=CB′.作AD⊥x轴于点D,则AD=3,DB′=3+1=4,AB′=5.∴AC+CB=AC+CB′=AB′=5.即光线从点A到点B经过的路径长为5.试题难度:三颗星知识点:坐标与图形性质3.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是( )A. B.C. D.答案:B解题思路:根据三角形内心的定义可知∠ABO=∠CBO,∵C(2,0),B(0,2),∴OB=OC,∠CBO=∠ABO=45°,,∴∠ABC=90°即AB⊥BC,可求得直线AB的表达式为:,由得,,即A(-6,-4),∴,在Rt△ABC中,.试题难度:三颗星知识点:一次函数综合题4.如图,直线⊥x轴于点(1,0),直线⊥x轴于点(2,0),直线⊥x轴于点(3,0)…,直线⊥x轴于点(n,0).函数y=x的图象与直线,,,…,分别交于点,…,;函数y=2x的图象与直线,,,…,分别交于点,…,.如果△的面积为,四边形的面积为,四边形的面积为,…,四边形的面积为,那么=( )A.4025B.4023C. D.答案:C解题思路:∵函数y=x的图象与直线,,,…,分别交于点,∴∵函数y=2x的图象与直线,,,…,分别交于点∴,,…….当n=2013时,.试题难度:三颗星知识点:一次函数综合题5.如图,在平面直角坐标系中,直线经过原点O,且与x轴正半轴的夹角为30°.点M在x轴上,⊙M的半径为2,⊙M与直线相交于A,B两点.若△ABM为等腰直角三角形,则点M的坐标为( )A. B.C. D.答案:B解题思路:如图,当点M在原点右边时,过点M作MN⊥AB,垂足为N,则,∵△ABM为等腰直角三角形,∴AN=MN,∴,∵AM=2,∴,∴,∵直线与x轴正半轴的夹角为30°,∴,∴点M的坐标为,由对称性可知,点M′的坐标为.试题难度:三颗星知识点:一次函数之存在性6.已知在直角坐标系中有两条直线,直线所对应的函数解析式为y=x-2,如果将坐标纸折叠,使与重合,则点(-1,0)与点(0,-1)也重合,那么直线所对应的函数解析式为( )A.y=x-2B.y=x+2C.y=-x-2D.y=-x+2答案:B解题思路:∵折叠坐标纸可以使点(-1,0)与点(0,-1)重合,∴是沿直线y=x折叠的(也就是对称轴为直线y=x).∵y=x-2过点(0,-2),(2,0),折叠后的对应点为(-2,0),(0,2),即直线过两点(-2,0),(0,2).可以求得:y=x+2.试题难度:三颗星知识点:一次函数图象与几何变换7.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )A.3<b<6B.2<b<6C.3≦b≦6D.2<b<5答案:C解题思路:题干意思是指直线与小正方形有交点时,求b的取值范围.我们知道直线是由直线向上平移b个单位得到的,若直线与小正方形有交点,可知当直线经过A(1,1)时b的值最小,此时b=3;当直线经过C(2,2)时,b最大,此时b=6.∴能够使黑色区域变白的b的取值范围为3≦b≦6.试题难度:三颗星知识点:一次函数综合题8.已知矩形ABCD中,AB=9,AD=3,将此矩形置于平面直角坐标系中,使AB在x轴正半轴上,若经过点C的直线与x轴交于点E,则四边形AECD的面积为( )A.9B.18C.6D.21答案:B解题思路:在矩形ABCD中,要求四边形AECD的面积,只需求出△EBC的面积即可,即求BE的长.∵点C的纵坐标是3,代入直线解析式可得点C(10,3),∴OB=10,∵直线与x轴交于点E,∴点E(4,0),∴OE=4,BE=6,则△EBC的面积为9,∴四边形AECD的面积为18.试题难度:三颗星知识点:一次函数综合题9.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.5答案:B解题思路:由于点A,B是固定点,要使△ABC是等腰三角形,只需根据一线两圆,判断与直线的交点即可.①作线段AB的垂直平分线,交直线于点,则是以AB为底的等腰三角形;②以点A为圆心,AB长为半径作圆,交直线于两点,,则,分别是以为底的等腰三角形;③以点B为圆心,AB长为半径作圆,我们发现该圆与直线无交点,原因在于:过点B作直线的垂线BM,垂足为M,.试题难度:三颗星知识点:一次函数之存在性10.如图,在以点O为原点的平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且,反比例函数的图象经过点C,则所有可能的k值为( )A. B.C. D.答案:C解题思路:由题意得,A(2,0),B(0,1),.显然当点为线段AB的中点时,有,此时点的坐标为,.如图,以点O为圆心,的长为半径作圆,交直线AB于另一点,则点也符合条件.过点O作OE⊥AB于点E,过点作⊥x轴于点F,则,.在中,,,则;在中,,且,则,∴点,综上:,试题难度:三颗星知识点:一次函数综合题。

一次函数综合练习题(难度较大)带答案

一次函数综合练习题(难度较大)带答案

一次函数练习一.解答题(共16小题)1.如图,在平面直角坐标系中,A(2,0),B(0,6).(1)如图1,过A,B两点作直线AB,求直线AB的解析式;(2)如图2,点C在x轴负半轴上,C(﹣6,0),点P为直线BC上一点,若S△ABC=2S△ABP,求满足条件的点P的坐标;(3)在(2)的条件下,点E在直线BC上,点F在y轴上,当△AEF为一个等腰直角三角形时,请你直接写出E点坐标.2.如图,在平面直角坐标系中,直线l:y=x+b(b<0)与x轴交于点C.点D为直线l上第一象限内一点,过D 作DE⊥y轴于点E,CA⊥DE于点A.点B在线段DA上,DB=AC.连接CB,P为线段CB上一动点,过点P 作PR⊥x轴,分别交x轴、CD、DE于点R、Q、S.(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,的值是否变化?若不变,求出该值;若变化,请说明理由.3.已知:如图,一次函数y=x﹣3的图象分别与x轴、y轴相交于点A、B,且与经过x轴负半轴上的点C的一次函数y=kx+b的图象相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为;点D的坐标;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为7:9两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点,把线段AB绕点B顺时针旋转90°后得到线段BC,连结AC,OC.(1)当时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△P AB是等腰三角形,求满足条件的所有P点的坐标.5.如图,在平面直角坐标系xOy中,A(0,3)、B(﹣4,0),连接AB,点C为线段AB上的一个动点(点C不与A、B重合),过点C作CP⊥x轴,垂足为P,将线段AP绕点A逆时针旋转至AQ,且∠P AQ=∠BAO.连接OQ,设点C的横坐标为m.(1)求经过点A、B的直线的函数表达式;(2)当m为何值时,△ACP≌△AOQ;(3)点C在运动的过程中,①在y轴上是否存在一点D,使得∠ADQ的大小始终不发生变化?若存在,请求出点D的坐标;若不存在,请说明理由;②连接OQ,请直接写出OQ长度的取值范围.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴交于点C,与直线AB交于点D.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=1,连接HM、NC,求HM+MN+NC的最小值;(3)将△OAB绕平面内某点E旋转90°,旋转后的三角形记为△O′A′B′,若点O′落在直线AB上,点A′落在直线CD上,请直接写出满足条件的点O′的坐标以及对应的点E的坐标.7.已知直线l:y=3x+3与x轴交于点A,点B在直线l上,且位于y轴右侧某个位置.(1)求点A坐标;(2)过点B作直线BC⊥AB,交x轴于点C,当△ABC的面积为60时,求点B坐标;(3)在(2)问条件下,D,E分别为射线AO与AB上两动点,连接DE,DB,是否存在当△ADE为直角三角形同时△DEB为等腰三角形的情况,若存在,求出点E坐标;若不存在,说明理由.8.【阅读理解】定义:在同一平面内,有不在同一条直线上的三点M,N,P,连接PM,PN,设∠MPN=α,=k,则我们把(a,k)称为点M到N关于点P的“度比坐标”,把(α,)称为点N到M关于点P的“度比坐标”.【迁移运用】如图,直线l1:y=x+5分别与x轴,y轴相交于A,B两点,过点C(0,10)的直线l2与l1在第一象限内相交于点D.根据定义,我们知道点A到C关于点O的“度比坐标”为(90°,).(1)请分别直接写出A,B两点的坐标及点B到A关于点O的“度比坐标”;(2)若点A到C关于点D的“度比坐标”与点C到B关于点D的“度比坐标”相同.(ⅰ)求直线l2的函数表达式;(ⅱ)点E,F分别是直线l1,l2上的动点,连接OE,OF,若点E到F关于点O的“度比坐标”为(90°,),求此时点E的坐标.9.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、p满足+(p ﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ 是以BC为底边的等腰直角三角形,直角顶点为Q.若存在,请求出点Q坐标;若不存在,请说明理由.10.在平面直角坐标系xOy中,对于M,N两点,若在y轴上存在点T,使得∠MTN=90°,且MT=NT,则称M,N两点互相等垂,其中一个点叫做另一个点的等垂点.已知A点的坐标是(2,0).(1)如图①,在点B(2,﹣2),C(0,1),D(﹣2,0)中,点A的等垂点是(选填“B”,“C”或“D”)(2)如图②,若一次函数y=2x﹣1的图象上存在点A的等垂点A',求A'点的坐标;(3)若一次函数y=kx+b(k≠0)的图象上存在无数个点A的等垂点,试写出该一次函数的所有表达式:.11.如图1,在平面直角坐标系xOy中,直线l:y=x+4交x轴于点C,交y轴于点D,AB∥CD,A(2,3),点P 是直线l上一动点,连接AP,BP.(1)求直线AB的表达式;(2)求AP+CP的最小值;(3)如图2,将三角形ABP沿BP翻折得到△A′BP,当点A′落在坐标轴上时,请直接写出直线BP的表达式.12.如图,在平面直角坐标系xOy中,直线y=x+2+交x轴于点A,过该直线上一点B作BC⊥y轴于点C,且OC=2.(1)求点B的坐标及线段AB的长;(2)取OC的中点D,作直线BD交x轴于点E,连接AD.(ⅰ)求证:AD是∠BAE的平分线;(ⅱ)若点M,N分别是线段AO,AD上的动点,连接MN,ON,试问MN+ON是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.13.如图1,直线y=x+6与x轴交于点A,直线y=﹣x+m(m>0)与x轴、y轴分别交于B、C两点,并与直线y =x+6相交于点D,若AB=5.(1)求直线BC的解析式;(2)求出四边形AOCD的面积;(3)如图2,若P为直线AD上一动点,当△PBD的面积是四边形AOCD的面积的一半时,求点P的坐标.14.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P是直线AB 上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;(3)当△ABP为等腰直角三角形时,请直接写出点P的坐标.15.如图1,在平面直角坐标系中,直线y=x﹣12分别交x轴、y轴于A、B两点,过点A作x轴的垂线交直线y=x 于点C,D点是线段AB上一点,连接OD,以OD为直角边作等腰直角三角形ODE,使∠ODE=90°,且E点在线段AC上,过D点作x轴的平行线交y轴于G,设D点的纵坐标为m.(1)点C的坐标为;(2)用含m的代数式表示E点的坐标,并求出m的取值范围;(3)如图2,连接BE交DG于点F,若EF=DF﹣2m,求m的值.16.如图,在平面直角坐标系中,点A坐标为(6,0),在B在y轴的正半轴上,且S△AOB=24.(1)求点B坐标;(2)若点P从B出发沿y轴负半轴运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共16小题)1.【分析】(1)利用待定系数法解决问题即可;(2)分两种情形,利用中点坐标公式求解即可;(3)分四种情形,分别画出图形,利用全等三角形的性质求解即可.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(2,0),B(0,6)代入y=kx+b,得到,解得,∴直线AB的解析式为y=﹣3x+6.(2)如图2中,当点P在线段BC上时,∵S△ABC=2S△ABP,∴CP=PB,∵C(﹣6,0),B(0,6),∴P(﹣3,3),当点P′在CB的延长线上时,BP′=PB,此时P′(3,9),综上所述,满足条件的点P的坐标为(﹣3,3)或(3,9);(3)如图3﹣1中,当AE=AF,∠EAF=90°时,过点E作EH⊥AC于点H.∵∠AHE=∠AOF=∠EAF=90°,∴∠EAH+∠F AO=90°,∠F AO+∠AFO=90°,∴∠EAH=∠AFO,∵AE=AF,∴△AHE≌△FOA(AAS),∴EH=OA=2,∵直线BC的解析式为y=x+6,当y=2时,x=﹣4,∴E(﹣4,2);如图3﹣2中,当EF=EA,∠AEF=90°,过点E作ED⊥OB于点D,EH⊥OC于点H.同法可证,△EDF≌△EHA(AAS),∵ED=EH,∵E(﹣3,3);如图3﹣3中,当AE=AF,∠EAF=90°时,同法可证,△AHE≌△FOA(AAS),∴EH=OA=2,∴E(﹣8,﹣2);如图3﹣4中,当FE=F A,∠EF A=90°时,同法可证,△EHF≌△FOA,∴FH=OA=2,EH=OF,设E(m,m+6),∴OH=m+6=﹣m﹣2,∴m=﹣4,∴E(﹣4,2),综上所述,满足条件的点E的坐标为(﹣3,3)或(﹣4,2)或(﹣8,﹣2).2.【分析】(1)①求出,B,C两点坐标,利用待定系数法解决问题即可;②设P(m ,m ﹣),则R(m,0),Q(m ,m﹣1),S(m,3),根据QS=QR,构建方程求出m即可解决问题;(2)结论:=.如图,过点D作DT⊥x轴于点T.设D(m ,m+b),用m,b表示出直线BC的解析式y =x +b,设P(t ,t +b),则R(t,0),Q(t ,t+b),用t,b表示出PQ,CR的长,可得结论.【解答】解:(1)①∵点D(12,3)在直线y =x+b 上,∴3=×12+b,∴b=﹣1,∴直线l的解析式为y =x﹣1,∴C(3,0),∵DE⊥y轴,∴OE=3,∵CA⊥OC,∴AC=OE=3,∴DB=AC=3,∴B(9,3),设直线BC的解析式为y=kx+b ,则有,解得,,∴直线BC的解析式为y =x ﹣;②设P(m ,m ﹣),则R(m,0),Q(m ,m﹣1),S(m,3),∵QS=QR,∴3﹣(m﹣1)=m﹣1,∴m =,∴P (,);(2)结论:=.理由:如图,过点D作DT⊥x轴于点T.设D(m ,m+b),∵C(﹣3b,0),∴OC=3b,OT=m,DT =m+b,∴CT=OT﹣OC=m+3b,∴AC=DT=BD =m+b,∴B (m﹣b ,m+b),∴直线BC的解析式为y =x +b,设P(t ,t +b),则R(t,0),Q(t ,t+b),∴PQ =t +b ﹣(t+b )=t +b,CR=t﹣(﹣3b)=t+3b,∴==.3.【分析】(1)先求出点A和点B的坐标,根据题意,得出点C和点E的坐标,用待定系数法可求出直线CD的解析式,联立直线CD和直线AB的解析式可求出点D的坐标;(2)①过点D向x轴作DF⊥x轴于点F,先求出△ACD的面积,直线BP将△ACD的面积分为7:9两部分,需要分两种情况:当点P在线段CD上时,则有S△BDP =S△ACD,表达△BDP的面积,建立方程求解即可;当点P在线段CE上时,设直线BP与x 轴交于点Q,则S△ABQ =S△ACD,表达△ABQ的面积,建立方程求解即可;②将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上时,需要分三种情况:当点D 落在x轴负半轴上;当点D落在y轴上;当点D落在x轴正半轴上,画出图形,求解即可.【解答】解:(1)∵一次函数y =x﹣3的图象分别与x轴、y轴相交于点A、B,∴A(4,0),B(0,﹣3),∴OA=4,∵E与B关于x轴对称,OA=3OC.∴E(0,3),OC =,∴C (﹣,0).把点C和点E的坐标代入一次函数y=kx+b,∴,解得,∴直线CD的解析式为:y =x+3;令x+3=x﹣3,解得x=﹣4,∴y =×(﹣4)﹣3=﹣6,∴点D的坐标为(﹣4,﹣6).故答案为:y =x+3;(﹣4,﹣6);(2)①如图1,过点D作DF⊥x轴于点F,连接BC,∴DF=6,∵OA=4,OC =,∴AC =,∴S△ACD =•AC•DF =××6=16.∵A(4,0),B(0,﹣3),D(﹣4,﹣6),∴点B是线段AD的中点,∴S△DBC=S△ACB.当点P在线段CD上时,则有S△BDP =S△ACD,∵S△BDP =(x P﹣x D)•BE,∴(x P+4)•6=×16,解得x P =﹣,∴P (﹣,﹣).当点P在线段CE上时,设直线BP与x轴交于点Q,如图2,此时有S△ABQ =S△ACD,∵S△ABQ =•AQ•BO,∴AQ•3=7,解得AQ =,∴OQ =﹣3=,∴Q (﹣,0).∴直线BQ的解析式为:y =﹣x﹣3,令x+3=﹣x﹣3,解得x =﹣,∴P (﹣,1).综上所述,若直线BP将△ACD的面积分为7:9两部分,点P 的坐标为(﹣,﹣);(﹣,1).②存在,理由如下:将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上时,需要分三种情况:当点D落在x轴负半轴上D1处,如图3,由折叠可知,∠DBP=∠D1BP,BD=BD1,由题意可知,OB=3,OA=4,则AB=5,∴BD=AB=5,∴BD1=5,∴OD1=4,∴△ABO≌△D1BO(SSS),∴∠OAB=∠OD1B,∵∠DBD1=∠OAB+∠OD1B,∴∠OD1B=∠D1BP,∴BP∥x轴,∴点P的纵坐标为﹣3,∴P (﹣,﹣3).当点D落在y轴上D2处,如图4,过点P作PG⊥AD 于点G,作PH⊥y轴于点H,过点D作DM⊥y轴于点M,由折叠可知,BP平分∠DBD2,∴PG=PH,∵S△BDP=S△BEP+S△BDE,∴•BE•DM =•BD•PG +•BE•PH ,即×6×4=×5•PG +×6•PH,解得PG=PH =;∴P (﹣,﹣).当点D落在x轴正半轴上D3处,如图5,此时点A 和点D3重合,不符合题意,舍去.综上所述,存在点P,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上,此时点P的坐标为:(﹣,﹣3)或(﹣,﹣).4.【分析】(1)证明△AOB≌△BDC,求得CD和BD 的长,从而得出点C坐标;(2)由(1)得,CD=OB=4,可求得三角形BCO 的面积不变;(3)由条件求得OA,AB的长,△P AB是等腰三角形,分为三种情形:P A=PB,P A=AB,PB=AB,当P A=PB时,设点P坐标,根据P A2=PB2列出方程求得,当P A=AB时,可根据长度直接求得,当PB=AB时,根据等腰三角形“三线合一”求得结果.【解答】解:(1)如图1,当m =时,y =﹣,当x=0时,y=4,∴OB=4,当y =时,﹣,∴x=5,∴OA=5,作CD⊥OB于D,∴∠BDC=∠AOB=90°,∴∠ABO+∠OAB=90°,∵∠ABC=90°,∴∠ABO+∠CBD=90°,∴∠OAB=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴CD=OB=4,BD=OA=5,∴OD=BD﹣OB=5﹣4=1,∴C(﹣4,﹣1);(2)△BOC的面积不变,理由如下:由(1)知:CD=4,OB=4,∴=8;(3)∵S△BOC=8,∴S△AOB=2S△BOC=16,∴,∴OB=8,∵∠AOB=90°,∴AB ===4,当P A=AB=4时,OP=P A﹣OA=4﹣8或OP=P A+OA=4+8,∴P(8﹣4,0)或(4+8),如图2,当PB=AB时,∵OB⊥AP,∴OP=OA=8,∴点P(﹣8,0);如图3,当P A=PB时,(8﹣OP)2=OP2+42,∴OP=3,∴P(3,0),综上所述:点P(8﹣4,0)或(4+8)或(﹣8,0)或(3,0).5.【分析】(1)设AB的函数表达式是:y=kx+b,将点A、B两点坐标代入,进而求得结果;(2)可得AC=OA=3时,△ACP≌AOQ,表示出点C的坐标,根据AC=3列出方程求得结果;(3)①当AD=AB时,△BAP≌△DAQ,此时AD=AB=5,求得D(﹣2,0),从而∠ADQ=∠ABC,故∠ADQ不变;②因为点Q在①中的直线上运动,故当OQ⊥DV时,值最小,当点P运动到点O时,OQ最大=AC,进而求得AC,从而确定结果.【解答】解:(1)设直线AB的表达式是:y=kx+b,∴,∴,∴y =;(2)∵∠BAO=∠P AQ,∴∠BAO﹣∠P AO=∠P AQ﹣∠P AO,即:∠BAP=∠QAO,∵AP=AQ,∴当AC=AO=3时,△ACP≌△AOQ(SAS),∵C(m ,),∴m2+()2=32,∴m =﹣;(3)①如图,存在点D(﹣2,0)使∠ADQ=∠ABC,理由如下:∵D(﹣2,0),A(0,3),∴AD=5,∵∠AOB=90°,OA=3,OB=4,∴AB=5,∴AD=AB,由(2)得:∠BAP=∠DAQ,AP=AQ,∴△BAP≌△DAQ(SAS),∴∠ADQ=∠ABC,∴∠ADQ不变;②如图2,由①知:点Q在直线DV上运动,作OE⊥DV于E,AF⊥DV于F,当Q点运动到E点时,OQ最小,当运动到F点,OQ最大,可得AF=OA=OC=3,而C (﹣,),∴OF=OC ==,可得OE =,∴.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG=1,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'A'∥y轴,OA=O'A'=1,可求O'的坐标,再由△OEO'是等腰直角三角形,再求E点的坐标即可.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=2或t =﹣,∵H是直线AB上位于第一象限内的一点,∴t=2,∴H(2,9),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG=1,∴G(3,1),H'(﹣2,9),连接H'G交y轴于点M,∵MN=1,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+1;(3)将△OAB逆时针旋转90°时,如图2,∵点O′落在直线AB上,点A′落在直线CD上,设A'(m,3m+3),∵OA⊥y轴,∴O'A'⊥x轴,则O'(m ,﹣m+1),∵OA=O'A'=1,∴﹣m+1﹣3m﹣3=1,∴m =﹣,∴O'(﹣,),∵OE=O'E,OE⊥O'E,∴△OEO'是等腰直角三角形,∵O'O =,∴OE =,过点E作GH⊥x轴,交B'O'于G,交x轴于H,∵∠HOE+∠HEO=90°,∠HEO+∠GEO'=90°,∴∠EOH=∠GEO',∵EO=EO',∴△HEO≌△GO'E(AAS)∴HO=GE,GO'=EH,设E(x,y),∴﹣x+y =,∵y =+x,∴=,∴x =﹣(舍)或x =﹣,∴E (﹣,);将△OAB顺时针旋转90°时,如图3,∵点O′落在直线AB上,点A′落在直线CD上,设A'(m,3m+3),∵OA⊥y轴,∴O'A'⊥x轴,则O'(m ,﹣m+1),∵OA=O'A'=1,∴3m+3﹣(﹣m+1)=1,∴m =﹣,∴O'(﹣,),∵OE=O'E,OE⊥O'E,∴△OEO'是等腰直角三角形,∵O'O =,∴OE =,过点E作PQ⊥x轴,交B'O'于P,交x轴于Q,∵∠QOE+∠QEO=90°,∠QEO+∠O'EP=90°,∴∠QOE=∠PEO',∵EO=EO',∴△QEO≌△PO'E(AAS),∴QO=PE,PO'=EQ,设E(x,y),∴x+y =,∵y =﹣x,∴=,∴x =或x =(舍),∴E (,);综上所述:O'(﹣,),E (﹣,)或O'(﹣,),E (,).7.【分析】(1)在y=3x+3中,令y=0得x=﹣1,即得A(﹣1,0);(2)过B作BF⊥x轴于F,设B(m,3m+3),由△ABF∽△BCF,即得=,CF =,即有AC=AF+CF =,根据△ABC的面积为60,得××|3m+3|=60,即可解得m=1或m=﹣3(因B在y轴右侧,舍去),故B(1,6);(3)当∠AED=90°,BE=DE时,设E(n,3n+3),由E在射线AB上知n≥﹣1,由A(﹣1,0),B(1,6),得AB=2,BC=6,而△AED∽△ABC,得=,且DE=BE,即有=,解得E (﹣,),当∠ADE=90°,BE=BD时,设E(t,3t+3),由BE=BD,可得BE=AB=2,根据AD2+DE2=AE2,即可解E(3,12).【解答】解:(1)在y=3x+3中,令y=0得x=﹣1,∴A(﹣1,0);(2)过B作BF⊥x轴于F,如图:设B(m,3m+3),∵∠ABF=90°﹣∠CBF=∠FCB,∠ABC=∠AFB =90°,∴△ABF∽△BCF,∴=,即=,∴CF =,∴AC=AF+CF=|m +1|+=,∵△ABC的面积为60,∴××|3m+3|=60,∴×10(m+1)2×3=60,解得m=1或m=﹣3(因B在y轴右侧,舍去),∴B(1,6);CF ==18,OC=19,∴C(19,0),B(1,6);(3)存在当△ADE为直角三角形同时△DEB为等腰三角形,当∠AED=90°,BE=DE时,如图:由(2)知C(19,0),设E(n,3n+3),由E在射线AB上知n≥﹣1,∵A(﹣1,0),B(1,6),∴AB=2,BC=6,∵∠AED=∠ABC=90°,∠EAD=∠BAC,∴△AED∽△ABC,∴=,而DE=BE,∴=,即=,解得n=﹣2(舍去)或n =﹣,∴E (﹣,),当∠ADE=90°,BE=BD时,如图:设E(t,3t+3),∴AD=t+1,DE=3t+3,∵BE=BD,∴∠BED=∠BDE,∴∠BAD=90°﹣∠BED=90°﹣∠BDE=∠BDA,∴AB=BD,∴BE=AB=2,∴AE=4,∵AD2+DE2=AE2,∴(t+1)2+(3t+3)2=(4)2,解得t=﹣5(舍去)或t=3,∴E(3,12),综上所述,点E 坐标为(﹣,)或(3,12).8.【分析】(1)在y=x+5中,令x=0时,y=5,令y =0时,x=﹣5,即得A(﹣5,0),B(0,5),故,而∠BOA=90°,即得点B到A关于点O的“度比坐标”为(90°,1);(2)(i)过D作DH⊥x轴于H,连接AC,根据点A 到C关于点D的“度比坐标”与点C到B关于点D 的“度比坐标”相同,可得,∠ADC=∠CDB,即知△ADC∽△CDB,从而AD =CD,CD =BD,可得AD=5BD,即=5,即得AH=5OH,OA=4OH,故D (,),设直线l2的函数表达式为y=mx+n,用待定系数法可得直线l2的函数表达式为y=﹣3x+10;(ⅱ)过E作EK⊥x轴于K,过F作FT⊥x轴于T,由点E到F关于点O的“度比坐标”为(90°,),得∠AOF=90°,=,根据△EKO∽△OTF,得===,设E(t,t+5),可得F (,﹣),把F (,﹣)代入y=﹣3x+10,即可解得t =﹣,E (﹣,).【解答】解:(1)在y=x+5中,令x=0时,y=5,令y=0时,x=﹣5,∴A(﹣5,0),B(0,5),∴OA=5,OB=5,∴,∵∠BOA=90°,∴点B到A关于点O的“度比坐标”为(90°,1);(2)(i)过D作DH⊥x轴于H,连接AC,如图:∵C(0,10),A(﹣5,0),B(0,5),∴BC=5,AC ==5,∵点A到C关于点D的“度比坐标”与点C到B关于点D的“度比坐标”相同,∴,∠ADC=∠CDB,∴△ADC∽△CDB,∴====,∴AD =CD,CD =BD,∴AD=5BD ,即=5,∵DH⊥x轴于H,∴OB∥DH,∴==5,∴AH=5OH,∴OA=4OH,∴OH =,在y=x+5中,令x =得y =,∴D (,),设直线l2的函数表达式为y=mx+n,将C(0,10),D (,)代入得:,解得,∴直线l2的函数表达式为y=﹣3x+10;(ⅱ)过E作EK⊥x轴于K,过F作FT⊥x轴于T,如图:∵点E到F关于点O的“度比坐标”为(90°,),∴∠AOF=90°,=,∴∠EOK=90°﹣∠FOT=∠OFT,又∠EKO=∠OTF=90°,∴△EKO∽△OTF,∴===,设E(t,t+5),则OK=﹣t,EK=t+5,∴==,∴OT =,FT =﹣,∴F (,﹣),把F (,﹣)代入y=﹣3x+10得:﹣3×+10=﹣,解得t =﹣,∴E (﹣,).9.【分析】(1)由+(p﹣1)2=0,得a=﹣3,p =1,即得P(1,0),A(0,﹣3),设直线AP的解析式为y=kx+b,用待定系数法可得直线AP的解析式为y=3x﹣3;(2)过M作MD∥AP交x轴于D,连接AD,由MD ∥AP,△MAP面积等于6,可得DP•|y A|=6,即DP ×3=6,即知D(﹣3,0),用待定系数法可得直线DM为y=3x+9,令x=﹣2即得M(﹣2,3);(3)设B(t,3t﹣3),①当Q在x轴负半轴时,过B 作BE⊥x轴于E,可证△BEQ≌△QNC(AAS),即得QN=BE=3﹣3t,QE=CN=4,故OQ=QE﹣OE=ON+QN,即4﹣t=2+3﹣3t,可得Q (﹣,0),②当Q在y轴正半轴时,过C作CF⊥y轴于F,过B 作BG⊥y轴于G,证明△CQF≌△QBG(AAS),可得CF=QG=2,QF=BG=t,故OQ=OG﹣QG=OF ﹣QF,即3t﹣3﹣2=4﹣t,可得Q(0,);③Q在y轴正半轴,过C作CF⊥y轴于F,过B作BT⊥y轴于T,证明△CFQ≌△QTB(AAS),得QF=BT=t,QT=CF=2,故OQ=OT+QT=OF+QF,即3t﹣3+2=4+t,即得Q(0,).【解答】解:(1)∵+(p﹣1)2=0,∴a+3=0,p﹣1=0,∴a=﹣3,p=1,∴P(1,0),A(0,﹣3),设直线AP的解析式为y=kx+b,∴,解得,∴直线AP的解析式为y=3x﹣3;(2)过M作MD∥AP交x轴于D,连接AD,如图:∵MD∥AP,△MAP面积等于6,∴△DAP面积等于6,∴DP•|y A|=6,即DP×3=6,∴DP=4,∴D(﹣3,0),设直线DM为y=3x+c,则0=3×(﹣3)+c,∴c=9,∴直线DM为y=3x+9,令x=﹣2得y=3,∴M(﹣2,3);(3)存在,设B(t,3t﹣3),①当Q在x轴负半轴时,过B作BE⊥x轴于E,如图:∴OE=t,BE=3﹣3t,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BQC=90°,∴∠BQE=90°﹣∠NQC=∠QCN,又∠BEQ=∠QNC,∴△BEQ≌△QNC(AAS),∴QN=BE=3﹣3t,QE=CN=4,∴OQ=QE﹣OE=ON+QN,即4﹣t=2+3﹣3t,∴t =,∴OQ =,∴Q (﹣,0),②当Q在y轴正半轴时,过C作CF⊥y轴于F,过B 作BG⊥y轴于G,如图:∴BG=t,OG=3t﹣3,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BCQ=90°,∴∠CQF=90°﹣∠BQG=∠GBQ,又∠CFQ=∠BGQ=90°,∴△CQF≌△QBG(AAS),∴CF=QG=2,QF=BG=t,∴OQ=OG﹣QG=OF﹣QF,即3t﹣3﹣2=4﹣t,∴t =,∴OQ=4﹣t =,∴Q(0,);③Q在y轴正半轴,过C作CF⊥y轴于F,过B作BT⊥y轴于T,如图:∴BT=t,OT=3t﹣3,同②可证△CFQ≌△QTB(AAS),∴QF=BT=t,QT=CF=2,∴OQ=OT+QT=OF+QF,即3t﹣3+2=4+t,∴t =,∴OQ=4+t =,∴Q(0,);综上所述,Q的坐标为(﹣,0)或(0,)或(0,).10.【分析】(1)取点T(0,2),连接DT,AT,可得△ADT是等腰直角三角形,即知点A的等垂点是点D;(2)①当A'在x轴上方时,过A'作A'F⊥y轴于F,证明△A'FE≌△EOA(AAS),得EF=AO=2,A'F=OE,设OE=A'F=m,则OF=OE+EF=m+2,则A'(m,m+2),将A'(m,m+2)代入y=2x﹣1可得A'(3,5);②当A'在x轴上方时,过A'作A'H⊥y轴于H,同理可得A'(﹣,﹣);(3)设直线y=x+2上任意一点A'(t,t+2),连接AA',作AA'的垂直平分线交y轴于R,交AA'于P,过P作PM⊥x轴于M,PN⊥y轴于N,可得RA=RA',P A=P A',P (,),从而可得△PRN≌△P AM (ASA),PR=P A=P A',即知∠ARA'=90°,故A'是A的等垂点,即直线y=x+2上任意一点都是A的等垂点,一次函数y=x+2的图象上存在无数个点A的等垂点,同理可证一次函数y=﹣x﹣2的图象上存在无数个点A的等垂点.【解答】解:(1)取点T(0,2),连接DT,AT,如图:∵D(﹣2,0),A(2,0),T(0,2),∴OT=OD=OA=2,∴△ADT是等腰直角三角形,∴在点B(2,﹣2),C(0,1),D(﹣2,0)中,点A的等垂点是点D,故答案为:D;(2)①当A'在x轴上方时,过A'作A'F⊥y轴于F,如图:∵A'是A的等垂点,∴∠A'EA=90°,A'E=AE,∴∠A'EF=90°﹣∠AEO=∠EAO,∵∠A'FE=∠EOA=90°,∴△A'FE≌△EOA(AAS),∴EF=AO=2,A'F=OE,设OE=A'F=m,则OF=OE+EF=m+2,∴A'(m,m+2),将A'(m,m+2)代入y=2x﹣1得:m+2=2m﹣1,解得m=3,∴A'(3,5);②当A'在x轴下方时,过A'作A'H⊥y轴于H,如图:同①可证明△AOG≌GHA'(AAS),∴A'H=OG,GH=OA=2,设A'H=OG=n,则OH=GH﹣OG=2﹣n,∴A'(﹣n,n﹣2),将A'(﹣n,n﹣2)代入y=2x﹣1得:n﹣2=﹣2n﹣1,解得n =,∴A'(﹣,﹣);综上所述,A'点的坐标为(3,5)或(﹣,﹣);(3)若一次函数y=kx+b(k≠0)的图象上存在无数个点A的等垂点,该一次函数的所有表达式为y=x+2或y=﹣x﹣2,理由如下:当一次函数为y=x+2时,设直线y=x+2上任意一点A'(t,t+2),连接AA',作AA'的垂直平分线交y轴于R,交AA'于P,过P作PM⊥x轴于M,PN⊥y轴于N,如图:∵PR是线段AA'的垂直平分线,∴RA=RA',P A=P A',∴∠RP A=∠RP A'=90°,∵A(2,0),A'(t,t+2),∴P (,),∵PM⊥x轴于M,PN⊥y轴于N,∴PM=PN=||,而∠RPN=90°﹣∠NP A=∠APM,∠PNR=∠PMA =90°,∴△PRN≌△P AM(ASA),∴PR=P A,∴PR=P A=P A',∴△PRA与△PRA'都是等腰直角三角形,∴∠ARP=∠A'RP=45°,∴∠ARA'=90°,根据等垂点定义,A'是A的等垂点,即直线y=x+2上任意一点都是A的等垂点,∴一次函数y=x+2的图象上存在无数个点A的等垂点,同理可证一次函数y=﹣x﹣2的图象上存在无数个点A的等垂点,故答案为:y=x+2或y=﹣x﹣2.11.【分析】(1)由题意设AB的关系式是:y=x+b,然后把点A的坐标代入求得b,进而求得AB的关系式(2)作CE∥y轴,作PE⊥CE于E,先求得∠OCP =∠ODC=45°,于是可得PE =CP,进而只需求AP+PE,从而当A、P、E共线时,AP+PE最小,此时作AF⊥CE,最小值就是AF的长;(3)当点A′在y轴上时,根据A′B=AB=3,进而求得A′(0,),设P(x,x+4),根据A′P2=AP2,列出关于x的方程,求得点P的坐标,进而求得BP的关系式,当A′在x轴上时,同样方法求得BP的关系式.【解答】解:(1)∵AB∥CD,∴可设AB的表达式是:y=x+b,∴2+b=3,∴b=1,∴y=x+1;(2)如图1,作CE∥y轴,作PE⊥CE于E,∴∠OCE=90°,由y=x+4得:C(﹣4,0),D(0,4),∴OC=OD,∵∠COD=90°,∴∠OCP=∠ODC=45°,∴∠PCE=90°﹣∠OCP=45°,∴PE=CP•sin∠PCE =CP,∴AP +CP=AP+PE,∴当A、P、E共线时,AP+PE最小,此时作AF⊥CE,即E和F重合,P在P′时,∵C(﹣4,0),A(2,3),∴AF=2﹣(﹣4)=6,∴AP +CP的最小值是6;(3)如图2,∵AB的关系式是:y=x+1,∴B(﹣1,0),∴OB=1,当点A′在y轴上时,∵A′B=AB ==3,∴A′O ===,∴A′(0,),设P(x,x+4),由A′P2=AP2得,x2+(x+4﹣)2=(x﹣2)2+(x+4﹣3)2,∴x =,∴P (,),设BP的关系式是:y=kx+b,∴,∴,∴y =x,如图3,当A′在x轴上时,∵A′B=AB=3,OB=1,∴A′(﹣3﹣1,0),由(x +3)2+(x+4)2=(x﹣2)2+(x+4﹣3)2,∴x =,∴P (,),设BP的关系式是y=mx+n,∴,∴,∴y =﹣()x ﹣(),如图4,当点A′再次落在y轴上时,连接A′B,由上知:A′(0,﹣),此时BP的关系式:y =,如图5,当A′再次落在x轴上时,此时BP的关系式是:y =()x+(﹣1),综上所述:BP的关系式是:y =x或y=﹣()x﹣()或y =或y =()x+(﹣1),12.【分析】(1)由OC=2,得y B=2,在y=x +2+中,令y=2得B (﹣2,2),由y=x +2+得A(﹣2﹣,0),即可得AB=4;(2)(ⅰ)由D是OC中点,得D(0,),设直线BD为y=kx +,用待定系数法得直线BD为y=(﹣1﹣)x +,即得E(2﹣,0),从而可得AB=AE,根据CD=OD,∠BDC=∠EDO,∠BCD =∠EOD=90°,可证△BCD≌△EOD(ASA),有BD=ED,故AD是∠BAE的平分线;(ⅱ)作O关于AD的对称点H,连接DH,由AD 是∠BAE的平分线,知H在线段AB上,当MN+ON 最小时,即是MN+HN最小,此时H、N、M共线,且HM⊥OA,HM的长即是MN+ON的最小值,由AH =OA=2+,根据直线y=x +2+与x轴夹角为45°,得△AHM是等腰直角三角形,故HM ==+1,即得MN+ON 的最小值是+1.【解答】解:(1)∵OC=2,∴y B=2,在y=x +2+中,令y=2得x =﹣2,∴B (﹣2,2),在y=x +2+中,令y=0得x=﹣2﹣,∴A(﹣2﹣,0),∴AB ==4,∴点B的坐标为(﹣2,2),线段AB的长为4;(2)(ⅰ)∵D是OC中点,∴D(0,),CD=OD,设直线BD为y=kx +,把B (﹣2,2)代入得:2=(﹣2)k +,解得k=﹣1﹣,∴直线BD为y=(﹣1﹣)x +,在y=(﹣1﹣)x +中,令y=0得x=2﹣,∴E(2﹣,0),∴AE=2﹣﹣(﹣2﹣)=4,由(1)知AB=4,∴AB=AE,即△ABE是等腰三角形,∵CD=OD,∠BDC=∠EDO,∠BCD=∠EOD=90°,∴△BCD≌△EOD(ASA),∴BD=ED,∴AD是∠BAE的平分线;(ⅱ)MN+ON存在最小值,作O关于AD的对称点H,连接DH,如图:由(ⅰ)知AD是∠BAE的平分线,∴H在线段AB上,∵N在AD上,∴ON=HN,∴MN+ON=MN+HN,当MN+ON最小时,MN+HN最小,此时H、N、M共线,且HM⊥OA,HM的长即是MN+ON的最小值,由对称性可得AH=OA=2+,∵直线y=x +2+与x轴夹角为45°,即∠HAM=45°,∴△AHM是等腰直角三角形,∴HM ===+1,∴MN+ON 的最小值是+1.13.【分析】(1)由y =x+6求出A(﹣4,0),根据AB =5得B(1,0),把B(1,0)代入y=﹣x+m即可解得直线BC的解析式为y=﹣x+1;(2)由y=﹣x+1得C(0,1),解得D(﹣2,3),可得S△ABD =AB•|y D|=,S△BOC =OB •OC =,故四边形AOCD的面积为7;(3)分两种情况:P在BD上方时,过P作PM∥BD 交x轴于M,连接DM,可得S△MBD =S四边形AOCD =7,即BM×3=,可得M (,0),直线PM为:y=﹣x +,解即得P (﹣,),当P在BD下方时,过P'作P'M'∥BD交x轴于M',同理可得P'(﹣,).【解答】解:(1)在y =x+6中,令y=0得x=﹣4,∴A(﹣4,0),∵AB=5,∴B(1,0),把B(1,0)代入y=﹣x+m得:0=﹣1+m,解得m=1,∴直线BC的解析式为y=﹣x+1;(2)在y=﹣x+1中,令x=0得y=1,∴C(0,1),解得,∴D(﹣2,3),∴S△ABD =AB•|y D|=×5×3=,S△BOC =OB•OC =×1×1=,∴S四边形AOCD=S△ABD﹣S△BOC=7,即四边形AOCD的面积为7;(3)P在BD上方时,过P作PM∥BD交x轴于M,连接DM,如图:∵PM∥BD,∴S△PBD=S△MBD,∵△PBD的面积是四边形AOCD的面积的一半,∴S△MBD =S四边形AOCD =7,∴BM•|y D|=,即BM×3=,∴BM =,∴OM=OB+BM =,∴M (,0),设直线PM为:y=﹣x+b,将M (,0)代入得:0=﹣+b,∴b =,∴直线PM为:y=﹣x +,解得,∴P (﹣,),当P在BD下方时,过P'作P'M'∥BD交x轴于M',如图:∵P'M'∥BD,∴S△P'BD=S△M'BD,∵△P'BD的面积是四边形AOCD的面积的一半,∴S△M'BD =S四边形AOCD =7,∴BM'•|y D|=,即BM'×3=,∴BM'=,∴OM'=BM'﹣OB =,∴M'(﹣,0),设直线P'M'为:y=﹣x+b',将M (﹣,0)代入得:0=+b',∴b'=﹣,∴直线PM为:y=﹣x ﹣,解得,∴P'(﹣,),综上所述,P的坐标为(﹣,)或(﹣,).14.【分析】(1)把B的坐标代入直线AB的解析式,即可求得k的值,然后在解析式中,令x=0,求得y的值,即可求得A的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△P AD的面积,二者的和即可表示S△P AB,在根据△ABP的面积与△ABO的面积相等列方程即可得答案;(3)分三种情况:当P为直角顶点时,过P作PN ⊥y轴于N,过B作BM⊥PN于M,由△APN≌△PBM (AAS),可得AN+1=PN①,PN+AN=3②,即得P (2,2);当A为直角顶点时,过P作PK⊥y轴于K,由△APK≌△BAO,可得P(1,4),当B为直角顶点时,过P作PR⊥x轴于R,同理可得P(4,3).【解答】解:(1)∵直线AB:y=kx+1(k≠0)交y 轴于点A,交x轴于点B(3,0),∴0=3k+1,∴k =﹣,∴直线AB的解析式是y =﹣x+1.当x=0时,y=1,∴点A(0,1);(2)如图1,过点A作AM⊥PD,垂足为M,则有AM=2,设P(2,n),∵x=2时,y =﹣x+1=,∴D(2,),∵P在点D的上方,∴PD=n ﹣,∴S△APD =AM•PD =×2×(n ﹣)=n ﹣,由点B(3,0),可知点B到直线x=2的距离为1,即△BDP的边PD上的高长为1,∴S△BPD =×1×(n ﹣)=(n ﹣),∴S△P AB=S△APD+S△BPD =n ﹣;∵△ABP的面积与△ABO的面积相等,∴n ﹣=×1×3,解得n =,∴P(2,);(3)当P为直角顶点时,过P作PN⊥y轴于N,过B作BM⊥PN于M,如图2:∵△ABP为等腰直角三角形,∴AP=BP,∠NP A=90°﹣∠BPM=∠PBM,∵∠ANP=∠BMP=90°,∴△APN≌△PBM(AAS),∴BM=PN,PM=AN,∵∠NOB=∠ONM=∠OBM=90°,∴四边形OBMN是矩形,∴MN=OB=3,BM=ON=AN+1=PN①,∴PN+PM=PN+AN=3②,由①②解得PN=2,AN=1,∴ON=OA=AN=2,∴P(2,2);当A为直角顶点时,过P作PK⊥y轴于K,如图3:∵△ABP为等腰直角三角形,∴AP=AB,∠KAP=90°﹣∠OAB=∠ABO,而∠PKA=∠AOB=90°,∴△APK≌△BAO(AAS),∴AK=OB=3,PK=OA=1,∴OK=OA+AK=4,∴P(1,4),当B为直角顶点时,过P作PR⊥x轴于R,如图4:同理可证△AOB≌△BRP(AAS),∴BR=OA=1,PR=OB=3,∴P(4,3),综上所述,P坐标为:(2,2)或(1,4)或(4,3).15.【分析】(1)求出点A坐标可得结论.(2)如图1中,延长CA交GD的延长线于H.证明△DGO≌△EHD(AAS),推出DG=EH,OG=DH,由题意D(12+m,m),推出OG=AH=﹣m,DG=EH=12+m,推出AE=12+m﹣(﹣m)=12+2m,可得E(12,12+2m).(3)求出直线BE的解析式,再求出点F的坐标,求出DF,EF,构建方程,可得结论.【解答】解:(1)∵直线y=x﹣12分别交x轴、y轴于A、B两点,∴A(12,0),B(0,﹣12),∵AC⊥x轴,∴C(12,9).故答案为:(12,9).(2)如图1中,延长CA交GD的延长线于H.∵∠DGO=∠DHE=∠ODE=90°,∴∠ODG+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ODG=∠DEH,∵OD=DE,∴△DGO≌△EHD(AAS),∴DG=EH,OG=DH,由题意D(12+m,m),∴OG=AH=﹣m,DG=EH=12+m,∴AE=12+m﹣(﹣m)=12+2m,∴E(12,12+2m),∵E点在线段AC上,∴0≤12+2m≤9,∴﹣6≤m ≤﹣.(3)如图2中,∵B(0,﹣12),E(12,2m+12),∴直线BE的解析式为y=(2+m)x﹣12,∴F(6,m),∵D(12+m,m),∴DF=6+m,EF =,∵EF=DF﹣2m,∴=6+m﹣2m,解得m=﹣4.16.【分析】(1)根据三角形的面积公式求出OB的长即可;(2)分0≤t<4和t≥4两种情况,根据三角形面积公式计算即可;(3)根据题意和三角形的面积公式求出OP、BP的长,根据相似三角形的性质求出点E的坐标,根据中点的性质确定点F的坐标,运用待定系数法求出直线ef的解析式,根据等底的两个三角形面积相等,它们的高也相等分x=y和x=﹣y两种情况计算即可.【解答】解:(1)∵点A坐标为(6,0),∴OA=6,∴S△AOB =×OA×OB=24,则OB=8,∴点B坐标为(0,8);(2)当0≤t<4时,S =×(8﹣2t)×6=24﹣6t,当t≥4时,S =×(2t﹣8)×6=6t﹣24;(3)∵S△AOP+S△ABP=S△AOB,∴点P在线段OB上,∵S△AOP:S△ABP=1:3,∴OP:BP=1:3,又∵OB=8,∴OP=2,BP=6,线段AB的垂直平分线上交OB于E,交AB于F,∵OB=8,OA=6,∴AB ==10,则点F的坐标为(3,4),∵EF⊥AB,∠AOB=90°,∴△BEF∽△BAO,∴=,即=,解得,BE =,则OE=8﹣=,∴点E的坐标为(0,),设直线EF的解析式为y=kx+b,则,解得,k =,b =,∴直线EF的解析式为y =x +,∵△AOQ的面积与△BPQ的面积相等,又OA=BP,∴x=y,或x=﹣y,当x=y时,x =x +,解得,x=7,则Q点坐标为(7,7);当x=﹣y时,﹣x =x +,解得,x=﹣1,则Q点坐标为(﹣1,1),∴Q点坐标为(7,7)或(﹣1,1).。

苏科版八年级数学上册第六章《一次函数》综合提优测试(含答案)

苏科版八年级数学上册第六章《一次函数》综合提优测试(含答案)

A.y=3八上数学第六章综合提优测试(时间:90分钟满分:100分)一、选择题(每题2分,共26分)1.在圆的周长C=2R中,常量与变量分别是().A.2是常量,C、、R是变量 B.2是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.如果每盒圆珠笔有12枝,售价18元,那么购买圆珠笔的总金额y(元)与购买圆珠笔的数量x(枝)之间的关系是().2x B.y=x C.y=12x D.y=18x233.图中的折线ABCDE描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶的时间t(h)之间的函数关系,根据图中提供的信息.给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h;③汽车在整个行驶过程中的平均速度为803km/h;④汽车自出发后3~4.5h之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个4.下列函数:①y=x;②y=2x+11;③y=x2+x+1;④y=1x中.是关于x的一次函数的有().A.4个B.3个C.2个D.1个5.函数y=(m2)x n-1+n是关于x的一次函数,m,n应满足的条件是().A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=06.若点(3,m)在函数y=13x+2的图象上.则m的值为().A.0B.1C.2D.37.下列图象中,表示一次函数y=mx+n与正比例函数y=mx(m,n是常数且mn≠0)图象的是().A.x y20,8.在平面直角坐标系中,已知点A(4,0),B(2,0),若点C在一次函数y=12x+2的图象上,且△ABC为直角三角形.则满足条件的点C有().A.1个B.2个C.3个D.4个9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象.如图所示,则所解的二元一次方程组是().2x y10,B.3x2y103x2y10C.2x y10,3x2y50D.x y20,2x y1010.弹簧的长度y(cm)与断挂物体的质量x(kg)为一次函数的关系,如图所示.由图象可知,不挂物体时.弹簧的长度为().A.7cm B.8cmC.9cm D.10cm11.某游客为了爬上3km高的山顶看日出,先用了1h爬了2km,休息0.5h后,再用1h爬上山顶,游客爬山所用的时间t(h)与山高h(km)间的函数关系用图象表示是().12.以下四条直线中,与直线y=2x+3相交于第三象限的是直线().A.y=2x1B.y=x+3C.y=x+2D.y=x413.一次函数y=kx+b,当3≤x≤1时.对应的y值为l≤y≤9,则kb的值为().A.14 B.6C.1和21D.6和142二、填空题(每题 3 分,共 27 分)14.已知函数:①y=0.3x 7;②y= 2x+5;(9y=4 3x ; ④y= x ;⑤y=3x ;⑥y= (1 x).其中,y 值随 x 值增大而增大的函数是________.(写出序号) 15.点( 5,y 1)和点( 2,y 2)都在直线 y= 2x 上,则 y 1 与 y 2 的大小关系是________. 16.已知 m 是整数,且一次函数 y=(m +4)x+m +2 的图象不经过第二象限,则 m =_______.17.在一次函数 y= 1 1x+ 的图象上,和 x 轴的距离等于 1 的点的坐标是__________.2 22 7 2 1 18 .两直线 l :y= x 与 l : y = x 的交点坐标可以看作是二元一次方程组1 5 5 3 3_________的解.19.若直线 y= x+a 和直线 y=x+b 的交点坐标为(m ,8).则 a+b=_________. 20.一次函数 y=kx+b 的图象经过点(0,4),且与两坐标轴所围成的三角形的面积为 8,则 k=________,b=__________21.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中 s(m )和 t(s)分别表示运动路程和时间,根据图象,判断快者的速度 比慢者的速度每秒快____________.22.已知一次函数 y=(n 4)x+(4 2m )和 y=(n+1)x+m 3,(1)若它们的图象与 y 轴的交点分别是点 P 和点 Q .若点 P 与点 Q 关 于 x 轴对称,m 的值为__________;(2)若这两个一次函数的图象交于点(1,2),则,m ,n 的值为_________. 三、解答题(第 23~26 题每题 9 分,第 27 题 11 分,共 47 分) 23.已知函数 y=(1 2m )x+m +1 ,求当 m 为何值时. (1)y 随 x 的增大而增大?(2)图象经过第一、二、四象限? (3)图象经过第一、三象限?(4)图象与 y 轴的交点在 x 轴的上方?24.已知一次函数y=kx+b的图象经过点(1,5),且与正比例函数y=点(2,a).求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形面积.12x的图象相交于25.如图,点A的坐标为(4,0).点P是直线y=12x+3在第一象限内的点,过P作PM x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OP A的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OP A的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=12x+3上求一点Q,使△QOA是以OA为底的等腰三角形.26.我国是世界上严重缺水的国家之一.为了增强居民节水意识.某市自来水公司对居民用水采用以户为单位分段汁费办法收费.即一月用水10t以内(包括10t)的用户.每吨收水费a元,一月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b元(b>a)收费.设一户居民月用水x(t),应缴水费y(元).y与x之间的函数关系如图所示.(1)求a的值,某户居民上月用水8t.应收水费多少元?(2)求b的值,并写出当x>10时.y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4t.两家共收消费46元.求他们上月分别用水多少吨?27.夏天容易发生腹泻等肠道疾病。

人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析

 人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析

人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。

一次函数与几何综合(习题及答案)

一次函数与几何综合(习题及答案)

一次函数与几何综合(习题)1.如图,点B,C 分别在直线y=2x 和直线y=kx 上,A,D 是x轴上的两点.若四边形ABCD 是长方形,且AB:AD=1:2,则k 的值为.2.如图,一次函数y=-2x+4 的图象与坐标轴分别交于点A,B,把线段AB 绕着点A 沿逆时针方向旋转90°,点B 落在点B′ 处,则直线AB′的表达式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面内的点B′处.已知直线CB′的解析式为y =-3x +b ,则点B′的坐标为,直线CP 的表达式为.134.如图,点A 的坐标是( -,0),点B 的坐标是(6,0),点C在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D,过点A 作直线AE⊥BD,垂足为点E,交OC 于点F,则点C 的坐标为,直线AE 的表达式为.第4 题图第5 题图5.如图,一次函数的图象交x 轴于点B(-6,0),交正比例函数的图象于点A,且点A 的横坐标为-4,S△AOB =15,S△BOD=45,则一次函数的表达式为,正比例函数的表达式为.6.如图,在平面直角坐标系中,已知直线y =-3x + 3 与x 轴、y 4轴分别交于A,B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.7.如图,在平面直角坐标系中,函数y=-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A(0,2)关于直线l 的对称点A′的坐标为(-2,0),请在图中分别标出B(-5,-3),C(-2,5)关于直线l 的对称点B′,C′的位置,并写出它们的坐标:B′,C′.归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l 的对称点P′的坐标为.运用与拓广:已知两点D(0,-3),E(1,-4),试在直线l 上确定一点Q,使点Q 到D,E 两点的距离之和最小,并求出点Q 的坐标.8.如图,在平面直角坐标系中,直线y =x - 4 与x 轴、y 轴分别交于点A,B,P 为y 轴上B 点下方的一点,且PB=m(m>0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt△APM.(1)用含m 的代数式表示点M 的坐标;(2)若直线MB 与x 轴交于点Q,求点Q 的坐标.5 5 【参考答案】➢ 巩固练习1. 252. y = 1 x + 423. (2, 4 - 2 ), y = -3 x +4 3 4. (3, 3 3 ), y =3 x + 13 5.y = x + 15 , y = - x 2 46. (0, 4 ),(0,-12)37. 实验与探究:(3,5),(-5,2) 归纳与发现:(-n ,-m )运用与拓广:点 Q 的坐标为(2,-2)8. (1)M (4+m ,-8-m )(2)Q (-4,0)3。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。

答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。

答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。

解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。

7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。

解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。

解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。

四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。

一次函数练习题(带答案)

一次函数练习题(带答案)

例1. (1)y与x成正比例函数,当时,y=5.求这个正比例函数的解析式.(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为把,y=5代入上式得,解之,得∴所求正比例函数的解析式为(2)设所求一次函数的解析式为∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足,将、y=2和x=3、分别代入上式,得解得∴此一次函数的解析式为点评:(1)不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.例2. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量x的取值范围,并且画出图象. 分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.图象如下图所示点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.例3. 已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.【综合测试】一、填空题:1. 若一次函数y=kx+b的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.2. (2006年北京市中考题)若正比例函数y=kx的图象经过点(1,2),则此函数的解析式为_____________.二、一次函数的图象与y轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.三、某种内燃动力机车在青藏铁路试验运行前,测得该种机车机械效率η和海拔高度h(,单位km)的函数关系式如图所示.(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;(2)求在海拔3km的高度运行时,该机车的机械效率为多少?四、如图建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.(1)求羽毛球飞行轨迹所在直线的解析式;(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到0.1米)。

2020年中考数学复习专题练:《一次函数综合 》(含答案)

2020年中考数学复习专题练:《一次函数综合 》(含答案)

2020年中考数学复习专题练:《一次函数综合》1.如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,沿AO方向向点O匀速运动,同时动点Q从B点出发,沿BA方向向点A匀速运动,P,Q两点的运动速度都是每秒1个单位,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s).(1)求A,B两点的坐标;(2)当t为何值时△AQP的面积为;(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q 的坐标.2.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H 作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P 的坐标.3.如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;(2)求点C的坐标;(3)求直线CD的表达式.4.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.5.如图,在平面直角坐标系中,点A 的坐标为(0,1),点B 的坐标为(﹣3,﹣1),将线段AB 向右平移m (m >0)个单位,点A 、B 的对应点分别为点A ′,B ′.(1)画出线段AB ,当m =4时,点B ′的坐标是 ;(2)如果点B ′又在直线x =上,求此时A ′、B ′两点的坐标;(3)在第(2)题的条件下,在第一象限中是否存在这样的点P ,使得△A ′B ′P 是以A ′B ′为腰的等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.6.如图,在平面直角坐标系xOy 中,直线l 1:y =x +2与x 轴交于点A ,直线l 2:y =3x ﹣6与x 轴交于点D ,与l 1相交于点C .(1)求点D 的坐标;(2)在y 轴上一点E ,若S △ACE =S △ACD ,求点E 的坐标;(3)直线l 1上一点P (1,3),平面内一点F ,若以A 、P 、F 为顶点的三角形与△APD 全等,求点F 的坐标.7.如图,在平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A,C分别在x轴正半轴和y轴正半轴上,顶点B的坐标为(12,8),直线y=kx+8﹣6k(k<0)交边AB 于点P,交边BC于点Q.(1)当k=﹣1时,求点P,Q的坐标;(2)若直线PQ∥AC,BH是Rt△BPQ斜边PQ上的高,求BH的长;(3)若PQ平分∠OPB,求k的值.8.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)9.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.10.已知:在平面直角坐标系中,点O为坐标原点,直线y=kx+8(k<0)分别交x轴,y 轴于点C,B,点A在第一象限,连接AB,AC,四边形ABOC是正方形.(1)如图1,求直线BC的解析式;(2)如图2,点D,E分别在AB,OC上,点E关于y轴的对称点为点F,点G在EF上,且EG=2FG,连接DE,DG,设点G的横坐标为t,△DEG的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,连接BE,BF,CD,点M在BF上,且FM=EG,点N在BE上,连接MN交DG于点H,∠BNM=∠BEF,且MH=NH,若CD=5BD,求S的值.11.如图,在平面直角坐标系xOy中,直线l:y=kx+b与x轴交于点A(﹣6,0),与y1轴交于点B(0,4),与直线l:y=x相交于点C.2(1)求直线l的函数表达式;1(2)求△COB的面积;(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.12.如图,直线y=x+4与x轴.y轴分别交于A.B两点直线BC与x轴交于点C(4,0).(1)求直线BC的解析式;(2)D(2,m)为线段BC上的点,作点D关于直线上x=﹣4的对称点E.CE交直线:x =﹣4于F,求线段CF的长;(3)y轴上是否存在一点M.使得以A、B、M为顶点的三角形为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.13.将矩形AOCB如图放置在平面直角坐标系中,E为边OC上的一个动点,过点E作ED⊥AE 交BC边于点D,且OA,OC的长是方程x2﹣20x+96=0的两个实数根,且OC>OA.(1)设OE=x,CD=y,求y与x的函数关系(不求x的取值范围).(2)当D为BC的中点时,求直线AE的解析式;(3)在(2)的条件下,平面内是否存在点F,使得以A,D,B,F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.14.如图,直线y=ax+b交x轴于点A,交y轴于点B,且a,b满足a=+4,直线y=kx﹣4k过定点C,点D为直线y=kx﹣4k上一点,∠DAB=45°.(1)a=,b=,C坐标为;(2)如图1,k=﹣1时,求点D的坐标;(3)如图2,在(2)的条件下,点M是直线y=kx﹣4k上一点,连接AM,将AM绕A顺时针旋转90°得AQ,OQ最小值为.15.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交1于点C.=﹣x+10时,如图1.(1)当直线AB解析式为y2①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.16.如图1,在第四象限的矩形ABCD,点A与坐标原点O重合,且AB=4,AD=3.点Q从B 点出发以每秒1个单位长度的速度沿B→C→D运动,当点Q到达点D时,点Q停止运动,设点Q运动的时间为t秒.(1)请直接写出图1中,点C的坐标,并求出直线OC的表达式;(2)求△ACQ的面积S关于t的函数关系式,并写出t的取值范围;(3)如图2,当点Q开始运动时,点P从C点出发以每秒2个单位长度的速度运动向点A运动,当点P到达A点时点Q和点P同时停止运动,当△QCP与△ABC相似时,求出相应的t值.17.如图,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标;(2)点P从B点出发,沿射线BO方向运动,速度为每秒一个单位,当t为何值时,△ABP为直角三角形?(直接写出答案)(3)点E(5,0)过点E作直线l⊥x轴,点C在直线l上,点D在x轴上,以A、B、C、D四个点组成的四边形是平行四边形,请直接写出点D坐标.18.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标,点B坐标;(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长.19.如图,在平面直角坐标系中,OA=OB,△OAB的面积是2.(1)求线段OB的中点C的坐标.(2)连结AC,过点O作OE⊥AC于E,交AB于点D.①直接写出点E的坐标.②连结CD,求证:∠ECO=∠DCB;(3)点P为x轴上一动点,点Q为平面内一点,以点A、C、P、Q为顶点作菱形,直接写出点Q的坐标.20.如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使△DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)令y=0,则﹣x+6=0,解得:x=8,令x=0时,y=6,∴点A(8,0),点B(0,6);(2)由(1)得:OA=8,OB=6,在Rt△AOB中,AB===10,∵当一个点停止运动,另一个点也随之停止运动,∴0<t≤8,∵点P的速度是每秒1个单位,点Q的速度是每秒1个单位,∴AP=t,AQ=AB﹣BQ=10﹣t,∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t),∴△AQP的面积S=×t×(10﹣t)=,解得t=5+(不合题意舍去)或t=5﹣,∴当t为(5﹣)秒时△AQP的面积为;(3)若∠APQ=90°,则△APQ∽△AOB,此时=,即:=,解得:t=,若∠AQP=90°,则△APQ∽△ABO,此时=,即:=,解得t=,∵0<t≤8,∴t的值为或,①当t=时,OP=8﹣=,PQ=AP•tan∠OAB=×=,∴点Q的坐标为:(,);②当t=时,AQ=,过点Q作QM⊥x轴于M,如图所示:∴AM=AQ•cos∠OAB=×=,则OM=8﹣=,QM=AQ•sin∠OAB=×=,∴点Q的坐标为:(,);综上所述,当t为秒或秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标分别为(,)、(,).2.解:(1)∵将线段BO绕着点B逆时针旋转90°得到线段BC,∴OB=BC,∠OBC=90°,∵CD⊥x轴于点D,∴∠CDO=90°,∵∠BOD=90°,∴四边形OBCD为正方形,∵四边形OBCD的面积为36.∴OB=6,∴B(0,6),∵直线y=2x+b与y轴交于点B,∴b=6,∴直线AB的解析式为y=2x+6;(2)∵直线y=2x+6与x轴交于点A,∴A(﹣3,0),如图1,过点B作BL⊥CP,垂足为L,交CD于点M,∵BH=BC,∴CL=HL,∵BL⊥CP,EF⊥CP,∴BM∥EF,∴CM=ME,∵∠CBM+∠BMC=∠BMC+∠MCL=90°∴∠CBM=∠PCD,∵∠BCM=∠PDC,BC=CD,∴△BCM≌△CDP(ASA),∴CM=PD,∴PD=CM=ME=6﹣t,∴CE=2CM=2(6﹣t),∵AD=OA+OD=9,∴S===﹣9t+54(0≤t≤6);(3)设PD=a,如图2,∵BF∥CD,BM∥EF,∴四边形BFEM是平行四边形,∴BF=EM=PD=a,∴OF=OP,连接FP,设FK与OH交于A',∴∠OFP=45°,∵∠FOP+∠FHP=180°,∴F、O、P、H四点共圆,∴∠OFP=∠OHP=45°,∴∠OHF=45°,∵FK⊥OH,∴∠FA'H=90°,∴∠EFK=45°,如图3,过点E作ER⊥EF交射线FK于点R,∴△EFR为等腰直角三角形,∴EF=ER,过点F作FG⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,连接KE、∴∠RNE=∠FGE=90°,∠FEG=∠ERN,∴△EFG≌△REN(AAS),∴EN=FG,EG=RN=PD=a,∵CG=BF=a,GE=a,设ED=b,∴DN=CE=2a=OQ,OF=a+b,∵PD=PK=a,OD=CD=2a+b,∴OK=b,∵OK∥QR,∴,即,∴b(3a+b)=(a+b)2,∴a=b,∴3a=6,∴a=2,∴P(4,0).3.解:(1)令x=0,则y=2,即:OB=2,由勾股定理得:OA=6,则k=﹣;(2)设:BC=AC=a,则OC=6﹣a,在△BOC中,(2)2+(6﹣a)2=a2,解得:a=4,则点C(2,0);(3)点D时AB的中点,则点D(3,),将点C、D的坐标代入一次函数:y=kx+b得:,解得:,故直线CD的表达式为:y=x﹣2.4.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM ∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.5.解:(1)∵点A的坐标为(0,1),点B的坐标为(﹣3,﹣1),将线段AB向右平移m(m>0)个单位,∴A'(m,1),B'(m﹣3,﹣1),当m=4时,A'(4,1),B'(1,﹣1),故答案(1,﹣1);(2)由(1)知,B'(m﹣3,﹣1),∵点B′又在直线x=上,∴m﹣3=,∴m=6,由(1)知,A'(m,1),B'(m﹣3,﹣1),∴A'(6,1),B'(3,﹣1);(3)存在,理由:如图,由(2)知,A'(6,1),B'(3,﹣1),过点B'作GH∥x轴,过点P作PG⊥GH于G,过点A'作A'H⊥GH于H,∴H(6,﹣1),∴A'H=2,B'H=3,∵△PA'B'是等腰直角三角形,∴A'B'=PB',∠A'B'P=90°,∴∠PB'G+∠A'B'H=90°,∵∠PB'G+∠B'PG=90°,∴∠B'PG=∠A'B'H,∴△PB'G≌△A'B'H(AAS),∴B'G=A'H=2,PG=B'H=3,∴P(1,2),同理:P'(4,4),即:点P的坐标为(1,2)或(4,4).:y=3x﹣6与x轴交于点D,6.解:(1)∵直线l2∴令y=0,则3x﹣6=0,∴x =2,∴D (2,0);(2)如图1,∵直线l 1:y =x +2与x 轴交于点A , ∴令y =0.∴x +2=0,∴x =﹣2,∴A (﹣2,0),由(1)知,D (2,0), ∴AD =4,联立直线l 1,l 2的解析式得,, 解得,, ∴C (4,6),∴S △ACD =AD •|y C |=×4×6=12, ∵S △ACE =S △ACD ,∴S △ACE =12,直线l 1与y 轴的交点记作点B , ∴B (0,2),设点E (0,m ),∴BE =|m ﹣2|,∴S △ACE =BE •|x C ﹣x A |=|m ﹣2|×|4+2|=4|m ﹣2|=12, ∴m =﹣2或m =6,∴点E (0,﹣2)或(0,6);(3)如图2,①当点F 在直线l 1上方时,∵以A 、P 、F 为顶点的三角形与△APD 全等,∴Ⅰ、当△APF'≌△APD时,连接DF',BD,由(2)知,B(0,2),由(1)知,A(﹣2,0),D(2,0),∴OB=OA=OD,∴∠ABO=∠DBO=45°,∴∠ABD=90°,∴DB⊥l,1∵△APF'≌△APD,∴PF'=PD,AF'=AD,∴直线l是线段DF'的垂直平分线,1对称,∴点D,F'关于直线l1∴DF'⊥l,1∴DF'过点B,且点B是DF'的中点,∴F'(﹣2,4),Ⅱ、当△PAF≌△APD时,∴PF=AD,∠APF=∠PAD,∴PF∥AD,∵点D(2,0),A(﹣2,6),∴点D向左平移4个单位,∴点P向左平移4个单位得,F(1﹣4,6),∴F(﹣3,3),②当点F在直线l下方时,1∵△PAF''≌△APD,由①Ⅱ知,△PAF≌△APD,∴△PAF≌△PAF'',∴AF=AF'',PF=PF'',∴点F与点F'关于直线l对称,1,∴FF''⊥l1∵DF'⊥l,1∴FF'∥DF',而点F'(﹣2,4)先向左平移一个单位,再向下平移一个单位,∴D(2,0),向左平移1个单位,再向下平移一个单位得F''(2﹣1,0﹣1),∴F''(1,﹣1),即:点F的坐标为(﹣3,3)或(﹣2,4)或(1,﹣1).7.解:(1)当k=﹣1时,该直线表达式为y=﹣x+14,∵四边形OABC是长方形,点P,Q分别在边AB,BC上,点B(12,8),∴点P的横坐标为12,点Q的纵坐标为8,当x=12时,y=﹣1×12+14=2,当y=8时,﹣x+14=8,解得x=6,∴点P,Q的坐标分别是P(12,2),Q(6,8);(2)如图1,过点B作BH⊥PQ于H,∵长方形OABC的顶点B的坐标是(12,8),∴点A的坐标为(12,0),点C的坐标为(0,8).设直线AC表达式为y=ax+b,则解得,,∴直线AC的解析式为y=﹣x+8,∵PQ∥AC,∴k=﹣.∴直线PQ表达式为y=﹣x+12,∵当x=12时,y=4;当y=8时,8=﹣x+12,∴x=6,∴BP=4,BQ=6.在Rt△BPQ中,根据勾股定理得,PQ==2,∵S=BQ•BP=PQ•BH,△PBQ∴×4×6=××BH,∴BH=;(3)∵当x=12时,y=6k+8;当y=8时,x=6.∴点P的坐标为(12,6k+8),点Q的坐标为(6,8).∴AP=6k+8,AO=12,BQ=CQ=6,AB=OC=8.∴BP=8﹣(6k+8)=﹣6k,过点Q作QM⊥OP于点M,连接OQ,如图2,∵PQ平分∠OPB,∴∠QPB=∠QPM,又∵∠PMQ=∠B=90°,PQ=PQ,∴△BPQ≌△MPQ(AAS),∴QM=QB=6,MP=BP=﹣6k,在Rt△OCQ中,根据勾股定理得,OQ=10,在Rt△OQM中,根据勾股定理得OM=8,∴OP=OM+MP=8﹣6k,∵在Rt△OAP中,OA2+AP2=OP2,即122+(6k+8)2=(8﹣6k)2.解得,k=﹣.8.解:(1)令y=0,则﹣x+4=0,解得x=4,x=0时,y=4,∴OA=6,OB=8,∴点A(4,0),B(0,4);(2)在Rt△AOB中,由勾股定理得,AB===4,∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,∴AP=2t,AQ=AB﹣BQ=4﹣t,若PQ ∥OB ,则∠APQ =∠AOB =90°,则 ∴,解得t =;(3)如图,作QH ⊥OA 于H ,∴QH ∥OB ,∴△QAH ∽△BAO , ∴,即,∴QH =4﹣t ,当四边形PQBO 面积是△ABO 面积的时,S △APQ =S △AOB , ∴•2t •(4﹣t )=×, 整理得t 2﹣4t +4=0,解得t =(2﹣)或t =(2+)(舍去)∴t 的值为=(2﹣)四边形PQBO 面积是△ABO 面积的.(4)若∠APQ =90°,由(2)可知t =;若∠AQP =90°,则cos ∠OAB =, ∴=,解得t =8﹣4,∵0<t ≤1.5,∴t 的值为,∴当t 为时,△APQ 为直角三角形.9.解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).10.解:(1)当x=0时,y=kx+8=8所以B(0,8),OB=8∵四边形ABOC是正方形∴OB=OC=8∴C(8,0)得8k+8=0∴k=﹣1∴y=﹣x+8(2)∵点E关于y轴的对称点为点F∴OE=OF=EF∵EG=2FGEG=EF∴OE=3OG=﹣3t∴EG=﹣4t∴S=(﹣8≤t<0)(3)作ML∥EF,交BE于点L,作EQ⊥LG,则∠BEF=∠BLM 显然BM=BL,MF=LE∴LE=GE∴∠3=∠BEF而已知∠2=∠BEF∴∠2=∠3,MN∥EQ∴∠2=∠BLM∵∠1+∠2=∠BLM∴∠1=∠2∵GL⊥MN∴GL过MN的中点∴G,L,D在一条直线上∵CD=5BD∴(5BD)2﹣(8﹣BD)2=82得BD=2∴82+(﹣3t)2=(2﹣4t)2得t=﹣2∴S=3211.解:(1)将点A(﹣6,0),B(0,4)代入y=kx+b中,得,∴,的函数表达式为y=x+4;∴直线l1(2)由(1)知,直线l的函数表达式为y=x+4①,1:y=x,∵直线l2联立①②解得,,∴C(6,8),∵B(0,4),∴OB=4,=OB•|x C|=×4×6=12;∴S△COB(3)设P(m,0),∵O(0,0),C(6,8),∴OP=|m|.OC=10,CP=,∵△POC是等腰三角形,①当OP=OC时,∴|m|=10,∴m=±10,∴P(﹣10,0)或(10,0),②当OP=CP时,∴|m|=,∴m=,∴P(,0),③当OC=CP时,∴10=,∴m=0(舍)或m=12,∴P(12,0),即:满足条件的点P的坐标为(﹣10,0)或(10,0)或(12,0)或(,0).12.解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4),设直线BC的解析式为:y=kx+4,∴4k+4=0,∴k=﹣,∴直线BC的解析式为:y=﹣x+4;(2)如图1,∵D(2,m)为线段BC上的点,∴m=﹣2+4=2,∴D(2,2),∵点D关于直线上x=﹣4的对称点E,∴E(﹣10,2),∴直线CE的解析式为y=﹣x+,当x=﹣4时,y=,∴F(﹣4,),∴AF =,AC =8, ∴CF ==2;(3)存在,如图2,∵AO =4,OB =4,∴AB =8,∠ABO =30°,∠BAO =60°,当BA =BM =8时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴OM =8+4或OM =8﹣4, ∴M 1(0,8+4),M 3=(0.4﹣8); 当AB =MM =8时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴OM =OB =4,∴M 4(0,﹣4),当MA =MB 时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴∠MAB =∠MBA =30°,∴∠MAO =30°,∴OM =, ∴M 2(0,),综上所述,点M 的坐标为M 1(0,8+4),M 2(0,),M 3=(0.4﹣8),M 4(0,﹣4).13.解:(1)x2﹣20x+96=0 (x﹣8)(x﹣12)=0x 1=8,x2=12,∵OC>OA,∴OA=8,OC=12,∵ED⊥AE,∴∠AEO+∠DEC=90°,又∵∠AEO+∠OAE=90°,∴∠OAE=∠CED,又∠AOE=∠ECD=90°,∴△AOE∽△ECD,∴=,即=,∴y=﹣x2+x;(2)当D为BC的中点时,y=4,∴﹣x2+x=4,解得,x1=4,x2=8,设直线AE的解析式为:y=kx+b,当x=4时,点E的坐标为(4,0),解得,,∴直线AE的解析式为:y=﹣2x+8;当x=8时,点E的坐标为(8,0),解得,,∴直线AE的解析式为:y=﹣x+8,∴当D为BC的中点时,直线AE的解析式为y=﹣2x+8或y=﹣x+8;(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).14.解:(1)∵4﹣b≥0,b﹣4≥0,∴b=4,则a=4,对于直线y=kx﹣4k,当y=0时,x=4,∴点C的坐标为(4,0),故答案为:4;4;(4,0);(2)当D在线段BC上时,作BE⊥BA交AD的延长线于点E,作EF⊥y轴于F,则∠BEF+∠EBO=90°,∠ABO+∠EBO=90°,∴∠BEF=∠ABO,∵∠DAB=45°,∴BA=BE,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA,EF=OB=4,对于直线y=4x+4,当y=0时,x=﹣1,∴OA=1,∴E(4,3)设直线AE解析式为y=mx+n,,解得,,则直线AE解析式为y=x+,,解得,,∴D(,);当D在CB延长线上时,同理可得D(,);(3)设M(m,﹣m+4),由(2)可得,△ANM≌△QHA,∴MN=AH=﹣m+4,AN=QH=m+1,∴Q(﹣m+3,﹣m﹣1)则OQ2=(﹣m+3)2+(﹣m﹣1)2=2(m﹣1)2+8,当m=1时,OQ最小为,故答案为:2.15.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.16.解:(1)∵在第四象限的矩形ABCD,点A与坐标原点O重合,且AB=4,AD=3,∴点C的坐标为(4,﹣3),设直线OC的函数解析式为y=kx,﹣3=4k,得k=﹣,即直线OC的表达式为y=﹣x;(2)当0≤t<3时,S==﹣2t+6,当3<t≤7时,S==,由上可得,S=;(3)∵AB=4,BC=3,∠ABC=90°,∴AC=5,当△ABC∽△QPC时,则,∵AC=5,QC=3﹣t,CB=3,CP=2t,∴,解得,t=;当△ABC∽△PQC时,,∵AC=5,PC=2t,BC=3,QC=3﹣t,∴,解得,t =;由上可得,当△QCP 与△ABC 相似时,t 值是或. 17.解:(1)∵直线y =x +4,∴当y =0时,x =﹣3,当x =0时,y =4,∴点A 的坐标为(﹣3,0),点B 的坐标为:(0,4);(2)当t 为4或时,△ABP 为直角三角形,理由:当∠BPA =90°时,此时点P 与点O 重合,此时t =OB =4,当∠BAP =90°时,△BAO ∽△BPA ,则,∵点A 的坐标为(﹣3,0),点B 的坐标为:(0,4),∴OA =3,OB =4,∵∠BOA =90°,∴AB =5, ∴,解得,BP =,由上可得,当t 为4或时,△ABP 为直角三角形; (3)点D 坐标是(2,0)或(8,0),理由:当四边形ABC 1D 1是平行四边形时,∵点A 的坐标为(﹣3,0),点B 的坐标为:(0,4),点E 的坐标为(5,0), ∴BC 1=5,∵四边形ABC 1D 1是平行四边形,∴BC 1=AD 1,∴AD 1=5,∵点A 的坐标为(﹣3,0),∴点D 1的坐标为(2,0);当四边形ABD 2C 2是平行四边形时,则ED 2=OA ,∵点A 的坐标为(﹣3,0),点E 的坐标为(5,0),∴OA=3,∴OD=8,2的坐标为(8,0);∴D2由上可得,点D坐标是(2,0)或(8,0).18.解:(1)在y=﹣x+3中,令x=0,则y=3;令y=0,则x=3;∴A(3,0),B(0,3);故答案为:(3,0);(0,3).(2)∵A(3,0),B(0,3),∴OA=3,OB=3,=OA×OB=×3×3=,∴S△AOB设C(m,n),①当点C在线段AB上时,如图1,∵△AOC的面积是△BOC的面积的2倍,∴S△AOC=,∴∴m=2或m=﹣2(舍去),∵点C在直线y=﹣x+3上,∴﹣2+3=n,∴n=1,∴C(2,1).②当点C在线段AB的延长线上时,如图2,∵△AOC的面积是△BOC的面积的2倍,∴S△BOC =S△AOB,∴×OB×|m|=,∴m=﹣3或m=3(舍去),∴C(﹣3,6).综合以上可得点C的坐标为(2,1)或(﹣3,6).(3)如图3,以OB为边的菱形OBDE中,∵OB=3,∴周长为3×4=12,如图4,以OB边的菱形OBDE中,同理周长为12.如图5,以OB为对角线的菱形ODBE中,∵OB=OA=3,∴∠OBA=45°,∴∠DBE=90°,∴四边形ODBE为正方形,∴BD=3×.∴四边形ODBE的周长为4×.综上可得以O、B、D、E为顶点的菱形的周长为12或6.故答案为:12或6.19.解:(1)∵OA=OB,△OAB的面积是2.∴OA•OB=2,∴OA=OB=2,线段OB的中点C的坐标为:(﹣1,0),答:线段OB的中点C的坐标为:(﹣1,0).(2)①过点E作EF⊥OB,∵∠AOC=90°,OA=2,OC=1,∴AC=,∵OE⊥AC,由面积法得:OE===,∵∠EOF+∠AOE=∠EAO+∠AOE=90°,∴∠EOF=∠EAO,∴tan∠EOF=tan∠EAO=,设EF=x,则OF=2x,∴由勾股定理得:,解得:x=,2x=,∴点E坐标为:(﹣,).②证明:过点B作OB的垂线,交OE于点G,由(2)①可知,∠EOF=∠EAO,∴在△AOC和△OBG中,∴△AOC≌△OBG(ASA),∴∠ECO=∠BGD,BG=OC,∵C为线段OB的中点,∴BG=BC,∵OA =OB ,∠AOC =∠OBG =90°,∴∠GBD =∠CBD =45°,∴在△BGD 和△BCD 中,∴△BGD ≌△BCD (SAS )∴∠DCB =∠BGD ,又∠ECO =∠BGD ,∴∠ECO =∠DCB .(3)由菱形对角线互相垂直的性质,易知,P 1(1,0),Q 1(0,﹣2)符合题意; ∵AC =,∴分别以点C 和点A 为圆心,以为半径作圆,与x 轴可得两个交点P 2(﹣,0),P 3(,0)从而得Q 2(﹣,2),Q 3(,2), 由tan ∠ACO =2,可知,当以AC 为菱形的对角线时,AC 被另一条对角线垂直平分,,从而另一条对角线P 4Q 4的一半为,从而P 4C =,∴P 4(,0),Q 4(﹣,2)综上,点Q 的坐标为:(0,﹣2)、(﹣,2)、(,2),(﹣,2).20.解:(1)由轴对称的性质可得,若点P 是端点,即当点P 在A 点时,A ′点的位置关系是点A ,OP 所在的直线是y 轴;当点P 在C 点时,∵∠AOC =∠BOC =45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∵正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∠OA′D=90°.∴A′D=1.设点P(x,2),PA′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若△DPQ的周长为最小,即是要PQ+DQ为最小.∵点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).。

一次函数练习题与答案

一次函数练习题与答案

一次函数练习题与答案一、选择题1. 一次函数y=kx+b的斜率k表示的是:A. 函数的截距B. 函数的斜率C. 函数的对称轴D. 函数的顶点2. 已知一次函数y=3x-5,当x=2时,y的值是:A. 1B. -1C. 7D. -73. 一次函数y=kx+b的图象过点(-1,6),且与y轴交于点(0,-2),则k 的值为:A. 4B. -4C. 8D. -84. 直线y=-2x+b与两坐标轴围成的三角形面积为1,且直线与y轴的交点在x轴上方,则b的值为:A. 1B. 2C. 3D. 45. 一次函数y=kx+b的图象不经过第三象限,那么:A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<0二、填空题6. 一次函数y=2x-3与x轴的交点坐标是_________。

7. 一次函数y=-4x+5的图象与x轴相交于点_________。

8. 若一次函数y=kx+b的图象过点(1,0)和(0,-1),则k=_______,b=_______。

9. 一次函数y=-x+3与直线y=2x-1的交点坐标是_________。

10. 一次函数y=-3x+4的图象与y轴的交点坐标是_________。

三、解答题11. 已知一次函数y=kx+b的图象经过点(-1,10)和(2,5),求k和b的值。

12. 直线y=kx+b经过原点,且与x轴相交于点(3,0),求k和b的值。

13. 一次函数y=kx+b的图象与x轴相交于点(a,0),与y轴相交于点(0,b),求k和b的值。

14. 已知一次函数y=kx+b的图象经过点(-2,15)和(1,-6),求k和b的值。

15. 一次函数y=kx+b的图象与两坐标轴围成的三角形面积为4,且直线与x轴的交点在y轴右侧,求k和b的值。

答案:1. B2. A3. B4. B5. D6. (3/2, 0)7. (5/4, 0)8. k=-1,b=19. (1, 2)10. (0, 4)11. k=-5,b=1512. k=-1/3,b=013. k=-a/b,b为y轴交点的y坐标14. k=-11,b=1715. k=4/3,b=-4【注】本练习题旨在帮助学生掌握一次函数的基本性质和求解方法,通过不同类型的题目,加强学生对一次函数图象和性质的理解与应用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以点B不在这个函数的图象上.
【点评】本题考查了待定系数法求一次函数解析式.此题比较简单,解答此题的关键是熟知函数图象上点的坐标一定适合此函数的解析式.
20、(1)当0<t≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元
21、(1)y=x+1;(2)C(0,1);(3)1
22、(1)10km (2)1h (3)3h (4) h
(4)∵一次函数为减函数,
∴k﹣2<0,
∴k<2.
18、【考点】一次函数的应用.
【分析】(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;
(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.
又∵m+1≠0即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数; (4分)
(2)根据正比例函数的定义,得:2-|m|=1,n+4=0,解得m=±1,n=-4,
又∵m+1≠0即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数. (8分)
14、(1) (2) (3)5千克
15、(1) (2)略
27、已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为( )
A.y=﹣x﹣2 B于x的一次函数y=kx+k2+1的图象可能正确的是( )
A. B. C. D.
29、若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为
23、、已知一次函数y=-2x+2.(12分)
(1)画出它的图象;
(2)求图象与
x轴的交点A、与y轴的交点B的坐标;
(3)求A、B两点之间的距离;
(4)观察图象回答,当x为何值时,y≥0?
24、如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?
把A(0,2),B(﹣1,3)代入得: ,
解得:k=﹣1,b=2,
所以这个一次函数的表达式为y=﹣x+2;
(2)图象如下,过B作BD⊥y轴于D,则BD=1,
△AOB的面积= ×OA×BD= ×2×1=1.
【点评】本题考查了用待定系数法求一次函数的解析式,函数的图象,三角形的面积,解二元一次方程组的应用,能根据题意求出函数的解析式是解此题的关键.
12、解:设一次函数的表达式 为y=kx+b(k≠0,k,b都是常数),
由点A的坐标为(4,0),且OA=2OB,可知B(0,2).
又点A,B的坐标满足一次函数表达式,
∴b=2,4k+b=0,解得k=- .则一次函数的表达式为y=- x+2
13、解:(1)根据一次函数的定义,得:2-|m|=1,解得m=±1.
【解答】解:(1)∵y=3x中k=3>0,y=x﹣4中k=1>0,y=3x+6中,k=3>0,
∴这几个一次函数中,函数值y随x的增大而增大.
故答案为:A、B、D;
(2)∵五个函数中只有y=x﹣4与y=﹣5x﹣4与y轴的交点均为(0,﹣4),
∴这两个一次函数图象的交点都在y轴上.
故答案为:B与C;
(3)∵直线y=3x与y=3x+6中k的值相同,y=﹣5x﹣4与y=﹣5x+1中k的值相同,
(2)汽车中途停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式?
评卷人
得分
三、选择题
(每空? 分,共? 分)
25、关于函数 ,下列结论正确的是 ( )
A.图象必经过点(﹣2,1) B.图象经过第一、二、三象限
C.图象与直线 =-2 +3平行 D. 随 的增大而增大
26、 一次函数y=kx+k的图象可能是( )
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
19、.已知函数3x+2y=1
(1)将其改成y=kx+b的形式为__________.
(2)判断点B(﹣5,3)是否在这个函数的图象上.
20、如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
,
3、直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=_______.
4、若函数y=(a-3)x|a|-2+1是一次函数,则a=_______.
5、将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.
6、 已知函数 是关于 的正比例函数,则 _________.
(1)挂重后弹簧的长度y(cm)与挂重x(kg)之间的函数关系式;
(2)写出自变量的取值范围;
(3)挂重多少千克时,弹簧长度为22.5cm?
15、 一次函数y=kx+b的图象过点(-2,3)和(1,-3)。
(1)求一次函数的解析式; (2)画出该函数图像。
16、已知一次函数的图象经过A(0,2),B(﹣1,3)两点.求:
16、【考点】待定系数法求一次函数解析式;一次函数的图象.
【分析】(1)设这个一次函数的表达式为y=kx+b,把A(0,2),B(﹣1,3)代入得出方程组,求出方程组的解即可;
(2)画出图象,过B作BD⊥y轴于D,求出高BD和边OA的长,根据面积公式求出即可.
【解答】解:(1)设这个一次函数的表达式为y=kx+b,
A.y=3x B.y=x﹣4 C.y=﹣5x﹣4 D.y=3x+6 E.y=﹣5x+1
(1)一次函数中,函数值y随x的增大而增大的有:__________;
(2)几个一次函数图象的交点都在y轴上的有:__________;
(3)一次函数中,图象平行的有:__________.
11、如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组 的解是_____.
【解答】解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,
∴小明的爸爸用的时间为: =25(min),
即OF=25,
如图:设s2与t之间的函数关系式为:s2=kt+b,
∵E(0,2400),F(25,0),
∴ ,
解得: ,
∴s2与t之间的函数关系式为:s2=﹣96t+2400;
(2)如图:小明用了10分钟到邮局,
22、如图, 与 分别表示 步行与 骑车同一路上行驶的路程 与时间 的关系.
(1) 出发时与 相距多少千米?
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?
(3) 出发后经过多少小时与 相遇?
(4)若 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与 相遇?在图中表示出这个相遇点 .
∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.
19、【考点】一次函数图象上点的坐标特征.
【分析】(1)根据一次函数的解析式解答即可;
(2)把点B代入解析式即可.
【解答】解:(1)函数3x+2y=1改成y=kx+b的形式为 ;
故答案为: ;
(2)因为当x=﹣5时,y= ≠3,
(3)设函数关系式为S=kt+b,
一次函数综合练习及答案
姓名:_______________班级:_______________考号:_______________
评卷人
得分
一、填空题
(每空? 分,共? 分)
1、已知一次函数 的图像经过A(0,1),B(2,0),则当x时,
2、小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为___km.
A.x>﹣3 B.x<﹣3 C.x>2 D.x<2
参考答案
一、填空题
1、
2、0.3_
3、2_
4、-3_
5、_y=2x-2
6、﹣1;
7、y=-8x+2
8、-1
9、
10、【考点】一次函数的性质.
【分析】(1)根据一次函数中k的符号进行判断即可;
(2)根据直线与y轴的交点进行解答;
(3)根据一次函数中k的值即可作出判断.
A.2 B.0 C.-2 D. ±2
30、在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是
A.一象限 B. 二象限 C. 四象限 D.不能确定
31、一次函数y=﹣2x﹣1的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(1)该直线解析式;
(2)画出图象并求出△AOB的面积.
17、已知一次函数y=(k﹣2)x﹣3k2+12.
(1)k为何值时,图象经过原点;
(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;
(3)k为何值时,图象平行于y=﹣2x的图象;
(4)k为何值时,y随x增大而减小.
18、小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.
∴D点的坐标为(22,0),
设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),
相关文档
最新文档