高中物理专题第六章动量守恒定律及“三类模型”问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理专题第六章动量守恒定律及“三类模
型”问题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第2讲动量守恒定律及“三类模型”问题
一、动量守恒定律
1.内容
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.
2.表达式
(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.
(4)Δp=0,系统总动量的增量为零.
3.适用条件
(1)理想守恒:不受外力或所受外力的合力为零.
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.
自测1关于系统动量守恒的条件,下列说法正确的是( )
A.只要系统内存在摩擦力,系统动量就不可能守恒
B.只要系统中有一个物体具有加速度,系统动量就不守恒
C.只要系统所受的合外力为零,系统动量就守恒
D.系统中所有物体的加速度为零时,系统的总动量不一定守恒
答案 C
二、碰撞、反冲、爆炸
1.碰撞
(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.
(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.
(3)碰撞分类
①弹性碰撞:碰撞后系统的总动能没有损失.
②非弹性碰撞:碰撞后系统的总动能有损失.
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.
2.反冲
(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等.
(3)规律:遵从动量守恒定律.
3.爆炸问题
爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.
自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()
图1
A.A和B都向左运动
B.A和B都向右运动
C.A静止,B向右运动
D.A向左运动,B向右运动
答案 D
解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.
命题点一动量守恒定律的理解和基本应用
例1 (多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C 上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()
图2
A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒
B.若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 、C 组成的系统的动量守恒
C.若A 、B 所受的摩擦力大小相等,A 、B 组成的系统的动量守恒
D.若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统的动量守恒 答案 BCD
解析 如果A 、B 与平板车上表面的动摩擦因数相同,弹簧释放后,A 、B 分别相对小车向左、向右滑动,它们所受的滑动摩擦力F f A 向右、F f B 向左,由于m A ∶m B =3∶ 2,所以F f A ∶F f B =3∶2,则A 、B 组成的系统所受的外力之和不为零,故其动量不守恒,A 选项错误;对A 、B 、C 组成的系统,A 、B 与C 间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒,与平板车间的动摩擦因数或摩擦力是否相等无关,故B 、D 选项正确;若A 、B 所受的摩擦力大小相等,则A 、B 组成的系统的外力之和为零,故其动量守恒,C 选项正确.
例2 (2017·全国卷Ⅰ·14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A.30 kg·m /s B.5.7×102 kg·m/s C.6.0×102 kg·m /s D.6.3×102 kg·m/s
答案 A
解析 设火箭的质量为m 1,燃气的质量为m 2.由题意可知,燃气的动量p 2=m 2v 2=50×10
-
3×600 kg·m /s =30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m
1v 1-
m 2v 2,则火箭的动量大小为p 1=m 1v 1=m 2v 2=30 kg·m/s ,所以A 正确,B 、C 、D 错误. 变式1 两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5 kg ,乙车和磁铁的总质量为1 kg ,两磁铁的N 极相对.推动一下,使两车相向运动,某时刻甲的速率为2 m /s ,乙的速率为3 m/s ,方向与甲相反,两车运动过程中始终未相碰.则:
(1)两车最近时,乙的速度为多大
(2)甲车开始反向时,乙的速度为多大
答案 (1)4
3
m /s (2)2 m/s
解析 (1)两车相距最近时,两车的速度相同,设该速度为v ,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v 所以两车最近时,乙车的速度为
v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1×3-0.5×20.5+1
m/s =43 m/s.